iPod Sales Problem
First, input data from 2-way table as variables and calculate total
proportions for all sellers who disclose and all sellers who hide the
problem:
TotalDisclose = 61
TotalHide = 158
n = 219
propDisclose = TotalDisclose/n
propHide = TotalHide/n
GroupSize = 73
gDisclose = 2
pDisclose = 23
nDisclose = 36
gHide = 71
pHide = 50
nHide = 37
obsCounts = matrix(c(gDisclose,pDisclose,nDisclose,gHide,pHide,nHide),nrow=2,ncol=3,byrow=TRUE)
obsCounts
[,1] [,2] [,3]
[1,] 2 23 36
[2,] 71 50 37
1. Compute Expected counts
If we multiply the total number of observations in each group by the
total proportion of sellers who disclose or hide the problem, we get the
expected counts for each observation.
expgDisclose = propDisclose*GroupSize
exppDisclose = propDisclose*GroupSize
expnDisclose = propDisclose*GroupSize
expgHide = propHide*GroupSize
exppHide = propHide*GroupSize
expnHide = propHide*GroupSize
expCounts = matrix(c(expgDisclose,exppDisclose,expnDisclose,expgHide,exppHide,expnHide),nrow=2,ncol=3,byrow=TRUE)
expCounts
[,1] [,2] [,3]
[1,] 20.33333 20.33333 20.33333
[2,] 52.66667 52.66667 52.66667
2. State Hypotheses
\(H_0\): Question asked and whether
seller discloses the problem are independent, any
differences in observed and expected counts are due to random chance.
\(H_a\): Question asked and whether
seller discloses problem are NOT independent, they are
related in some way.
3. Assume \(H_0\), construct
distribution for test statistic (\(\chi^2\) value)
Fact: If variables are independent (\(H_0\) true), \(\chi^2\) test statistic follows a \(\chi^2\) distribution with \[df = ((# explanatory variable categories)-1) *
((# response variable categories)-1)\] Explanatory
Variable: question asked
- # Categories = 3
- df = 3-1 = 2
Response Variable: whether seller discloses
problem
- # Categories = 2
- df = 2-1 = 1
A \(\chi^2\) distribution with df =
2 can be graphed using R-Studio:
curve(dchisq(x,df=2),from=0,to=50, xlab = expression(paste(chi^2," Values")),ylab="Frequency")

4. Compute Test Statistic (\(\chi^2\))
For each combination of explanatory and response variable, calculate
a \(\chi^2\) value using this following
equation: \[\frac{(observed-expected)^2}{expected}\]
XgDisclose = ((gDisclose-expgDisclose)^2)/expgDisclose
XgDisclose
[1] 16.53005
XpDisclose = ((pDisclose-exppDisclose)^2)/exppDisclose
XpDisclose
[1] 0.3497268
XnDisclose = ((nDisclose-expnDisclose)^2)/expnDisclose
XnDisclose
[1] 12.07104
XgHide = ((gHide-expgHide)^2)/expgHide
XgHide
[1] 6.381857
XpHide = ((pHide-exppHide)^2)/exppHide
XpHide
[1] 0.1350211
XnHide = ((nHide-expnHide)^2)/expnHide
XnHide
[1] 4.660338
If we add all of these values together, we get the \(\chi^2\) test statistic for this problem:
ChiSquare = XgDisclose+XpDisclose+XnDisclose+XgHide+XpHide+XnHide
ChiSquare
[1] 40.12803
5. Find p-value
Using the \(\chi^2\) value found in
Step 4, we can calculate the probability of our sample data
occurring by random chance under the assumption that \(H_0\) is true. This p-value is the area
under the sample distribution at our test statistic or greater.

Using R-Studio’s ‘pchisq’ function, we can calculate the area under
this curve at or above our test statistic.
1-pchisq(ChiSquare,df=2)
[1] 1.933339e-09
Our p-value is 1.93e-09.
6. Make Conclusions
- Since \(p\approx0<\alpha=0.05\),
we reject \(H_0\).
- We conclude that question asked and whether a seller discloses the
problem are NOT independent.
- Question asked is related to whether the seller discloses the
problem.
- As long as the buyers were randomly assigned which question to ask,
we can make a cause and effect conclusion:
- Question asked causes a difference in number of sellers who disclose
the problem with the product.
R-Studio can also calculate everything for us
First, create a matrix out of our 2-way table of observed counts:
ipodtable <- matrix(c(2,23,36,71,50,37),nrow=2,ncol=3,byrow=TRUE)
ipodtable
[,1] [,2] [,3]
[1,] 2 23 36
[2,] 71 50 37
Run \(\chi^2\) Test
chisq.test(ipodtable,correct=FALSE)
Pearson's Chi-squared test
data: ipodtable
X-squared = 40.128, df = 2, p-value = 1.933e-09
This results in the same conclusion as before. The p-value and \(\chi^2\) value are also the same as what is
calculated above.
Another Example
Let’s take another look at the stent study calculation:
prop.test(c(45,28),n=c(224,227),alternative="two.sided",conf.level=0.99,correct=FALSE)
2-sample test for equality of proportions without continuity
correction
data: c(45, 28) out of c(224, 227)
X-squared = 4.9974, df = 1, p-value = 0.02539
alternative hypothesis: two.sided
99 percent confidence interval:
-0.01142506 0.16651474
sample estimates:
prop 1 prop 2
0.2008929 0.1233480
Returns a \(\chi^2\) value that can
be used to make conclusions in the same way as iPod Sales problem. This
function also returns a \(\chi^2\)
value and when we calculate pchisq for that value, we get the same
p-value.
Now let’s create a 2-way table with our stent study data:\n
stenttable <- matrix(c(45,28,179,199),nrow=2,ncol=2,byrow=TRUE)
stenttable
[,1] [,2]
[1,] 45 28
[2,] 179 199
Now run the \(\chi^2\) test for
independence
chisq.test(stenttable,correct = FALSE)
Pearson's Chi-squared test
data: stenttable
X-squared = 4.9974, df = 1, p-value = 0.02539
Returns the same values as previous prop.test. \(\chi^2\) Test for Independence and
2-proportion test can be interchangeable when there are 2 categories for
2 variables (like in the stent study). We would not be able to run a
2-proportion test for the iPod sales problem. If we have two categorical
variables with two categories each, 2-sample z-test dpes tje same thing
as a \(\chi^2\) test for
independence.
LS0tCnRpdGxlOiAkXGNoaV4yJCBUZXN0IGZvciBJbmRlcGVuZGVuY2UKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKIyBpUG9kIFNhbGVzIFByb2JsZW0KRmlyc3QsIGlucHV0IGRhdGEgZnJvbSAyLXdheSB0YWJsZSBhcyB2YXJpYWJsZXMgYW5kIGNhbGN1bGF0ZSB0b3RhbCBwcm9wb3J0aW9ucyBmb3IgYWxsIHNlbGxlcnMgd2hvIGRpc2Nsb3NlIGFuZCBhbGwgc2VsbGVycyB3aG8gaGlkZSB0aGUgcHJvYmxlbTpcbgpgYGB7cn0KVG90YWxEaXNjbG9zZSA9IDYxClRvdGFsSGlkZSA9IDE1OApuID0gMjE5CnByb3BEaXNjbG9zZSA9IFRvdGFsRGlzY2xvc2Uvbgpwcm9wSGlkZSA9IFRvdGFsSGlkZS9uCkdyb3VwU2l6ZSA9IDczCmdEaXNjbG9zZSA9IDIKcERpc2Nsb3NlID0gMjMKbkRpc2Nsb3NlID0gMzYKZ0hpZGUgPSA3MQpwSGlkZSA9IDUwCm5IaWRlID0gMzcKb2JzQ291bnRzID0gbWF0cml4KGMoZ0Rpc2Nsb3NlLHBEaXNjbG9zZSxuRGlzY2xvc2UsZ0hpZGUscEhpZGUsbkhpZGUpLG5yb3c9MixuY29sPTMsYnlyb3c9VFJVRSkKb2JzQ291bnRzCmBgYAojIyAxLiBDb21wdXRlIEV4cGVjdGVkIGNvdW50cwpJZiB3ZSBtdWx0aXBseSB0aGUgdG90YWwgbnVtYmVyIG9mIG9ic2VydmF0aW9ucyBpbiBlYWNoIGdyb3VwIGJ5IHRoZSB0b3RhbCBwcm9wb3J0aW9uIG9mIHNlbGxlcnMgd2hvIGRpc2Nsb3NlIG9yIGhpZGUgdGhlIHByb2JsZW0sIHdlIGdldCB0aGUgZXhwZWN0ZWQgY291bnRzIGZvciBlYWNoIG9ic2VydmF0aW9uLgpgYGB7cn0KZXhwZ0Rpc2Nsb3NlID0gcHJvcERpc2Nsb3NlKkdyb3VwU2l6ZQpleHBwRGlzY2xvc2UgPSBwcm9wRGlzY2xvc2UqR3JvdXBTaXplCmV4cG5EaXNjbG9zZSA9IHByb3BEaXNjbG9zZSpHcm91cFNpemUKZXhwZ0hpZGUgPSBwcm9wSGlkZSpHcm91cFNpemUKZXhwcEhpZGUgPSBwcm9wSGlkZSpHcm91cFNpemUKZXhwbkhpZGUgPSBwcm9wSGlkZSpHcm91cFNpemUKZXhwQ291bnRzID0gbWF0cml4KGMoZXhwZ0Rpc2Nsb3NlLGV4cHBEaXNjbG9zZSxleHBuRGlzY2xvc2UsZXhwZ0hpZGUsZXhwcEhpZGUsZXhwbkhpZGUpLG5yb3c9MixuY29sPTMsYnlyb3c9VFJVRSkKZXhwQ291bnRzCmBgYAoKIyMgMi4gU3RhdGUgSHlwb3RoZXNlcwokSF8wJDogUXVlc3Rpb24gYXNrZWQgYW5kIHdoZXRoZXIgc2VsbGVyIGRpc2Nsb3NlcyB0aGUgcHJvYmxlbSBhcmUgKippbmRlcGVuZGVudCoqLCBhbnkgZGlmZmVyZW5jZXMgaW4gb2JzZXJ2ZWQgYW5kIGV4cGVjdGVkIGNvdW50cyBhcmUgZHVlIHRvIHJhbmRvbSBjaGFuY2UuXG4KJEhfYSQ6IFF1ZXN0aW9uIGFza2VkIGFuZCB3aGV0aGVyIHNlbGxlciBkaXNjbG9zZXMgcHJvYmxlbSBhcmUgKipOT1QgaW5kZXBlbmRlbnQqKiwgdGhleSBhcmUgcmVsYXRlZCBpbiBzb21lIHdheS5cbgoKIyMgMy4gQXNzdW1lICRIXzAkLCBjb25zdHJ1Y3QgZGlzdHJpYnV0aW9uIGZvciB0ZXN0IHN0YXRpc3RpYyAoJFxjaGleMiQgdmFsdWUpCioqRmFjdCoqOiBJZiB2YXJpYWJsZXMgYXJlIGluZGVwZW5kZW50ICgkSF8wJCB0cnVlKSwgJFxjaGleMiQgdGVzdCBzdGF0aXN0aWMgZm9sbG93cyBhICRcY2hpXjIkIGRpc3RyaWJ1dGlvbiB3aXRoCiQkZGYgPSAoKCMgZXhwbGFuYXRvcnkgdmFyaWFibGUgY2F0ZWdvcmllcyktMSkgKiAoKCMgcmVzcG9uc2UgdmFyaWFibGUgY2F0ZWdvcmllcyktMSkkJFxuCioqRXhwbGFuYXRvcnkgVmFyaWFibGUqKjogcXVlc3Rpb24gYXNrZWQKIAogLSAqIyBDYXRlZ29yaWVzKiA9IDMgXG4KIC0gKmRmKiA9IDMtMSA9IDIgXG4KCioqUmVzcG9uc2UgVmFyaWFibGUqKjogd2hldGhlciBzZWxsZXIgZGlzY2xvc2VzIHByb2JsZW0gCgogIC0gKiMgQ2F0ZWdvcmllcyogPSAyCiAgLSAqZGYqID0gMi0xID0gMQoKQSAkXGNoaV4yJCBkaXN0cmlidXRpb24gd2l0aCBkZiA9IDIgY2FuIGJlIGdyYXBoZWQgdXNpbmcgUi1TdHVkaW86ICAKYGBge3J9CmN1cnZlKGRjaGlzcSh4LGRmPTIpLGZyb209MCx0bz01MCwgeGxhYiA9IGV4cHJlc3Npb24ocGFzdGUoY2hpXjIsIiBWYWx1ZXMiKSkseWxhYj0iRnJlcXVlbmN5IikKYGBgCgojIyA0LiBDb21wdXRlIFRlc3QgU3RhdGlzdGljICgkXGNoaV4yJClcbgpGb3IgZWFjaCBjb21iaW5hdGlvbiBvZiBleHBsYW5hdG9yeSBhbmQgcmVzcG9uc2UgdmFyaWFibGUsIGNhbGN1bGF0ZSBhICRcY2hpXjIkIHZhbHVlIHVzaW5nIHRoaXMgZm9sbG93aW5nIGVxdWF0aW9uOiBcbgokJFxmcmFjeyhvYnNlcnZlZC1leHBlY3RlZCleMn17ZXhwZWN0ZWR9JCQKYGBge3J9ClhnRGlzY2xvc2UgPSAoKGdEaXNjbG9zZS1leHBnRGlzY2xvc2UpXjIpL2V4cGdEaXNjbG9zZQpYZ0Rpc2Nsb3NlClhwRGlzY2xvc2UgPSAoKHBEaXNjbG9zZS1leHBwRGlzY2xvc2UpXjIpL2V4cHBEaXNjbG9zZQpYcERpc2Nsb3NlClhuRGlzY2xvc2UgPSAoKG5EaXNjbG9zZS1leHBuRGlzY2xvc2UpXjIpL2V4cG5EaXNjbG9zZQpYbkRpc2Nsb3NlClhnSGlkZSA9ICgoZ0hpZGUtZXhwZ0hpZGUpXjIpL2V4cGdIaWRlClhnSGlkZQpYcEhpZGUgPSAoKHBIaWRlLWV4cHBIaWRlKV4yKS9leHBwSGlkZQpYcEhpZGUKWG5IaWRlID0gKChuSGlkZS1leHBuSGlkZSleMikvZXhwbkhpZGUKWG5IaWRlCmBgYApJZiB3ZSBhZGQgYWxsIG9mIHRoZXNlIHZhbHVlcyB0b2dldGhlciwgd2UgZ2V0IHRoZSAkXGNoaV4yJCB0ZXN0IHN0YXRpc3RpYyBmb3IgdGhpcyBwcm9ibGVtOiBcbgpgYGB7cn0KQ2hpU3F1YXJlID0gWGdEaXNjbG9zZStYcERpc2Nsb3NlK1huRGlzY2xvc2UrWGdIaWRlK1hwSGlkZStYbkhpZGUKQ2hpU3F1YXJlCmBgYAoKIyMgNS4gRmluZCBwLXZhbHVlClVzaW5nIHRoZSAkXGNoaV4yJCB2YWx1ZSBmb3VuZCBpbiAqU3RlcCA0Kiwgd2UgY2FuIGNhbGN1bGF0ZSB0aGUgcHJvYmFiaWxpdHkgb2Ygb3VyIHNhbXBsZSBkYXRhIG9jY3VycmluZyBieSByYW5kb20gY2hhbmNlIHVuZGVyIHRoZSBhc3N1bXB0aW9uIHRoYXQgJEhfMCQgaXMgdHJ1ZS4gVGhpcyBwLXZhbHVlIGlzIHRoZSBhcmVhIHVuZGVyIHRoZSBzYW1wbGUgZGlzdHJpYnV0aW9uIGF0IG91ciB0ZXN0IHN0YXRpc3RpYyBvciBncmVhdGVyLiAgCmBgYHtyIGVjaG89RkFMU0V9CmN1cnZlKGRjaGlzcSh4LGRmPTIpLGZyb209MCx0bz01MCwgeGxhYiA9IGV4cHJlc3Npb24ocGFzdGUoY2hpXjIsIiBWYWx1ZXMiKSkseWxhYj0iRnJlcXVlbmN5IikKcG9pbnRzKHg9Q2hpU3F1YXJlLHk9MCxjb2w9ImJsdWUiLHBjaD0yMCkKdGV4dChDaGlTcXVhcmUsMC4wNSxsYWJlbHMgPSAiVGVzdCBTdGF0aXN0aWMiLGNleD0wLjUsY29sPSJibHVlIikKYGBgClVzaW5nIFItU3R1ZGlvJ3MgJ3BjaGlzcScgZnVuY3Rpb24sIHdlIGNhbiBjYWxjdWxhdGUgdGhlIGFyZWEgdW5kZXIgdGhpcyBjdXJ2ZSBhdCBvciBhYm92ZSBvdXIgdGVzdCBzdGF0aXN0aWMuCmBgYHtyfQoxLXBjaGlzcShDaGlTcXVhcmUsZGY9MikKYGBgCk91ciBwLXZhbHVlIGlzIDEuOTNlLTA5LgoKIyMgNi4gTWFrZSBDb25jbHVzaW9ucwogIC0gU2luY2UgJHBcYXBwcm94MDxcYWxwaGE9MC4wNSQsIHdlIHJlamVjdCAkSF8wJC4gIAogIC0gV2UgY29uY2x1ZGUgdGhhdCBxdWVzdGlvbiBhc2tlZCBhbmQgd2hldGhlciBhIHNlbGxlciBkaXNjbG9zZXMgdGhlIHByb2JsZW0gYXJlICoqTk9UIGluZGVwZW5kZW50KiouIAogIC0gUXVlc3Rpb24gYXNrZWQgaXMgcmVsYXRlZCB0byB3aGV0aGVyIHRoZSBzZWxsZXIgZGlzY2xvc2VzIHRoZSBwcm9ibGVtLiAKICAtIEFzIGxvbmcgYXMgdGhlIGJ1eWVycyB3ZXJlIHJhbmRvbWx5IGFzc2lnbmVkIHdoaWNoIHF1ZXN0aW9uIHRvIGFzaywgd2UgY2FuIG1ha2UgYSBjYXVzZSBhbmQgZWZmZWN0IGNvbmNsdXNpb246IAogICAgLSBRdWVzdGlvbiBhc2tlZCBjYXVzZXMgYSBkaWZmZXJlbmNlIGluIG51bWJlciBvZiBzZWxsZXJzIHdobyBkaXNjbG9zZSB0aGUgcHJvYmxlbSB3aXRoIHRoZSBwcm9kdWN0LgoKLS0tCgojIyMgUi1TdHVkaW8gY2FuIGFsc28gY2FsY3VsYXRlIGV2ZXJ5dGhpbmcgZm9yIHVzCkZpcnN0LCBjcmVhdGUgYSBtYXRyaXggb3V0IG9mIG91ciAyLXdheSB0YWJsZSBvZiBvYnNlcnZlZCBjb3VudHM6XG4KYGBge3J9Cmlwb2R0YWJsZSA8LSBtYXRyaXgoYygyLDIzLDM2LDcxLDUwLDM3KSxucm93PTIsbmNvbD0zLGJ5cm93PVRSVUUpCmlwb2R0YWJsZQpgYGAKIyMjIyBSdW4gJFxjaGleMiQgVGVzdApgYGB7cn0KY2hpc3EudGVzdChpcG9kdGFibGUsY29ycmVjdD1GQUxTRSkKYGBgClRoaXMgcmVzdWx0cyBpbiB0aGUgc2FtZSBjb25jbHVzaW9uIGFzIGJlZm9yZS4gVGhlIHAtdmFsdWUgYW5kICRcY2hpXjIkIHZhbHVlIGFyZSBhbHNvIHRoZSBzYW1lIGFzIHdoYXQgaXMgY2FsY3VsYXRlZCBhYm92ZS4gCgotLS0KCiMgQW5vdGhlciBFeGFtcGxlCkxldCdzIHRha2UgYW5vdGhlciBsb29rIGF0IHRoZSBzdGVudCBzdHVkeSBjYWxjdWxhdGlvbjpcbgpgYGB7cn0KcHJvcC50ZXN0KGMoNDUsMjgpLG49YygyMjQsMjI3KSxhbHRlcm5hdGl2ZT0idHdvLnNpZGVkIixjb25mLmxldmVsPTAuOTksY29ycmVjdD1GQUxTRSkKYGBgClJldHVybnMgYSAkXGNoaV4yJCB2YWx1ZSB0aGF0IGNhbiBiZSB1c2VkIHRvIG1ha2UgY29uY2x1c2lvbnMgaW4gdGhlIHNhbWUgd2F5IGFzIGlQb2QgU2FsZXMgcHJvYmxlbS4gVGhpcyBmdW5jdGlvbiBhbHNvIHJldHVybnMgYSAkXGNoaV4yJCB2YWx1ZSBhbmQgd2hlbiB3ZSBjYWxjdWxhdGUgcGNoaXNxIGZvciB0aGF0IHZhbHVlLCB3ZSBnZXQgdGhlIHNhbWUgcC12YWx1ZS4gCgpOb3cgbGV0J3MgY3JlYXRlIGEgMi13YXkgdGFibGUgd2l0aCBvdXIgc3RlbnQgc3R1ZHkgZGF0YTpcbgpgYGB7cn0Kc3RlbnR0YWJsZSA8LSBtYXRyaXgoYyg0NSwyOCwxNzksMTk5KSxucm93PTIsbmNvbD0yLGJ5cm93PVRSVUUpCnN0ZW50dGFibGUKYGBgCgpOb3cgcnVuIHRoZSAkXGNoaV4yJCB0ZXN0IGZvciBpbmRlcGVuZGVuY2UgCmBgYHtyfQpjaGlzcS50ZXN0KHN0ZW50dGFibGUsY29ycmVjdCA9IEZBTFNFKQpgYGAKUmV0dXJucyB0aGUgc2FtZSB2YWx1ZXMgYXMgcHJldmlvdXMgcHJvcC50ZXN0LiAkXGNoaV4yJCBUZXN0IGZvciBJbmRlcGVuZGVuY2UgYW5kIDItcHJvcG9ydGlvbiB0ZXN0IGNhbiBiZSBpbnRlcmNoYW5nZWFibGUgd2hlbiB0aGVyZSBhcmUgMiBjYXRlZ29yaWVzIGZvciAyIHZhcmlhYmxlcyAobGlrZSBpbiB0aGUgc3RlbnQgc3R1ZHkpLiBXZSB3b3VsZCBub3QgYmUgYWJsZSB0byBydW4gYSAyLXByb3BvcnRpb24gdGVzdCBmb3IgdGhlIGlQb2Qgc2FsZXMgcHJvYmxlbS4KSWYgd2UgaGF2ZSB0d28gY2F0ZWdvcmljYWwgdmFyaWFibGVzIHdpdGggdHdvIGNhdGVnb3JpZXMgZWFjaCwgMi1zYW1wbGUgei10ZXN0IGRwZXMgdGplIHNhbWUgdGhpbmcgYXMgYSAkXGNoaV4yJCB0ZXN0IGZvciBpbmRlcGVuZGVuY2Uu