PROBLEM 3

Consider the Gini index, classification error, and entropy in a simple classification setting with two classes. Create a single plot that displays each of these quantities as a function of ˆpm1. The x-axis should display ˆpm1, ranging from 0 to 1, and the y-axis should display the value of the Gini index, classification error, and entropy. Hint: In a setting with two classes, ˆpm1 = 1 − ˆpm2. You could make this plot by hand, but it will be much easier to make in R.

p_m1 <- seq(0, 1, 0.01)
gini <- p_m1 * (1 - p_m1) * 2
entropy <- -(p_m1 * log(p_m1) + (1 - p_m1) * log(1 - p_m1))
class.err <- 1 - pmax(p_m1, 1 - p_m1)

df = data.frame(p_m1 = p_m1, gini = gini, entropy = entropy, class.err = class.err)
df_long=gather(df, key = "variable", value = "value", -p_m1)

ggplot(df_long, aes(x = p_m1, y = value, color = variable)) +
  geom_line() +
  scale_color_manual(values = c("blue", "black", "red")) +
  labs(x = "pm1", y = "Error", title = "Error vs. Probability")

### PROBLEM 8

In the lab, a classification tree was applied to the Carseats data set after converting Sales into a qualitative response variable. Now we will seek to predict Sales using regression trees and related approaches, treating the response as a quantitative variable.

  1. Split the data set into a training set and a test set.
set.seed(1)
Carseat1 = as.data.frame(Carseats)
Carseat1$id <- 1:nrow(Carseat1)


#75% used as training
train <- Carseat1 %>% dplyr::sample_frac(0.75)
test  <- dplyr::anti_join(Carseat1, train, by = 'id')
  1. Fit a regression tree to the training set. Plot the tree, and interpret the results. What test MSE do you obtain?
tree.carseats = tree(Sales ~., data = train)
summary(tree.carseats)
## 
## Regression tree:
## tree(formula = Sales ~ ., data = train)
## Variables actually used in tree construction:
## [1] "ShelveLoc"   "Price"       "Age"         "Income"      "CompPrice"  
## [6] "Advertising"
## Number of terminal nodes:  17 
## Residual mean deviance:  2.411 = 682.4 / 283 
## Distribution of residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -5.0760 -0.9920 -0.0225  0.0000  1.0250  3.5930
plot(tree.carseats)
text(tree.carseats, pretty = 0)

pred.carseats = predict(tree.carseats, test)
mean((test$Sales - pred.carseats)^2)
## [1] 4.910268

MSE is 4.9103

  1. Use CV to determine the optimal level of tree complexity. Does pruning improve the test MSE?
cv.carseats = cv.tree(tree.carseats, FUN = prune.tree)
par(mfrow = c(1,2))
plot(cv.carseats$size, cv.carseats$dev, type = "b")
plot(cv.carseats$k, cv.carseats$dev, type = "b")

prunecarseat = prune.tree(tree.carseats, best = 11)
par(mfrow = c(1,1))
plot(prunecarseat)
text(prunecarseat, pretty = 0)

pred.pruned = predict(prunecarseat, test)
mean((test$Sales - pred.pruned)^2)
## [1] 5.236696

test MSE increased from 4.9103 to 5.2367

  1. Use the bagging approach in order to analyze this data. What test MSE do you obtain? use the importance() function to determine which variables are most important
set.seed(1)
bag_seats = randomForest(Sales ~., data = train, mtry = 10, ntree = 500,
                            importance = T)
bag_pred = predict(bag_seats, test)
mean((test$Sales - bag_pred)^2)
## [1] 2.934259
importance(bag_seats)
##               %IncMSE IncNodePurity
## CompPrice   33.351963     219.34986
## Income       8.432082     116.64953
## Advertising 19.956345     165.94762
## Population  -3.063205      64.12733
## Price       72.234733     678.42019
## ShelveLoc   78.870780     689.01439
## Age         26.848631     240.69414
## Education    2.539456      54.35227
## Urban       -1.500024      10.59890
## US           2.898631      12.07578
## id           1.411834      82.25598
varImpPlot(bag_seats)

Bagging seemed to work well, improving the MSE to 2.9343.

When using the importance function we can see it return the variabels ShelveLoc, Price, and Age and the 3 most important.

  1. Use random forests to analyze this data. What test MSE do you obtain? Use the importance() function to determine which variables are the most important. Describe the effect of m, the number of variables considered at ea split, on the error rate obtained.
set.seed(1)
rfseats_5 = randomForest(Sales ~., data = train, mtry = 5, ntree = 500, importance = TRUE)
rfseats_3 = randomForest(Sales ~., data = train, mtry = 3, ntree = 500, importance = TRUE)

mtry=5

rf_pred = predict(rfseats_5, test)
mean((test$Sales - rf_pred)^2)
## [1] 2.873991
importance(rfseats_5)
##               %IncMSE IncNodePurity
## CompPrice   24.449695     204.65554
## Income       6.030735     142.90546
## Advertising 16.465910     164.43011
## Population  -1.341464     100.70538
## Price       55.220510     597.72000
## ShelveLoc   61.794228     606.96091
## Age         20.458955     253.03220
## Education    1.976336      70.67067
## Urban       -1.494537      14.64024
## US           4.704765      23.54904
## id           3.024552     119.35342
par(mfrow = c(1,4))
varImpPlot(rfseats_5)

mtry=3

rf_pred = predict(rfseats_3, test)
mean((test$Sales - rf_pred)^2)
## [1] 3.216692
importance(rfseats_3)
##                %IncMSE IncNodePurity
## CompPrice   16.8872024     194.55784
## Income       5.9002735     158.36698
## Advertising 12.1084746     175.14621
## Population  -1.4516209     130.34421
## Price       43.9594891     544.80758
## ShelveLoc   47.5473675     507.33506
## Age         16.5073412     263.07407
## Education    0.4317667      87.54421
## Urban       -2.5976990      19.59042
## US           1.8101526      28.03173
## id           2.3821924     151.97785
varImpPlot(rfseats_3)

With mtry = 5 we return a value of 2.8740 With mtry = 3 we return a value of 3.2167

The same variables (ShelveLoc, Price, Age) are the most important. Interestingly enough however Price overtakes ShelveLoc when mtry=3.

In conclusion, the random forest method with mtry=5 seems to return the best result with bagging second.

  1. Now analyze the data using BART, and report your results.
library(BART)
xtrain <- train[, 1:10]
ytrain <- train$Sales
xtest <- test[, 1:10]

bart.ft <- gbart(xtrain, ytrain, x.test = xtest)
## *****Calling gbart: type=1
## *****Data:
## data:n,p,np: 300, 13, 100
## y1,yn: 2.720100, 1.220100
## x1,x[n*p]: 10.360000, 1.000000
## xp1,xp[np*p]: 10.060000, 1.000000
## *****Number of Trees: 200
## *****Number of Cut Points: 100 ... 1
## *****burn,nd,thin: 100,1000,1
## *****Prior:beta,alpha,tau,nu,lambda,offset: 2,0.95,0.276302,3,8.49132e-30,7.6399
## *****sigma: 0.000000
## *****w (weights): 1.000000 ... 1.000000
## *****Dirichlet:sparse,theta,omega,a,b,rho,augment: 0,0,1,0.5,1,13,0
## *****printevery: 100
## 
## MCMC
## done 0 (out of 1100)
## done 100 (out of 1100)
## done 200 (out of 1100)
## done 300 (out of 1100)
## done 400 (out of 1100)
## done 500 (out of 1100)
## done 600 (out of 1100)
## done 700 (out of 1100)
## done 800 (out of 1100)
## done 900 (out of 1100)
## done 1000 (out of 1100)
## time: 2s
## trcnt,tecnt: 1000,1000
summary(bart.ft)
##                 Length Class     Mode   
## sigma             1100 -none-    numeric
## yhat.train      300000 -none-    numeric
## yhat.test       100000 -none-    numeric
## varcount         13000 -none-    numeric
## varprob          13000 -none-    numeric
## treedraws            2 -none-    list   
## proc.time            5 proc_time numeric
## hostname             1 -none-    logical
## yhat.train.mean    300 -none-    numeric
## sigma.mean           1 -none-    numeric
## LPML                 1 -none-    numeric
## yhat.test.mean     100 -none-    numeric
## ndpost               1 -none-    numeric
## offset               1 -none-    numeric
## varcount.mean       13 -none-    numeric
## varprob.mean        13 -none-    numeric
## rm.const            13 -none-    numeric
bart_pred = bart.ft$yhat.test.mean
MSEbart = mean((bart_pred - test$Sales)^2)
MSEbart
## [1] 0.1107504

Using the BART method we result in an MSE of .1108 which is ridiculously low. This is now the best method by a long shot.

PROBLEM 9

This problem involves the OJ data set which is part of the ISLR2 package.

  1. Create a training set containing a random sample of 800 observations, and a test set containing the remaining observations.
set.seed(1)
Default = as.data.frame(OJ)
Default$id <- 1:nrow(Default)
train <- Default %>% dplyr::sample_frac(0.748)
test  <- dplyr::anti_join(Default, train, by = 'id')

dim(train)
## [1] 800  19
dim(test)
## [1] 270  19
  1. Fit a tree to the training data, with Purchase as the response and the other variables as predictors. Use the summary() function to produce summary statistics about the tree, and describe the results obtained. What is the training error rate? How many terminal nodes does the tree have?
ojtree = tree(Purchase ~., data = train)
summary(ojtree)
## 
## Classification tree:
## tree(formula = Purchase ~ ., data = train)
## Variables actually used in tree construction:
## [1] "LoyalCH"       "PriceDiff"     "SpecialCH"     "ListPriceDiff"
## [5] "PctDiscMM"     "id"           
## Number of terminal nodes:  10 
## Residual mean deviance:  0.7286 = 575.6 / 790 
## Misclassification error rate: 0.1588 = 127 / 800

The Error rate is calculated as .1588, and the terminal nodes are listed as:

“LoyalCH” “PriceDiff” “SpecialCH” “ListPriceDiff” “PctDiscMM” “id”

  1. Type in the name of the tree object in order to get a detailed text output. Pick one of the terminal nodes, and interpret the information displayed.
ojtree
## node), split, n, deviance, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 800 1073.00 CH ( 0.60625 0.39375 )  
##    2) LoyalCH < 0.5036 365  441.60 MM ( 0.29315 0.70685 )  
##      4) LoyalCH < 0.280875 177  140.50 MM ( 0.13559 0.86441 )  
##        8) LoyalCH < 0.0356415 59   10.14 MM ( 0.01695 0.98305 ) *
##        9) LoyalCH > 0.0356415 118  116.40 MM ( 0.19492 0.80508 ) *
##      5) LoyalCH > 0.280875 188  258.00 MM ( 0.44149 0.55851 )  
##       10) PriceDiff < 0.05 79   84.79 MM ( 0.22785 0.77215 )  
##         20) SpecialCH < 0.5 64   51.98 MM ( 0.14062 0.85938 ) *
##         21) SpecialCH > 0.5 15   20.19 CH ( 0.60000 0.40000 ) *
##       11) PriceDiff > 0.05 109  147.00 CH ( 0.59633 0.40367 ) *
##    3) LoyalCH > 0.5036 435  337.90 CH ( 0.86897 0.13103 )  
##      6) LoyalCH < 0.764572 174  201.00 CH ( 0.73563 0.26437 )  
##       12) ListPriceDiff < 0.235 72   99.81 MM ( 0.50000 0.50000 )  
##         24) PctDiscMM < 0.196196 55   73.14 CH ( 0.61818 0.38182 )  
##           48) id < 267 11    0.00 CH ( 1.00000 0.00000 ) *
##           49) id > 267 44   60.91 CH ( 0.52273 0.47727 ) *
##         25) PctDiscMM > 0.196196 17   12.32 MM ( 0.11765 0.88235 ) *
##       13) ListPriceDiff > 0.235 102   65.43 CH ( 0.90196 0.09804 ) *
##      7) LoyalCH > 0.764572 261   91.20 CH ( 0.95785 0.04215 ) *

I’ll pick node 4. The splitting variable is “LoyalCH” with a value of .280875. There are 177 points below this node. The deviance for the points is 140.50.

  1. Create a plot of the tree, and interpret the results.
plot(ojtree)
text(ojtree, pretty = 0)

“LoyalCH” shows high importance in the model.

  1. Predict the response on the data, and produce a confusion matrix comparing the test labels to predict test labels. What is the test error rate?
ojpred = predict(ojtree, test, type = "class")
table(test$Purchase, ojpred)
##     ojpred
##       CH  MM
##   CH 160   8
##   MM  38  64
total.preds <- sum(table(test$Purchase, ojpred))
incorrect.preds <- total.preds - sum(diag(table(test$Purchase, ojpred)))
oj_error_rate <- incorrect.preds / total.preds
oj_error_rate
## [1] 0.1703704

The returned error rate is .1704

  1. Apply the cv.tree() function to the training set in order to determine the optimal tree size.
cv.oj = cv.tree(ojtree, FUN = prune.tree)
cv.oj
## $size
##  [1] 10  9  8  7  6  5  4  3  2  1
## 
## $dev
##  [1]  704.9056  723.2379  723.4760  715.7605  715.7605  714.1093  725.4734
##  [8]  780.2099  790.0301 1074.2062
## 
## $k
##  [1]      -Inf  12.23818  12.62207  13.94616  14.35384  26.21539  35.74964
##  [8]  43.07317  45.67120 293.15784
## 
## $method
## [1] "deviance"
## 
## attr(,"class")
## [1] "prune"         "tree.sequence"
  1. Produce a plot with tree size on the x-axis and cross-validated classification error rate on the y-axis.
plot(cv.oj$size, cv.oj$dev, type = "b", xlab = "Size", ylab = "Deviance")

  1. Which tree size corresponds to the lowest cross-validated classification error rate?

Size 5 seems like the best tree to choose.

  1. Produce a pruned tree corresponding to the optimal tree size obtained using cross-validation. If cross-validation does not lead to selection of a pruned tree, then create a pruned tree with five terminal nodes.
oj.pruned = prune.tree(ojtree, best = 5)
plot(oj.pruned)
text(oj.pruned, pretty = 0)

> (j) Compare the training error rates between the pruned and unpruned trees. Which is higher?

summary(oj.pruned)
## 
## Classification tree:
## snip.tree(tree = ojtree, nodes = c(4L, 12L, 5L))
## Variables actually used in tree construction:
## [1] "LoyalCH"       "ListPriceDiff"
## Number of terminal nodes:  5 
## Residual mean deviance:  0.8239 = 655 / 795 
## Misclassification error rate: 0.205 = 164 / 800

The pruned model returns a value of .205, while unpruned returned .1588. Not too different.

  1. Compare the test error rates between the pruned and unpruned trees. Which is higher?
pred.unpruned = predict(ojtree, test, type = "class")
misclass_unpr = sum(test$Purchase != pred.unpruned)
misclass_unpr/length(pred.unpruned)
## [1] 0.1703704
pred.pruned = predict(oj.pruned, test, type = "class")
misclass_unpr = sum(test$Purchase != pred.pruned)
misclass_unpr/length(pred.pruned)
## [1] 0.1925926

We can see that the test error rate for unpruned OJ is .17 while pruned is .19. Although pruned is higher, there isn’t much difference between the two.