Project summary

Create executive factor score using IRT (MIRT package) for combined TabCat and Examiner

Variables:

Tabcat: Running dots, dot coutning, flanker, set shifting, match UDS: Animal fluency, vegitable fluency, L words, F words

Issues:

  1. We have more fluency data than Tabcat data (see desriptives). Should we restrit data in some way?

  2. Data is pretty good after binning, but there is some skewness. Transforming reduces the skewness and also leads to more bins for several variables. Is it worth it to do this transformation?

Data: Below I provide some data looking at these issues. I ran most analsyes with: the full dataset, a reduced dataset (needs 1+ TabCat), and transformed data (also reduced to 1+ TabCat)

Outline

  1. Descriptives (raw data)
  2. EFA summary
  3. IRT models

Descriptives

Lookup table full data. Restricted data is similar.

##    recode_score min_rundots max_rundots min_dotcount max_dotcount min_flanker
## 1             1           0          70            0            4      4000.0
## 2             2          95         140            5            6      4687.5
## 3             3         145         210            7            7      5116.0
## 4             4         215         285            8            9      5620.0
## 5             5         290         390           10           11      6135.0
## 6             6          NA          NA           12           13      6680.0
## 7             7          NA          NA           14           15      7230.0
## 8             8          NA          NA           16           17      7737.7
## 9             9          NA          NA           18           19      8290.0
## 10           10          NA          NA           20           21      8810.0
## 11           11          NA          NA           22           22          NA
## 12           12          NA          NA           23           27          NA
##    max_flanker min_setshift max_setshift min_match max_match min_animals
## 1       4380.0          0.0       2500.0         0         5           1
## 2       5049.8       2968.8       3780.0         6        10           4
## 3       5592.7       3860.0       4840.0        11        15           7
## 4       6090.0       4889.7       5950.0        16        20          10
## 5       6650.0       6015.2       7017.7        21        25          13
## 6       7180.0       7035.5       8090.0        26        31          16
## 7       7730.0       8113.1      10000.0        32        36          18
## 8       8260.0           NA           NA        37        41          21
## 9       8790.0           NA           NA        42        46          24
## 10      9820.0           NA           NA        47        51          27
## 11          NA           NA           NA        52        57          30
## 12          NA           NA           NA        58        68          33
##    max_animals min_veg max_veg min_fwords max_fwords min_lwords max_lwords
## 1            3       1       3          1          3          1          3
## 2            6       4       5          4          5          4          5
## 3            9       6       7          6          7          6          7
## 4           12       8       9          8          9          8          9
## 5           15      10      11         10         11         10         11
## 6           17      12      13         12         13         12         13
## 7           20      14      15         14         15         14         15
## 8           23      16      17         16         18         16         17
## 9           26      18      19         19         20         18         19
## 10          29      20      21         21         22         20         21
## 11          32      22      23         23         24         22         23
## 12          38      24      33         25         35         24         28

Skewness: |minimim| shows transformation that brings skewness closest to zero

##            raw square.root log+10 1/x+100 squared   exp |minimum|
## rundots  -0.94       -2.59  -3.47    3.42    0.42   NaN      0.42
## dotcount -0.23       -1.77  -1.11    0.52    0.71 12.03      0.23
## flanker  -0.76       -0.90  -1.04    1.33   -0.33   NaN      0.33
## setshift -1.08       -2.53 -10.33   16.89   -0.28   NaN      0.28
## match    -1.02       -1.84  -2.06    1.57   -0.07 28.90      0.07
## animals  -0.07       -0.67  -0.76    0.38    0.92 23.28      0.07
## veg       0.09       -0.46  -0.46    0.13    1.24 28.25      0.09
## fwords    0.09       -0.53  -0.55    0.17    1.37 27.38      0.09
## lwords    0.09       -0.51  -0.50    0.15    1.16 13.70      0.09

Lookup table skewed, restricted data.

##    recode_score min_rundots max_rundots min_dotcount max_dotcount min_flanker
## 1             1     -152100     -143075            0            4   -80432400
## 2             2     -140000     -131075            5            6   -74459744
## 3             3     -129600     -121475            7            7   -69212181
## 4             4     -119700     -110075            8            9   -63369900
## 5             5     -108000     -101475           10           11   -57893136
## 6             6      -99200      -89600           12           13   -52342800
## 7             7      -87075      -79200           14           15   -46758096
## 8             8      -76475      -68000           16           17   -41227500
## 9             9      -65075      -59075           18           19   -35592400
## 10           10      -56000      -46475           20           21   -30140236
## 11           11      -43200      -36500           22           22   -24304748
## 12           12      -33075           0           23           27   -18816300
##    max_flanker min_setshift max_setshift min_match max_match min_animals
## 1    -77248000   -100000000    -93750000     -4624     -4335           1
## 2    -70258944    -91186227    -85100400     -4300     -3999           4
## 3    -63714000    -84555100    -79468227     -3948     -3663           7
## 4    -58794175    -77070268    -69859900     -3600     -3399          10
## 5    -52787879    -69639900    -62681341     -3328     -3024          13
## 6    -46986189    -61952075    -54707100     -2943     -2775          16
## 7    -41642796    -53686531    -47036538     -2688     -2415          18
## 8    -36214800    -46941887    -39471600     -2320     -2124          21
## 9    -30172800    -39362631    -32090864     -2023     -1815          24
## 10   -25029900    -31275900    -24483900     -1708     -1488          27
## 11   -19168300    -24038317            0     -1375     -1143          30
## 12           0           NA           NA     -1024         0          33
##    max_animals min_veg max_veg min_fwords max_fwords min_lwords max_lwords
## 1            3       1       3          1          3          1          3
## 2            6       4       5          4          5          4          5
## 3            9       6       7          6          7          6          7
## 4           12       8       9          8          9          8          9
## 5           15      10      11         10         11         10         11
## 6           17      12      13         12         13         12         13
## 7           20      14      15         14         15         14         15
## 8           23      16      17         16         18         16         17
## 9           26      18      19         19         20         18         19
## 10          29      20      21         21         22         20         21
## 11          32      22      23         23         24         22         23
## 12          38      24      33         25         35         24         28

EFA summary

4 factor model was best.

Figure 1: EFA 4 factor model, unrestricted, nontransformed data.

## Figure 2: EFA 4 factor model, restricted, transformed data

IRT

A. IRT with full data

B. IRT with reduced data (all subs need 1+ Tabcat)

## 
Iteration: 1, Log-Lik: -13678.309, Max-Change: 1.90663
Iteration: 2, Log-Lik: -12095.987, Max-Change: 2.53825
Iteration: 3, Log-Lik: -11431.930, Max-Change: 1.38813
Iteration: 4, Log-Lik: -11168.744, Max-Change: 0.72857
Iteration: 5, Log-Lik: -11069.665, Max-Change: 0.40417
Iteration: 6, Log-Lik: -11024.825, Max-Change: 0.23650
Iteration: 7, Log-Lik: -10996.867, Max-Change: 0.18836
Iteration: 8, Log-Lik: -10977.209, Max-Change: 0.13987
Iteration: 9, Log-Lik: -10962.616, Max-Change: 0.11158
Iteration: 10, Log-Lik: -10951.685, Max-Change: 0.09591
Iteration: 11, Log-Lik: -10943.294, Max-Change: 0.08940
Iteration: 12, Log-Lik: -10936.712, Max-Change: 0.07692
Iteration: 13, Log-Lik: -10931.493, Max-Change: 0.07247
Iteration: 14, Log-Lik: -10927.291, Max-Change: 0.06569
Iteration: 15, Log-Lik: -10923.867, Max-Change: 0.05893
Iteration: 16, Log-Lik: -10911.796, Max-Change: 0.03931
Iteration: 17, Log-Lik: -10910.880, Max-Change: 0.03390
Iteration: 18, Log-Lik: -10910.318, Max-Change: 0.02650
Iteration: 19, Log-Lik: -10909.292, Max-Change: 0.02910
Iteration: 20, Log-Lik: -10909.000, Max-Change: 0.01886
Iteration: 21, Log-Lik: -10908.785, Max-Change: 0.01627
Iteration: 22, Log-Lik: -10908.113, Max-Change: 0.01229
Iteration: 23, Log-Lik: -10908.041, Max-Change: 0.01021
Iteration: 24, Log-Lik: -10907.984, Max-Change: 0.00804
Iteration: 25, Log-Lik: -10907.788, Max-Change: 0.00710
Iteration: 26, Log-Lik: -10907.763, Max-Change: 0.00516
Iteration: 27, Log-Lik: -10907.752, Max-Change: 0.00403
Iteration: 28, Log-Lik: -10907.730, Max-Change: 0.00749
Iteration: 29, Log-Lik: -10907.721, Max-Change: 0.00128
Iteration: 30, Log-Lik: -10907.720, Max-Change: 0.00197
Iteration: 31, Log-Lik: -10907.717, Max-Change: 0.00126
Iteration: 32, Log-Lik: -10907.716, Max-Change: 0.00172
Iteration: 33, Log-Lik: -10907.714, Max-Change: 0.00107
Iteration: 34, Log-Lik: -10907.714, Max-Change: 0.00214
Iteration: 35, Log-Lik: -10907.711, Max-Change: 0.00164
Iteration: 36, Log-Lik: -10907.709, Max-Change: 0.00208
Iteration: 37, Log-Lik: -10907.704, Max-Change: 0.00253
Iteration: 38, Log-Lik: -10907.701, Max-Change: 0.00066
Iteration: 39, Log-Lik: -10907.701, Max-Change: 0.00021
Iteration: 40, Log-Lik: -10907.701, Max-Change: 0.00020
Iteration: 41, Log-Lik: -10907.701, Max-Change: 0.00014
Iteration: 42, Log-Lik: -10907.701, Max-Change: 0.00063
Iteration: 43, Log-Lik: -10907.701, Max-Change: 0.00039
Iteration: 44, Log-Lik: -10907.700, Max-Change: 0.00053
Iteration: 45, Log-Lik: -10907.700, Max-Change: 0.00055
Iteration: 46, Log-Lik: -10907.700, Max-Change: 0.00056
Iteration: 47, Log-Lik: -10907.700, Max-Change: 0.00016
Iteration: 48, Log-Lik: -10907.700, Max-Change: 0.00034
Iteration: 49, Log-Lik: -10907.700, Max-Change: 0.00017
Iteration: 50, Log-Lik: -10907.700, Max-Change: 0.00043
Iteration: 51, Log-Lik: -10907.700, Max-Change: 0.00014
Iteration: 52, Log-Lik: -10907.700, Max-Change: 0.00012
Iteration: 53, Log-Lik: -10907.700, Max-Change: 0.00028
Iteration: 54, Log-Lik: -10907.700, Max-Change: 0.00045
Iteration: 55, Log-Lik: -10907.700, Max-Change: 0.00017
Iteration: 56, Log-Lik: -10907.700, Max-Change: 0.00036
Iteration: 57, Log-Lik: -10907.700, Max-Change: 0.00014
Iteration: 58, Log-Lik: -10907.700, Max-Change: 0.00012
Iteration: 59, Log-Lik: -10907.700, Max-Change: 0.00025
Iteration: 60, Log-Lik: -10907.700, Max-Change: 0.00046
Iteration: 61, Log-Lik: -10907.700, Max-Change: 0.00020
Iteration: 62, Log-Lik: -10907.700, Max-Change: 0.00038
Iteration: 63, Log-Lik: -10907.700, Max-Change: 0.00015
Iteration: 64, Log-Lik: -10907.700, Max-Change: 0.00012
Iteration: 65, Log-Lik: -10907.700, Max-Change: 0.00027
Iteration: 66, Log-Lik: -10907.699, Max-Change: 0.00050
Iteration: 67, Log-Lik: -10907.699, Max-Change: 0.00019
Iteration: 68, Log-Lik: -10907.699, Max-Change: 0.00038
Iteration: 69, Log-Lik: -10907.699, Max-Change: 0.00016
Iteration: 70, Log-Lik: -10907.699, Max-Change: 0.00013
Iteration: 71, Log-Lik: -10907.699, Max-Change: 0.00026
Iteration: 72, Log-Lik: -10907.699, Max-Change: 0.00049
Iteration: 73, Log-Lik: -10907.699, Max-Change: 0.00020
Iteration: 74, Log-Lik: -10907.699, Max-Change: 0.00037
Iteration: 75, Log-Lik: -10907.699, Max-Change: 0.00014
Iteration: 76, Log-Lik: -10907.699, Max-Change: 0.00012
Iteration: 77, Log-Lik: -10907.699, Max-Change: 0.00026
Iteration: 78, Log-Lik: -10907.699, Max-Change: 0.00050
Iteration: 79, Log-Lik: -10907.699, Max-Change: 0.00017
Iteration: 80, Log-Lik: -10907.699, Max-Change: 0.00035
Iteration: 81, Log-Lik: -10907.699, Max-Change: 0.00015
Iteration: 82, Log-Lik: -10907.699, Max-Change: 0.00012
Iteration: 83, Log-Lik: -10907.699, Max-Change: 0.00025
Iteration: 84, Log-Lik: -10907.699, Max-Change: 0.00046
Iteration: 85, Log-Lik: -10907.699, Max-Change: 0.00018
Iteration: 86, Log-Lik: -10907.699, Max-Change: 0.00034
Iteration: 87, Log-Lik: -10907.699, Max-Change: 0.00013
Iteration: 88, Log-Lik: -10907.699, Max-Change: 0.00011
Iteration: 89, Log-Lik: -10907.699, Max-Change: 0.00024
Iteration: 90, Log-Lik: -10907.699, Max-Change: 0.00045
Iteration: 91, Log-Lik: -10907.699, Max-Change: 0.00016
Iteration: 92, Log-Lik: -10907.699, Max-Change: 0.00032
Iteration: 93, Log-Lik: -10907.699, Max-Change: 0.00013
Iteration: 94, Log-Lik: -10907.699, Max-Change: 0.00011
Iteration: 95, Log-Lik: -10907.699, Max-Change: 0.00023
Iteration: 96, Log-Lik: -10907.699, Max-Change: 0.00042
Iteration: 97, Log-Lik: -10907.699, Max-Change: 0.00016
Iteration: 98, Log-Lik: -10907.699, Max-Change: 0.00031
Iteration: 99, Log-Lik: -10907.699, Max-Change: 0.00012
Iteration: 100, Log-Lik: -10907.699, Max-Change: 0.00010
##            ExecutiveComposite_r    F1    F2    h2
## rundots_r                 0.586 0.000 0.000 0.343
## dotcount_r                0.548 0.000 0.000 0.301
## flanker_r                 0.777 0.000 0.000 0.604
## setshift_r                0.762 0.000 0.000 0.580
## match_r                   0.799 0.000 0.000 0.638
## animals_r                 0.856 0.000 0.266 0.804
## veg_r                     0.749 0.000 0.342 0.677
## fwords_r                  0.666 0.617 0.000 0.825
## lwords_r                  0.677 0.610 0.000 0.829
## 
## SS loadings:  4.662 0.752 0.187 
## Proportion Var:  0.518 0.084 0.021 
## 
## Factor correlations: 
## 
##                      ExecutiveComposite_r F1 F2
## ExecutiveComposite_r                    1      
## F1                                      0  1   
## F2                                      0  0  1
## Degrees of freedom (lower triangle) and p-values:
## 
##            rundots_r dotcount_r flanker_r setshift_r match_r animals_r   veg_r
## rundots_r         NA      0.116     0.265      0.002   0.021     0.004   0.001
## dotcount_r        44         NA     0.218      0.190   0.977     0.176   0.184
## flanker_r         36     99.000        NA      0.322   0.873     0.008   0.001
## setshift_r        24     66.000    54.000         NA   0.061     0.033   0.001
## match_r           44    121.000    99.000     66.000      NA     0.014   0.000
## animals_r         44    121.000    99.000     66.000 121.000        NA   0.848
## veg_r             44    121.000    99.000     66.000 121.000   121.000      NA
## fwords_r          44    121.000    99.000     66.000 121.000   121.000 121.000
## lwords_r          44    121.000    99.000     66.000 121.000   121.000 121.000
##            fwords_r lwords_r
## rundots_r     0.039    0.134
## dotcount_r    0.034    0.010
## flanker_r     0.005    0.055
## setshift_r    0.008    0.024
## match_r       0.000    0.018
## animals_r     0.849    0.493
## veg_r         0.476    0.247
## fwords_r         NA    0.000
## lwords_r    121.000       NA
## 
## LD matrix (lower triangle) and standardized values.
## 
## Upper triangle summary:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  -0.424  -0.356  -0.236  -0.138   0.120   0.330 
## 
##            rundots_r dotcount_r flanker_r setshift_r match_r animals_r   veg_r
## rundots_r         NA      0.274     0.275     -0.256   0.278    -0.378  -0.405
## dotcount_r    55.429         NA    -0.278     -0.216   0.192    -0.315  -0.318
## flanker_r     40.884    109.659        NA      0.239   0.234    -0.415  -0.424
## setshift_r    48.585     75.860    58.234         NA   0.243    -0.355  -0.398
## match_r       65.019     91.957    83.183     84.632      NA    -0.135  -0.147
## animals_r     72.410    135.378   136.156     88.661 157.456        NA  -0.110
## veg_r         81.290    134.851   148.723    110.199 180.943   105.107      NA
## fwords_r      61.823    150.912   139.597     97.045 224.365   105.051 121.262
## lwords_r      54.478    160.180   122.418     90.509 155.954   120.596 131.236
##            fwords_r lwords_r
## rundots_r    -0.346   -0.327
## dotcount_r    0.330   -0.343
## flanker_r    -0.413   -0.385
## setshift_r   -0.369   -0.359
## match_r      -0.165   -0.138
## animals_r     0.111    0.119
## veg_r        -0.120    0.125
## fwords_r         NA   -0.281
## lwords_r    672.918       NA

C. IRT with reduced data (all subs need 1+ Tabcat and skew correction

D. IRT model comparisons.

1. EF factor loadings by model

## 
## 
## |       |  Full  | Restrict |  Skew  |
## |:----------:|:------:|:--------:|:------:|
## |   **n**    |  1324  |   1323   |  1323  |
## | **LogLik** | -10914 |  -10908  | -11670 |
## |  **AIC**   | 22020  |  22007   | 23559  |
## |  **BIC**   | 22518  |  22505   | 24124  |
## 
## Table: Model comparison
## 
## 
## |           |  Full  | Restrict |  Skew  |
## |:--------------:|:------:|:--------:|:------:|
## | **rundots_r**  | 0.586  |  0.5858  | 0.5275 |
## | **dotcount_r** | 0.5486 |  0.5485  | 0.5306 |
## | **flanker_r**  | 0.7773 |  0.7775  | 0.7613 |
## | **setshift_r** | 0.7618 |  0.7619  | 0.766  |
## |  **match_r**   | 0.7986 |  0.7985  | 0.8037 |
## | **animals_r**  | 0.8567 |  0.8565  | 0.862  |
## |   **veg_r**    | 0.7489 |  0.7487  | 0.749  |
## |  **fwords_r**  | 0.667  |  0.6665  | 0.6662 |
## |  **lwords_r**  | 0.6769 |  0.6766  | 0.6751 |
## 
## Table: EF factor loadings by model
## 
## 
## |           | Full  | Restrict | Skew  |
## |:--------------:|:-----:|:--------:|:-----:|
## | **rundots_r**  | 0.343 |  0.343   | 0.278 |
## | **dotcount_r** | 0.301 |  0.301   | 0.282 |
## | **flanker_r**  | 0.604 |  0.604   | 0.58  |
## | **setshift_r** | 0.58  |   0.58   | 0.587 |
## |  **match_r**   | 0.638 |  0.638   | 0.646 |
## | **animals_r**  | 0.804 |  0.804   | 0.81  |
## |   **veg_r**    | 0.677 |  0.677   | 0.676 |
## |  **fwords_r**  | 0.825 |  0.825   | 0.826 |
## |  **lwords_r**  | 0.829 |  0.829   | 0.829 |
## 
## Table: H2: variance accounted for by variable