#MindanaoStateUniversity
#GeneralSantosCity
#Submitted by: Vienne Joyce H. Duga & Elvie Mae Cadungog
# Submitted to: Prof. Carlito Daarol 
#Bsmath
#Mat108


folder <- "/cloud/project/"
name <- "CornPalay.csv"
file <- paste0(folder,"/",name)

data <- read.csv(file)

dim(data)
## [1] 256  18
colnames(data)
##  [1] "ARMM.Region"                  "CORDILLERA.REGION..CAR."     
##  [3] "MIMAROPA.REGION"              "REGION.I..ILOCOS.REGION."    
##  [5] "REGION.II..CAGAYAN.VALLEY."   "REGION.III..CENTRAL.LUZON."  
##  [7] "REGION.IV.A..CALABARZON."     "REGION.IX..ZAMBO.Penin."     
##  [9] "REGION.V..BICOL.REGION."      "REGION.VI..WEST.VISAYAS."    
## [11] "REGION.VII..CENTRAL.VISAYAS." "REGION.VIII..EAST.VISAYAS."  
## [13] "REGION.X..NORTHERN.MIN."      "REGION.XI..DAVAO.REGION."    
## [15] "REGION.XII..SOCCSKSARGEN."    "REGION.XIII..CARAGA."        
## [17] "Crop"                         "TypeCrop"
head(data)
##   ARMM.Region CORDILLERA.REGION..CAR. MIMAROPA.REGION REGION.I..ILOCOS.REGION.
## 1       35615                   44156           97221                   185215
## 2       28117                   58373          109447                    68461
## 3       28316                   29287           65620                    82150
## 4       40024                   92503          172723                   517037
## 5       37811                   42013           93821                   196722
## 6       33857                   90937          112360                    72749
##   REGION.II..CAGAYAN.VALLEY. REGION.III..CENTRAL.LUZON.
## 1                     374342                     324251
## 2                     521146                     606719
## 3                     266236                     106113
## 4                     456480                     675030
## 5                     313519                     278590
## 6                     592656                     652675
##   REGION.IV.A..CALABARZON. REGION.IX..ZAMBO.Penin. REGION.V..BICOL.REGION.
## 1                    97377                   85632                  107588
## 2                    98076                   55102                  119342
## 3                    36353                   84677                  115910
## 4                    94874                   76316                  116043
## 5                    75609                   63974                  108350
## 6                    97448                   53113                  124783
##   REGION.VI..WEST.VISAYAS. REGION.VII..CENTRAL.VISAYAS.
## 1                   253507                        32724
## 2                   120417                        22924
## 3                   343181                        20025
## 4                   259667                        47851
## 5                   263748                        37494
## 6                   120581                        25781
##   REGION.VIII..EAST.VISAYAS. REGION.X..NORTHERN.MIN. REGION.XI..DAVAO.REGION.
## 1                      98855                  113282                   105778
## 2                      72483                  113569                    52556
## 3                      51050                   96241                    67328
## 4                      92031                  138703                   127240
## 5                     105323                  108920                   106082
## 6                      77094                  142893                    62949
##   REGION.XII..SOCCSKSARGEN. REGION.XIII..CARAGA.  Crop  TypeCrop
## 1                    234088                23962 Palay Irrigated
## 2                    168143                81313 Palay Irrigated
## 3                    308459                34426 Palay Irrigated
## 4                    179248                81753 Palay Irrigated
## 5                    298253                25109 Palay Irrigated
## 6                    101398                92643 Palay Irrigated
Crops <- unique(data$Crop)
TypeCrop <- unique(data$TypeCrop)

column1 <- table(data$Crop)
column2 <- table(data$TypeCrop)
dataframe1 <- data.frame(column1, column2)
print(dataframe1)
##    Var1 Freq    Var1.1 Freq.1
## 1  Corn  128 Irrigated     64
## 2 Palay  128   Rainfed     64
## 3  Corn  128     White     64
## 4 Palay  128    Yellow     64
df <- matrix(nrow = 1:256, 17, 18)
colSums(df)
##  [1] 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17