Problem 3

Consider the Gini index, classification error, and entropy in a simple classification setting with two classes. Create a single plot that displays each of these quantities as a function of p̂ m1. The xaxis should display p̂ m1, ranging from 0 to 1, and the y-axis should display the value of the Gini index, classification error, and entropy.

Hint: In a setting with two classes, p̂ m1 = 1 - p̂ m2. You could make this plot by hand, but it will be much easier to make in R.

p = seq(0, 1, 0.01)
gini = p * (1 - p) * 2
entropy = -(p * log(p) + (1 - p) * log(1 - p))
class.err = 1 - pmax(p, 1 - p)
matplot(p, cbind(gini, entropy, class.err), col = c("grey", "blue", "green"))

Problem 8

In the lab, a classification tree was applied to the Carseats data set after converting Sales into a qualitative response variable. Now we will seek to predict Sales using regression trees and related approaches, treating the response as a quantitative variable.

(a) Split the data set into a training set and a test set.

library(ISLR2)
library(tree)
library(randomForest)
attach(Carseats)

set.seed(1)

train_ind <- sample(dim(Carseats)[1], dim(Carseats)[1]/2)
train <- Carseats[train_ind, ]
test <- Carseats[-train_ind, ]

(b) Fit a regression tree to the training set. Plot the tree, and interpret the results. What test MSE do you obtain?

tree.carseats = tree(Sales ~ ., data = train)
summary(tree.carseats)
## 
## Regression tree:
## tree(formula = Sales ~ ., data = train)
## Variables actually used in tree construction:
## [1] "ShelveLoc"   "Price"       "Age"         "Advertising" "CompPrice"  
## [6] "US"         
## Number of terminal nodes:  18 
## Residual mean deviance:  2.167 = 394.3 / 182 
## Distribution of residuals:
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -3.88200 -0.88200 -0.08712  0.00000  0.89590  4.09900
plot(tree.carseats)
text(tree.carseats)

tree.pred = predict(tree.carseats, test)
obs.sales = test$Sales
mean((tree.pred-obs.sales)^2)
## [1] 4.922039

The test MSE obtained for the regression tree is 4.922039.

(c) Use cross-validation in order to determine the optimal level of tree complexity. Does pruning the tree improve the test MSE?

carseats.cv <- cv.tree(tree.carseats, FUN = prune.tree)
par(mfrow = c(1, 2))
plot(carseats.cv$size, carseats.cv$dev, type = "b")
plot(carseats.cv$k, carseats.cv$dev, type = "b")

pruned.carseats = prune.tree(tree.carseats, best = 13)
par(mfrow = c(1, 1))
plot(pruned.carseats)
text(pruned.carseats, pretty = 0)

prune.pred <- predict(pruned.carseats, test)
prune.mse <- mean((test$Sales - prune.pred)^2)
prune.mse
## [1] 4.96547

Using cross-validation and pruning the tree actually increased the MSE from 4.922039 to 4.96547.

(d) Use the bagging approach in order to analyze this data. What test MSE do you obtain? Use the importance() function to determine which variables are most important.

bag.car <- randomForest(Sales ~ ., data = train, mtry = 10, importance = TRUE)
bag.car
## 
## Call:
##  randomForest(formula = Sales ~ ., data = train, mtry = 10, importance = TRUE) 
##                Type of random forest: regression
##                      Number of trees: 500
## No. of variables tried at each split: 10
## 
##           Mean of squared residuals: 2.931324
##                     % Var explained: 62.72
bag.pred <- predict(bag.car, test)
bag.err <- mean((test$Sales - bag.pred)^2)
bag.err
## [1] 2.657296
importance(bag.car)
##                 %IncMSE IncNodePurity
## CompPrice   23.07909904    171.185734
## Income       2.82081527     94.079825
## Advertising 11.43295625     99.098941
## Population  -3.92119532     59.818905
## Price       54.24314632    505.887016
## ShelveLoc   46.26912996    361.962753
## Age         14.24992212    159.740422
## Education   -0.07662320     46.738585
## Urban        0.08530119      8.453749
## US           4.34349223     15.157608

The model that uses the bagging approach produces an MSE of 2.657296. The ouput obtained using the importance function shows that the most important variables in the model are Price, ShelveLoc, CompPrice, Age, and then Advertising.

(e) Use random forests to analyze this data. What test MSE do you obtain? Use the importance() function to determine which variables are most important. Describe the effect of m, the number of variables considered at each split, on the error rate obtained.

rf.car5=randomForest(Sales~.,data=train,mtry=5,importance=T)
rf.car3=randomForest(Sales~.,data=train,mtry=3,importance=T)
rf.car5
## 
## Call:
##  randomForest(formula = Sales ~ ., data = train, mtry = 5, importance = T) 
##                Type of random forest: regression
##                      Number of trees: 500
## No. of variables tried at each split: 5
## 
##           Mean of squared residuals: 2.979207
##                     % Var explained: 62.11
rf.car3
## 
## Call:
##  randomForest(formula = Sales ~ ., data = train, mtry = 3, importance = T) 
##                Type of random forest: regression
##                      Number of trees: 500
## No. of variables tried at each split: 3
## 
##           Mean of squared residuals: 3.320908
##                     % Var explained: 57.77
importance(rf.car5)
##                %IncMSE IncNodePurity
## CompPrice   19.8160444     162.73603
## Income       2.8940268     106.96093
## Advertising 11.6799573     106.30923
## Population  -1.6998805      79.04937
## Price       46.3454015     448.33554
## ShelveLoc   40.4412189     334.33610
## Age         12.5440659     169.06125
## Education    1.0762096      55.87510
## Urban        0.5703583      13.21963
## US           5.8799999      25.59797
importance(rf.car3)
##                %IncMSE IncNodePurity
## CompPrice   13.7896822     157.75688
## Income       3.8824616     122.65512
## Advertising  7.4859338     115.76957
## Population  -0.6597586      99.08349
## Price       38.6048179     391.96348
## ShelveLoc   34.1547272     297.41187
## Age         10.5834571     168.84092
## Education   -0.2100206      74.83891
## Urban       -1.2733873      15.02380
## US           4.6450025      31.11326
rf.5=predict(rf.car5,newdata=test)
rf.3=predict(rf.car3,newdata=test)
mean((test$Sales - rf.5)^2)
## [1] 2.701665
mean((test$Sales - rf.3)^2)
## [1] 2.973152

By changing the number of variables considered at each split, the error rate went from 2.70696 using 5 variables to 3.067615 using 3 variables. The most important variables in both models are once again Price, ShelveLoc, CompPrice, Age, and then Advertising.

(f) Now analyze the data using BART, and report your results.

library(BART)
## Warning: package 'BART' was built under R version 4.2.3
## Loading required package: nlme
## Loading required package: nnet
## Loading required package: survival
## Warning: package 'survival' was built under R version 4.2.3
set.seed(1)

x=Carseats[,1:10]
y=Carseats[,"Sales"]
xtrain=x[train_ind, ]
ytrain=y[train_ind]
xtest=x[-train_ind, ]
ytest=y[-train_ind]
bart.fit=gbart(xtrain,ytrain,x.test=xtest)
## *****Calling gbart: type=1
## *****Data:
## data:n,p,np: 200, 13, 200
## y1,yn: 2.781850, 1.091850
## x1,x[n*p]: 10.360000, 1.000000
## xp1,xp[np*p]: 11.220000, 1.000000
## *****Number of Trees: 200
## *****Number of Cut Points: 100 ... 1
## *****burn,nd,thin: 100,1000,1
## *****Prior:beta,alpha,tau,nu,lambda,offset: 2,0.95,0.273474,3,3.99291e-30,7.57815
## *****sigma: 0.000000
## *****w (weights): 1.000000 ... 1.000000
## *****Dirichlet:sparse,theta,omega,a,b,rho,augment: 0,0,1,0.5,1,13,0
## *****printevery: 100
## 
## MCMC
## done 0 (out of 1100)
## done 100 (out of 1100)
## done 200 (out of 1100)
## done 300 (out of 1100)
## done 400 (out of 1100)
## done 500 (out of 1100)
## done 600 (out of 1100)
## done 700 (out of 1100)
## done 800 (out of 1100)
## done 900 (out of 1100)
## done 1000 (out of 1100)
## time: 4s
## trcnt,tecnt: 1000,1000
yhat.bart=bart.fit$yhat.test.mean
mean((ytest-yhat.bart)^2)
## [1] 0.184202

The BART model produced a much lower error rate at 0.184202.

Problem 9

This problem involves the OJ data set which is part of the ISLR2 package.

detach(Carseats)
attach(OJ)

(a) Create a training set containing a random sample of 800 observations, and a test set containing the remaining observations.

set.seed(1)
train2=sample(1:nrow(OJ),800)
oj.train=OJ[train2, ]
oj.test=OJ[-train2, ]

(b) Fit a tree to the training data, with Purchase as the response and the other variables as predictors. Use the summary() function to produce summary statistics about the tree, and describe the results obtained. What is the training error rate? How many terminal nodes does the tree have?

oj.tree=tree(Purchase~.,oj.train)
summary(oj.tree)
## 
## Classification tree:
## tree(formula = Purchase ~ ., data = oj.train)
## Variables actually used in tree construction:
## [1] "LoyalCH"       "PriceDiff"     "SpecialCH"     "ListPriceDiff"
## [5] "PctDiscMM"    
## Number of terminal nodes:  9 
## Residual mean deviance:  0.7432 = 587.8 / 791 
## Misclassification error rate: 0.1588 = 127 / 800

The training error rate is 0.1588 and the tree has 9 terminal nodes.

(c) Type in the name of the tree object in order to get a detailed text output. Pick one of the terminal nodes, and interpret the information displayed.

oj.tree
## node), split, n, deviance, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 800 1073.00 CH ( 0.60625 0.39375 )  
##    2) LoyalCH < 0.5036 365  441.60 MM ( 0.29315 0.70685 )  
##      4) LoyalCH < 0.280875 177  140.50 MM ( 0.13559 0.86441 )  
##        8) LoyalCH < 0.0356415 59   10.14 MM ( 0.01695 0.98305 ) *
##        9) LoyalCH > 0.0356415 118  116.40 MM ( 0.19492 0.80508 ) *
##      5) LoyalCH > 0.280875 188  258.00 MM ( 0.44149 0.55851 )  
##       10) PriceDiff < 0.05 79   84.79 MM ( 0.22785 0.77215 )  
##         20) SpecialCH < 0.5 64   51.98 MM ( 0.14062 0.85938 ) *
##         21) SpecialCH > 0.5 15   20.19 CH ( 0.60000 0.40000 ) *
##       11) PriceDiff > 0.05 109  147.00 CH ( 0.59633 0.40367 ) *
##    3) LoyalCH > 0.5036 435  337.90 CH ( 0.86897 0.13103 )  
##      6) LoyalCH < 0.764572 174  201.00 CH ( 0.73563 0.26437 )  
##       12) ListPriceDiff < 0.235 72   99.81 MM ( 0.50000 0.50000 )  
##         24) PctDiscMM < 0.196196 55   73.14 CH ( 0.61818 0.38182 ) *
##         25) PctDiscMM > 0.196196 17   12.32 MM ( 0.11765 0.88235 ) *
##       13) ListPriceDiff > 0.235 102   65.43 CH ( 0.90196 0.09804 ) *
##      7) LoyalCH > 0.764572 261   91.20 CH ( 0.95785 0.04215 ) *

Looking at Node 5 LoyalCH is a terminal node with a split of 0.280875. There are 188 observations and the final prediction for this is MM. At this node there is a y probability of ( 0.44149 0.55851 ). This means that about 44% of the observations in this branch have a CH value and the other 56% have an MM value.

(d) Create a plot of the tree, and interpret the results.

plot(oj.tree)
text(oj.tree)

The plot shows that LoyalCH is the most important predictor in the tree as it is the most important variable in each of the top three nodes.

(e) Predict the response on the test data, and produce a confusion matrix comparing the test labels to the predicted test labels. What is the test error rate?

oj.pred <- predict(oj.tree, oj.test, type = "class")
table(oj.test$Purchase, oj.pred)
##     oj.pred
##       CH  MM
##   CH 160   8
##   MM  38  64
1-mean(oj.pred==oj.test$Purchase)
## [1] 0.1703704

The test error rate for this model is 17%.

(f) Apply the cv.tree() function to the training set in order to determine the optimal tree size.

cv.oj <- cv.tree(oj.tree, FUN = prune.tree)
cv.oj
## $size
## [1] 9 8 7 6 5 4 3 2 1
## 
## $dev
## [1]  685.6493  698.8799  702.8083  702.8083  714.1093  725.4734  780.2099
## [8]  790.0301 1074.2062
## 
## $k
## [1]      -Inf  12.62207  13.94616  14.35384  26.21539  35.74964  43.07317
## [8]  45.67120 293.15784
## 
## $method
## [1] "deviance"
## 
## attr(,"class")
## [1] "prune"         "tree.sequence"

(g) Produce a plot with tree size on the x-axis and cross-validated classification error rate on the y-axis.

plot(cv.oj$size, cv.oj$dev, type = "b", xlab = "Tree Size", ylab = "Cross-Validation Classification Error")

(h) Which tree size corresponds to the lowest cross-validated classification error rate?

A tree size of 9 appears to have the lowest cross-validated classification error rate, but this would not prune the tree.

(i) Produce a pruned tree corresponding to the optimal tree size obtained using cross-validation. If cross-validation does not lead to selection of a pruned tree, then create a pruned tree with five terminal nodes.

oj.prune <- prune.misclass(oj.tree, best = 5)
plot(oj.prune)
text(oj.prune, pretty = 0)

(j) Compare the training error rates between the pruned and unpruned trees. Which is higher?

summary(oj.prune)
## 
## Classification tree:
## snip.tree(tree = oj.tree, nodes = c(4L, 10L))
## Variables actually used in tree construction:
## [1] "LoyalCH"       "PriceDiff"     "ListPriceDiff" "PctDiscMM"    
## Number of terminal nodes:  7 
## Residual mean deviance:  0.7748 = 614.4 / 793 
## Misclassification error rate: 0.1625 = 130 / 800

The pruned model produced a training error rate of 0.1625, which is lower than the unpruned test error rate of 0.1703704.

(k) Compare the test error rates between the pruned and unpruned trees. Which is higher?

pred.unpruned = predict(oj.tree, oj.test, type = "class")
misclass.unpruned = sum(oj.test$Purchase != pred.unpruned)
misclass.unpruned/length(pred.unpruned)
## [1] 0.1703704
pred.pruned = predict(oj.prune, oj.test, type = "class")
misclass.pruned = sum(oj.test$Purchase != pred.pruned)
misclass.pruned/length(pred.pruned)
## [1] 0.162963

The pruned model has a test error rate of 16.3% and the unpruned model has a test error rate of 17%.