data("mtcars")
mtcars <- as_tibble(mtcars)
colony <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2022/2022-01-11/colony.csv')
## Rows: 1222 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): months, state
## dbl (8): year, colony_n, colony_max, colony_lost, colony_lost_pct, colony_ad...
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
colony <- as_tibble(colony)
set.seed(123)
colony_small <- colony %>%
sample_n(20) %>%
select(year, months, colony_n, colony_lost, colony_added)
colony_small
## # A tibble: 20 × 5
## year months colony_n colony_lost colony_added
## <dbl> <chr> <dbl> <dbl> <dbl>
## 1 2017 January-March 16000 2700 2900
## 2 2017 April-June 6000 170 390
## 3 2015 October-December 125000 25000 13000
## 4 2017 October-December 15000 130 970
## 5 2016 January-March 245000 45000 36000
## 6 2019 October-December 27000 3300 100
## 7 2021 January-March 5000 1400 2300
## 8 2020 July-September 640000 69000 61000
## 9 2018 July-September 197000 30000 53000
## 10 2018 January-March 205000 22000 118000
## 11 2018 October-December 680000 170000 86000
## 12 2020 April-June 48000 3800 14000
## 13 2020 October-December 23000 1900 580
## 14 2020 January-March 9000 1600 1200
## 15 2016 October-December 8000 740 NA
## 16 2020 April-June 67000 17500 29000
## 17 2019 April-June NA NA NA
## 18 2015 January-March 6000 1100 570
## 19 2017 October-December 27000 6500 1300
## 20 2016 January-March 11500 1200 930
Case of numeric variables
mtcars %>% map_dbl(.x = ., .f = ~mean(x = .x))
## mpg cyl disp hp drat wt qsec
## 20.090625 6.187500 230.721875 146.687500 3.596563 3.217250 17.848750
## vs am gear carb
## 0.437500 0.406250 3.687500 2.812500
mtcars %>% map_dbl(.f = ~mean(x = .x))
## mpg cyl disp hp drat wt qsec
## 20.090625 6.187500 230.721875 146.687500 3.596563 3.217250 17.848750
## vs am gear carb
## 0.437500 0.406250 3.687500 2.812500
mtcars %>% map_dbl(mean)
## mpg cyl disp hp drat wt qsec
## 20.090625 6.187500 230.721875 146.687500 3.596563 3.217250 17.848750
## vs am gear carb
## 0.437500 0.406250 3.687500 2.812500
# Adding an argument
mtcars %>% map_dbl(.x = ., .f = ~mean(x = .x, trim = 0.1))
## mpg cyl disp hp drat wt
## 19.6961538 6.2307692 222.5230769 141.1923077 3.5792308 3.1526923
## qsec vs am gear carb
## 17.8276923 0.4230769 0.3846154 3.6153846 2.6538462
mtcars %>% map_dbl(mean, trim = 0.1)
## mpg cyl disp hp drat wt
## 19.6961538 6.2307692 222.5230769 141.1923077 3.5792308 3.1526923
## qsec vs am gear carb
## 17.8276923 0.4230769 0.3846154 3.6153846 2.6538462
mtcars %>% select(.data = ., mpg)
## # A tibble: 32 × 1
## mpg
## <dbl>
## 1 21
## 2 21
## 3 22.8
## 4 21.4
## 5 18.7
## 6 18.1
## 7 14.3
## 8 24.4
## 9 22.8
## 10 19.2
## # … with 22 more rows
mtcars %>% select(mpg)
## # A tibble: 32 × 1
## mpg
## <dbl>
## 1 21
## 2 21
## 3 22.8
## 4 21.4
## 5 18.7
## 6 18.1
## 7 14.3
## 8 24.4
## 9 22.8
## 10 19.2
## # … with 22 more rows
Create your own function
# Double values in columns
double_by_factor <- function(x, factor) {x * factor}
10 %>% double_by_factor(factor = 2)
## [1] 20
mtcars %>% map_dfr(.x = ., .f = ~double_by_factor(x = ., factor = 10))
## # A tibble: 32 × 11
## mpg cyl disp hp drat wt qsec vs am gear carb
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 210 60 1600 1100 39 26.2 165. 0 10 40 40
## 2 210 60 1600 1100 39 28.8 170. 0 10 40 40
## 3 228 40 1080 930 38.5 23.2 186. 10 10 40 10
## 4 214 60 2580 1100 30.8 32.2 194. 10 0 30 10
## 5 187 80 3600 1750 31.5 34.4 170. 0 0 30 20
## 6 181 60 2250 1050 27.6 34.6 202. 10 0 30 10
## 7 143 80 3600 2450 32.1 35.7 158. 0 0 30 40
## 8 244 40 1467 620 36.9 31.9 200 10 0 40 20
## 9 228 40 1408 950 39.2 31.5 229 10 0 40 20
## 10 192 60 1676 1230 39.2 34.4 183 10 0 40 40
## # … with 22 more rows
mtcars %>% map_dfr(double_by_factor, factor = 10)
## # A tibble: 32 × 11
## mpg cyl disp hp drat wt qsec vs am gear carb
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 210 60 1600 1100 39 26.2 165. 0 10 40 40
## 2 210 60 1600 1100 39 28.8 170. 0 10 40 40
## 3 228 40 1080 930 38.5 23.2 186. 10 10 40 10
## 4 214 60 2580 1100 30.8 32.2 194. 10 0 30 10
## 5 187 80 3600 1750 31.5 34.4 170. 0 0 30 20
## 6 181 60 2250 1050 27.6 34.6 202. 10 0 30 10
## 7 143 80 3600 2450 32.1 35.7 158. 0 0 30 40
## 8 244 40 1467 620 36.9 31.9 200 10 0 40 20
## 9 228 40 1408 950 39.2 31.5 229 10 0 40 20
## 10 192 60 1676 1230 39.2 34.4 183 10 0 40 40
## # … with 22 more rows
When you have a grouping variable (factor)
mtcars %>% lm(formula = mpg ~ wt, data = .)
##
## Call:
## lm(formula = mpg ~ wt, data = .)
##
## Coefficients:
## (Intercept) wt
## 37.285 -5.344
mtcars %>% distinct(cyl)
## # A tibble: 3 × 1
## cyl
## <dbl>
## 1 6
## 2 4
## 3 8
reg_coeff_tbl <- mtcars %>%
# Split it into a list of data frames
split(.$cyl) %>%
# Repeat regression over each group
map(~lm(formula = mpg ~ wt, data = .x)) %>%
# Extract coefficients from regression results
map(broom::tidy, conf.int = TRUE) %>%
# Convert to tibble
bind_rows(.id = "cyl") %>%
# Filter for wt coefficients
filter(term == "wt")
reg_coeff_tbl %>%
mutate(estimate = -estimate,
conf.low = -conf.low,
conf.high = -conf.high) %>%
ggplot(aes(x = estimate, y = cyl)) +
geom_point() +
geom_errorbar(aes(xmin = conf.low, xmax = conf.high))
Choose either one of the two cases above and apply it to your data
colony_small %>% lm(formula = colony_lost ~ colony_added, data = .)
##
## Call:
## lm(formula = colony_lost ~ colony_added, data = .)
##
## Coefficients:
## (Intercept) colony_added
## 3947.6887 0.7863
colony_small %>% distinct(months)
## # A tibble: 4 × 1
## months
## <chr>
## 1 January-March
## 2 April-June
## 3 October-December
## 4 July-September
reg_coeff_tbl <- colony_small %>%
# Split it into a list of data frames
split(.$months) %>%
# Repeat regression over each group
map(~lm(formula = colony_lost ~ colony_added, data = .x)) %>%
# Extract coefficients from regression results
map(broom::tidy, conf.int = TRUE) %>%
# Convert to tibble
bind_rows(.id = "months") %>%
# Filter for wt coefficients
filter(term == "colony_added")
## Warning in qt(a, object$df.residual): NaNs produced
reg_coeff_tbl %>%
ggplot(aes(x = estimate, y = months)) +
geom_point() +
geom_errorbar(aes(xmin = conf.low, xmax = conf.high))