final_project_eda
“tracing EBRD investments in Ukraine”
maps
Graph 1
point: Ukraine has always been one of the most important receiving countries of EBRD investments. Over the whole period (until 2021), Russia has received most investments, followed by Ukraine and Turkey. Looking at the outstanding portfolio positions, Russia has lost its first rank, while Turkey and Ukraine have remained main receivers, joined now by Egypt and Poland.
what happened to France, Kosovo, Norway?
Warning in countrycode_convert(sourcevar = sourcevar, origin = origin, destination = dest, : Some values were not matched unambiguously: Kosovo
call out box does not work
[1] "Call Out Box 1"
EBRD in Ukraine data
# A tibble: 0 × 24
# … with 24 variables: ...1 <dbl>, project_name <chr>, sector <chr>,
# project_type <chr>, pub_date <date>, project_id <dbl>, country <chr>,
# project_status <chr>, link <chr>, direct_regional <chr>,
# original_signing_date <date>, ebrd_finance <dbl>, ebrd_finance_debt <dbl>,
# ebrd_finance_equity <dbl>, ebrd_finance_guarantee <dbl>,
# project_status_full <chr>, initiative_date <dttm>, start_date <dttm>,
# year <dbl>, EUR_per_USD <dbl>, ebrd_finance_USD <dbl>, …
`summarise()` has grouped output by 'sector'. You can override using the
`.groups` argument.
# A tibble: 2 × 24
# Groups: sector [2]
...1 projec…¹ sector proje…² pub_date proje…³ country proje…⁴ link direc…⁵
<dbl> <chr> <chr> <chr> <date> <dbl> <chr> <chr> <chr> <chr>
1 307 Nak Eme… Natur… State 2022-06-21 53626 Ukraine Repayi… http… Direct
2 534 Ukrener… Energy State 2022-11-24 54138 Ukraine Disbur… http… Direct
# … with 14 more variables: original_signing_date <date>, ebrd_finance <dbl>,
# ebrd_finance_debt <dbl>, ebrd_finance_equity <dbl>,
# ebrd_finance_guarantee <dbl>, project_status_full <chr>,
# initiative_date <dttm>, start_date <dttm>, year <dbl>, EUR_per_USD <dbl>,
# ebrd_finance_USD <dbl>, ebrd_finance_debt_USD <dbl>,
# ebrd_finance_equity_USD <dbl>, ebrd_finance_guarantee_USD <dbl>, and
# abbreviated variable names ¹project_name, ²project_type, ³project_id, …
Warning: Removed 24 rows containing missing values (`position_stack()`).
Warning: Removed 15 rows containing missing values (`position_stack()`).
Warning: Removed 12 rows containing missing values (`position_stack()`).
FDI
fin_acc_3 <- fin_acc_subset_2 %>% select(! “fin_acc_item”:“y2000”) %>% pivot_longer( cols = “2001”:“2022”, names_to = “year”, values_to = “investment” )
Direct Investment
fin_acc_4 <- fin_acc_3 %>% filter(grepl(“^1\.[23]”, spec_item)) %>% rename(equity = “1.2_DI_Equity and investment fund shares”)
ggplot(fin_acc_4, aes(x = year, y = investment, fill = spec_item))+ geom_col()
Portfolio Investment
fin_acc_5 <- fin_acc_3 %>% filter(grepl(“^2\.[34]_“, spec_item))
ggplot(fin_acc_5, aes(x = year, y = investment, fill = spec_item))+ geom_col()
Other Investment
fin_acc_6 <- fin_acc_3 %>% filter(spec_item == “4.3_OI_Loans” | spec_item == “4.3.1.3_General government” | spec_item == “4.3.1.3.1_Credit and loans with the IMF”)
ggplot(fin_acc_6, aes(x = year, y = investment, color = spec_item))+ geom_point()
added investments
GDP_data_4 <- GDP_data_3 %>% clean_names() %>% rename(gdp_per_capita_current_usd = “gdp_per_capita_current_us”, gdp_current_usd = “gdp_current_us”)
ggplot(GDP_data_4, aes(x = year, y = gdp_mln_usd)) + geom_line()
ggplot(GDP_data_4, aes(x = year, y = gdp_per_capita_current_usd)) + geom_line()
totals_em <- aggregate(
cbind(scope_emissions_em$scope_1_excl, scope_emissions_em$scope_2, scope_emissions_em$scope_3, scope_emissions_em$total_exports), by=list(scope_emissions_em$year), FUN = sum) %>%
mutate(all_scopes = V1 + V2 + V3) %>%
mutate(consumption_total = V1 + V3 - V4) %>%
rename(scope_1_total = V1,
scope_2_total = V2,
scope_3_total = V3,
year= Group.1
) %>%
select(!"V4") %>%
pivot_longer(
cols = "scope_1_total":"consumption_total",
names_to = "scope",
values_to = "total_emissions_per_scope"
)
Graph 2
EBRD investments over whole period and outstanding portfolio
unused codelist