Outline

  1. Descriptives (raw data)
  2. Binning (regular + transformed)
  3. EFA models (regular + transformed)
  4. IRT models (regular + transformed)
  5. CFA models

1. Descriptives (raw data)

##    vars   n mean sd median trimmed mad min max range skew kurtosis se
## X1    1 289   15  5     15      15   4   0  27    27    0        0  0

##    vars   n mean   sd median trimmed  mad  min  max range skew kurtosis se
## X1    1 227 7334 1378   7630    7460 1260 4000 9820  5820   -1        0 91

##    vars   n mean   sd median trimmed  mad min   max range skew kurtosis se
## X1    1 297 7051 1505   7360    7183 1245   0 10000 10000   -1        2 87

##    vars    n mean sd median trimmed mad min max range skew kurtosis se
## X1    1 1228   41 13     44      43  10   0  68    68   -1        1  0

##    vars   n mean sd median trimmed mad min max range skew kurtosis se
## X1    1 839   18  7     18      18   7   1  38    37    0        0  0

##    vars   n mean sd median trimmed mad min max range skew kurtosis se
## X1    1 805   12  5     13      12   6   1  33    32    0        0  0

##    vars   n mean sd median trimmed mad min max range skew kurtosis se
## X1    1 794   13  6     13      13   6   1  35    34    0        0  0

##    vars   n mean sd median trimmed mad min max range skew kurtosis se
## X1    1 789   12  5     13      12   6   1  28    27    0        0  0

Skewness

Provides skew parameter for each variable. “|minimum|” designates the lowest skew value after transformation

##            raw square.root log+10 1/x+100 squared   exp |minimum|
## rundots  -0.94       -2.59  -3.47    3.42    0.42   NaN      0.42
## dotcount -0.23       -1.77  -1.11    0.52    0.71 12.03      0.23
## flanker  -0.76       -0.90  -1.04    1.33   -0.33   NaN      0.33
## setshift -1.08       -2.53 -10.33   16.89   -0.28   NaN      0.28
## match    -1.02       -1.84  -2.06    1.57   -0.07 28.90      0.07
## animals  -0.07       -0.67  -0.76    0.38    0.92 23.28      0.07
## veg       0.09       -0.46  -0.46    0.13    1.24 28.25      0.09
## fwords    0.09       -0.53  -0.55    0.17    1.37 27.38      0.09
## lwords    0.09       -0.51  -0.50    0.15    1.16 13.70      0.09

2. Binning (regular + transformed))

A. Regular data

Lookup table for Binned data. Provides the boundaries for each bin (row) for each variable (column)

##    recode_score min_rundots max_rundots min_dotcount max_dotcount min_flanker
## 1             1           0          70            0            4      4000.0
## 2             2          95         140            5            6      4687.5
## 3             3         145         210            7            7      5116.0
## 4             4         215         285            8            9      5620.0
## 5             5         290         390           10           11      6135.0
## 6             6          NA          NA           12           13      6680.0
## 7             7          NA          NA           14           15      7230.0
## 8             8          NA          NA           16           17      7737.7
## 9             9          NA          NA           18           19      8290.0
## 10           10          NA          NA           20           21      8810.0
## 11           11          NA          NA           22           22          NA
## 12           12          NA          NA           23           27          NA
##    max_flanker min_setshift max_setshift min_match max_match min_animals
## 1       4380.0          0.0       2500.0         0         5           1
## 2       5049.8       2968.8       3780.0         6        10           4
## 3       5592.7       3860.0       4840.0        11        15           7
## 4       6090.0       4889.7       5950.0        16        20          10
## 5       6650.0       6015.2       7017.7        21        25          13
## 6       7180.0       7035.5       8090.0        26        31          16
## 7       7730.0       8113.1      10000.0        32        36          18
## 8       8260.0           NA           NA        37        41          21
## 9       8790.0           NA           NA        42        46          24
## 10      9820.0           NA           NA        47        51          27
## 11          NA           NA           NA        52        57          30
## 12          NA           NA           NA        58        68          33
##    max_animals min_veg max_veg min_fwords max_fwords min_lwords max_lwords
## 1            3       1       3          1          3          1          3
## 2            6       4       5          4          5          4          5
## 3            9       6       7          6          7          6          7
## 4           12       8       9          8          9          8          9
## 5           15      10      11         10         11         10         11
## 6           17      12      13         12         13         12         13
## 7           20      14      15         14         15         14         15
## 8           23      16      17         16         18         16         17
## 9           26      18      19         19         20         18         19
## 10          29      20      21         21         22         20         21
## 11          32      22      23         23         24         22         23
## 12          38      24      33         25         35         24         28
B. Transformed data

Lookup table for Binned data. Provides the boundaries for each bin (row) for each variable (column)

##    recode_score min_rundots max_rundots min_dotcount max_dotcount min_flanker
## 1             1           0        9025            0            4    16000000
## 2             2       12100       21025            5            6    21972656
## 3             3       22500       30625            7            7    27220219
## 4             4       32400       42025            8            9    33062500
## 5             5       44100       50625           10           11    38539264
## 6             6       52900       62500           12           13    44089600
## 7             7       65025       72900           14           15    49674304
## 8             8       75625       84100           16           17    55204900
## 9             9       87025       93025           18           19    60840000
## 10           10       96100      105625           20           21    66292164
## 11           11      108900      115600           22           22    72127652
## 12           12      119025      152100           23           27    77616100
##    max_flanker min_setshift max_setshift min_match max_match min_animals
## 1     19184400            0      6250000         0       289           1
## 2     26173456      8813773     14899600       324       625           4
## 3     32718400     15444900     20531773       676       961           7
## 4     37638225     22929732     30140100      1024      1225          10
## 5     43644521     30360100     37318659      1296      1600          13
## 6     49446211     38047925     45292900      1681      1849          16
## 7     54789604     46313469     52963462      1936      2209          18
## 8     60217600     53058113     60528400      2304      2500          21
## 9     66259600     60637369     67909136      2601      2809          24
## 10    71402500     68724100     75516100      2916      3136          27
## 11    77264100     75961683    100000000      3249      3481          30
## 12    96432400           NA           NA      3600      4624          33
##    max_animals min_veg max_veg min_fwords max_fwords min_lwords max_lwords
## 1            3       1       3          1          3          1          3
## 2            6       4       5          4          5          4          5
## 3            9       6       7          6          7          6          7
## 4           12       8       9          8          9          8          9
## 5           15      10      11         10         11         10         11
## 6           17      12      13         12         13         12         13
## 7           20      14      15         14         15         14         15
## 8           23      16      17         16         18         16         17
## 9           26      18      19         19         20         18         19
## 10          29      20      21         21         22         20         21
## 11          32      22      23         23         24         22         23
## 12          38      24      33         25         35         24         28

3. EFA models (regular + transformed)

A. Regular Data

Skree plot + parallel plot

## Parallel analysis suggests that the number of factors =  4  and the number of components =  2
## Call: fa.parallel(x = EFA.data)
## Parallel analysis suggests that the number of factors =  4  and the number of components =  2 
## 
##  Eigen Values of 
##   Original factors Resampled data Simulated data Original components
## 1             4.11           1.01           0.43                4.61
## 2             0.77           0.28           0.10                1.32
## 3             0.23           0.17           0.06                0.87
## 4             0.13           0.10           0.04                0.68
##   Resampled components Simulated components
## 1                 1.44                 1.13
## 2                 1.25                 1.09
## 3                 1.13                 1.05
## 4                 1.06                 1.02

EFA model (2 factor, 3 factor, 4 factor) + path diagram

## Factor Analysis using method =  pa
## Call: fa(r = EFA.data, nfactors = 2, rotate = "promax", max.iter = 100, 
##     fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
##              PA1   PA2   h2   u2 com
## rundots_r   0.65 -0.08 0.36 0.64 1.0
## dotcount_r  0.31  0.27 0.27 0.73 2.0
## flanker_r   0.89 -0.12 0.67 0.33 1.0
## match_r     0.83  0.15 0.87 0.13 1.1
## setshift_r  0.71  0.02 0.53 0.47 1.0
## animals_r   0.18  0.67 0.63 0.37 1.1
## veg_r       0.17  0.56 0.46 0.54 1.2
## fwords_r   -0.15  0.92 0.69 0.31 1.1
## lwords_r   -0.15  0.92 0.70 0.30 1.1
## 
##                        PA1  PA2
## SS loadings           2.61 2.57
## Proportion Var        0.29 0.29
## Cumulative Var        0.29 0.58
## Proportion Explained  0.50 0.50
## Cumulative Proportion 0.50 1.00
## 
##  With factor correlations of 
##      PA1  PA2
## PA1 1.00 0.63
## PA2 0.63 1.00
## 
## Mean item complexity =  1.2
## Test of the hypothesis that 2 factors are sufficient.
## 
## df null model =  36  with the objective function =  5.25 with Chi Square =  6932.02
## df of  the model are 19  and the objective function was  0.78 
## 
## The root mean square of the residuals (RMSR) is  0.09 
## The df corrected root mean square of the residuals is  0.12 
## 
## The harmonic n.obs is  185 with the empirical chi square  96.4  with prob <  2.4e-12 
## The total n.obs was  1326  with Likelihood Chi Square =  1032.7  with prob <  5.5e-207 
## 
## Tucker Lewis Index of factoring reliability =  0.721
## RMSEA index =  0.201  and the 90 % confidence intervals are  0.19 0.211
## BIC =  896.09
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy             
##                                                    PA1  PA2
## Correlation of (regression) scores with factors   0.96 0.95
## Multiple R square of scores with factors          0.92 0.89
## Minimum correlation of possible factor scores     0.84 0.79

## Factor Analysis using method =  pa
## Call: fa(r = EFA.data, nfactors = 3, rotate = "promax", max.iter = 100, 
##     fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
##              PA1   PA3   PA2   h2    u2 com
## rundots_r   0.37  0.36 -0.16 0.36 0.639 2.4
## dotcount_r  0.57  0.01 -0.01 0.33 0.672 1.0
## flanker_r  -0.21  1.06  0.10 0.93 0.067 1.1
## match_r     0.63  0.43 -0.06 0.88 0.124 1.8
## setshift_r  0.06  0.65  0.12 0.54 0.457 1.1
## animals_r   0.67 -0.07  0.28 0.68 0.320 1.3
## veg_r       0.66 -0.10  0.19 0.53 0.469 1.2
## fwords_r    0.12  0.03  0.76 0.71 0.288 1.1
## lwords_r   -0.01  0.09  0.89 0.83 0.166 1.0
## 
##                        PA1  PA3  PA2
## SS loadings           2.05 2.01 1.74
## Proportion Var        0.23 0.22 0.19
## Cumulative Var        0.23 0.45 0.64
## Proportion Explained  0.35 0.35 0.30
## Cumulative Proportion 0.35 0.70 1.00
## 
##  With factor correlations of 
##      PA1  PA3  PA2
## PA1 1.00 0.64 0.57
## PA3 0.64 1.00 0.31
## PA2 0.57 0.31 1.00
## 
## Mean item complexity =  1.3
## Test of the hypothesis that 3 factors are sufficient.
## 
## df null model =  36  with the objective function =  5.25 with Chi Square =  6932.02
## df of  the model are 12  and the objective function was  0.45 
## 
## The root mean square of the residuals (RMSR) is  0.05 
## The df corrected root mean square of the residuals is  0.08 
## 
## The harmonic n.obs is  185 with the empirical chi square  30.65  with prob <  0.0022 
## The total n.obs was  1326  with Likelihood Chi Square =  587.28  with prob <  5.5e-118 
## 
## Tucker Lewis Index of factoring reliability =  0.749
## RMSEA index =  0.19  and the 90 % confidence intervals are  0.177 0.203
## BIC =  501
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    PA1  PA3  PA2
## Correlation of (regression) scores with factors   0.94 0.99 0.94
## Multiple R square of scores with factors          0.89 0.98 0.89
## Minimum correlation of possible factor scores     0.78 0.95 0.77

## Factor Analysis using method =  pa
## Call: fa(r = EFA.data, nfactors = 4, rotate = "promax", max.iter = 100, 
##     fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
##              PA1   PA4   PA2   PA3   h2    u2 com
## rundots_r  -0.16  0.00 -0.02  1.03 0.90  0.10 1.0
## dotcount_r  0.30 -0.04  0.08  0.32 0.32  0.68 2.1
## flanker_r  -0.08  0.80  0.00  0.15 0.71  0.29 1.1
## match_r     0.46  0.50 -0.10  0.16 0.83  0.17 2.3
## setshift_r -0.03  0.94  0.05 -0.15 0.74  0.26 1.1
## animals_r   1.01 -0.03 -0.02 -0.13 0.83  0.17 1.0
## veg_r       0.78 -0.02  0.00 -0.04 0.55  0.45 1.0
## fwords_r   -0.14  0.00  1.14  0.04 1.13 -0.13 1.0
## lwords_r    0.27  0.05  0.57 -0.06 0.61  0.39 1.5
## 
##                        PA1  PA4  PA2  PA3
## SS loadings           1.96 1.86 1.62 1.18
## Proportion Var        0.22 0.21 0.18 0.13
## Cumulative Var        0.22 0.42 0.60 0.74
## Proportion Explained  0.30 0.28 0.24 0.18
## Cumulative Proportion 0.30 0.58 0.82 1.00
## 
##  With factor correlations of 
##      PA1  PA4  PA2  PA3
## PA1 1.00 0.62 0.66 0.57
## PA4 0.62 1.00 0.41 0.59
## PA2 0.66 0.41 1.00 0.33
## PA3 0.57 0.59 0.33 1.00
## 
## Mean item complexity =  1.4
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  36  with the objective function =  5.25 with Chi Square =  6932.02
## df of  the model are 6  and the objective function was  0.18 
## 
## The root mean square of the residuals (RMSR) is  0.02 
## The df corrected root mean square of the residuals is  0.05 
## 
## The harmonic n.obs is  185 with the empirical chi square  4.89  with prob <  0.56 
## The total n.obs was  1326  with Likelihood Chi Square =  238.01  with prob <  1.5e-48 
## 
## Tucker Lewis Index of factoring reliability =  0.798
## RMSEA index =  0.171  and the 90 % confidence intervals are  0.153 0.19
## BIC =  194.87
## Fit based upon off diagonal values = 1

A. Transformed Data

Skree plot + parallel plot

## Parallel analysis suggests that the number of factors =  4  and the number of components =  2
## Call: fa.parallel(x = EFA.data)
## Parallel analysis suggests that the number of factors =  4  and the number of components =  2 
## 
##  Eigen Values of 
##   Original factors Resampled data Simulated data Original components
## 1             3.98           0.90           0.39                4.49
## 2             0.82           0.25           0.10                1.40
## 3             0.25           0.16           0.07                0.91
## 4             0.12           0.09           0.04                0.68
##   Resampled components Simulated components
## 1                 1.35                 1.13
## 2                 1.22                 1.09
## 3                 1.13                 1.05
## 4                 1.06                 1.03

EFA model (2 factor, 3 factor, 4 factor) + path diagram

#------------------# EFA #------------------# 
fa.none <- fa(r=EFA.data, 
              nfactors = 2, 
              # covar = FALSE, SMC = TRUE,
              fm= "pa", # type of factor analysis we want to use (“pa” is principal axis factoring)
              max.iter=100, # (50 is the default, but we have changed it to 100
              rotate= "promax") # none rotation
print(fa.none)
## Factor Analysis using method =  pa
## Call: fa(r = EFA.data, nfactors = 2, rotate = "promax", max.iter = 100, 
##     fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
##              PA1   PA2   h2   u2 com
## rundots_r  -0.17  0.68 0.35 0.65 1.1
## dotcount_r  0.27  0.30 0.26 0.74 2.0
## flanker_r  -0.06  0.82 0.61 0.39 1.0
## match_r     0.17  0.81 0.86 0.14 1.1
## setshift_r  0.07  0.67 0.51 0.49 1.0
## animals_r   0.67  0.19 0.64 0.36 1.2
## veg_r       0.57  0.17 0.46 0.54 1.2
## fwords_r    0.93 -0.17 0.71 0.29 1.1
## lwords_r    0.93 -0.16 0.71 0.29 1.1
## 
##                        PA1  PA2
## SS loadings           2.66 2.46
## Proportion Var        0.30 0.27
## Cumulative Var        0.30 0.57
## Proportion Explained  0.52 0.48
## Cumulative Proportion 0.52 1.00
## 
##  With factor correlations of 
##     PA1 PA2
## PA1 1.0 0.6
## PA2 0.6 1.0
## 
## Mean item complexity =  1.2
## Test of the hypothesis that 2 factors are sufficient.
## 
## df null model =  36  with the objective function =  5.05 with Chi Square =  6669.3
## df of  the model are 19  and the objective function was  0.72 
## 
## The root mean square of the residuals (RMSR) is  0.09 
## The df corrected root mean square of the residuals is  0.12 
## 
## The harmonic n.obs is  185 with the empirical chi square  96.96  with prob <  1.9e-12 
## The total n.obs was  1326  with Likelihood Chi Square =  955.78  with prob <  1.4e-190 
## 
## Tucker Lewis Index of factoring reliability =  0.732
## RMSEA index =  0.193  and the 90 % confidence intervals are  0.183 0.203
## BIC =  819.17
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy             
##                                                    PA1  PA2
## Correlation of (regression) scores with factors   0.95 0.95
## Multiple R square of scores with factors          0.90 0.91
## Minimum correlation of possible factor scores     0.79 0.81
fa.diagram(fa.none)

fa.none <- fa(r=EFA.data, 
              nfactors = 3, 
              # covar = FALSE, SMC = TRUE,
              fm= "pa", # type of factor analysis we want to use (“pa” is principal axis factoring)
              max.iter=100, # (50 is the default, but we have changed it to 100
              rotate= "promax") # none rotation
print(fa.none)
## Factor Analysis using method =  pa
## Call: fa(r = EFA.data, nfactors = 3, rotate = "promax", max.iter = 100, 
##     fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
##              PA1   PA3   PA2   h2   u2 com
## rundots_r  -0.26  0.30  0.47 0.38 0.62 2.3
## dotcount_r  0.05 -0.06  0.60 0.35 0.65 1.0
## flanker_r   0.06  0.90 -0.07 0.78 0.22 1.0
## match_r     0.04  0.44  0.56 0.85 0.15 1.9
## setshift_r  0.17  0.74 -0.05 0.61 0.39 1.1
## animals_r   0.41 -0.05  0.57 0.69 0.31 1.8
## veg_r       0.33 -0.07  0.53 0.51 0.49 1.7
## fwords_r    0.82  0.05  0.02 0.72 0.28 1.0
## lwords_r    0.87  0.10 -0.05 0.78 0.22 1.0
## 
##                        PA1  PA3  PA2
## SS loadings           2.04 1.85 1.78
## Proportion Var        0.23 0.21 0.20
## Cumulative Var        0.23 0.43 0.63
## Proportion Explained  0.36 0.33 0.31
## Cumulative Proportion 0.36 0.69 1.00
## 
##  With factor correlations of 
##      PA1  PA3  PA2
## PA1 1.00 0.31 0.52
## PA3 0.31 1.00 0.62
## PA2 0.52 0.62 1.00
## 
## Mean item complexity =  1.4
## Test of the hypothesis that 3 factors are sufficient.
## 
## df null model =  36  with the objective function =  5.05 with Chi Square =  6669.3
## df of  the model are 12  and the objective function was  0.4 
## 
## The root mean square of the residuals (RMSR) is  0.05 
## The df corrected root mean square of the residuals is  0.09 
## 
## The harmonic n.obs is  185 with the empirical chi square  35.07  with prob <  0.00046 
## The total n.obs was  1326  with Likelihood Chi Square =  530.71  with prob <  6.4e-106 
## 
## Tucker Lewis Index of factoring reliability =  0.765
## RMSEA index =  0.181  and the 90 % confidence intervals are  0.168 0.194
## BIC =  444.43
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy             
##                                                    PA1  PA3  PA2
## Correlation of (regression) scores with factors   0.94 0.94 0.92
## Multiple R square of scores with factors          0.88 0.89 0.85
## Minimum correlation of possible factor scores     0.75 0.77 0.70
fa.diagram(fa.none)

fa.none <- fa(r=EFA.data, 
              nfactors = 4, 
              # covar = FALSE, SMC = TRUE,
              fm= "pa", # type of factor analysis we want to use (“pa” is principal axis factoring)
              max.iter=100, # (50 is the default, but we have changed it to 100
              rotate= "promax") # none rotation
print(fa.none)
## Factor Analysis using method =  pa
## Call: fa(r = EFA.data, nfactors = 4, rotate = "promax", max.iter = 100, 
##     fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
##              PA1   PA4   PA2   PA3   h2    u2 com
## rundots_r  -0.18  0.05 -0.06  0.98 0.84  0.16 1.1
## dotcount_r  0.28 -0.09  0.11  0.37 0.34  0.66 2.2
## flanker_r  -0.05  0.76  0.00  0.14 0.66  0.34 1.1
## match_r     0.46  0.49 -0.11  0.16 0.82  0.18 2.3
## setshift_r -0.05  0.92  0.07 -0.12 0.75  0.25 1.0
## animals_r   1.01 -0.03 -0.03 -0.12 0.84  0.16 1.0
## veg_r       0.77  0.00  0.00 -0.06 0.55  0.45 1.0
## fwords_r   -0.15  0.01  1.14  0.03 1.12 -0.12 1.0
## lwords_r    0.26  0.06  0.58 -0.09 0.61  0.39 1.5
## 
##                        PA1  PA4  PA2  PA3
## SS loadings           1.95 1.81 1.64 1.13
## Proportion Var        0.22 0.20 0.18 0.13
## Cumulative Var        0.22 0.42 0.60 0.73
## Proportion Explained  0.30 0.28 0.25 0.17
## Cumulative Proportion 0.30 0.58 0.83 1.00
## 
##  With factor correlations of 
##      PA1  PA4  PA2  PA3
## PA1 1.00 0.60 0.67 0.54
## PA4 0.60 1.00 0.39 0.55
## PA2 0.67 0.39 1.00 0.28
## PA3 0.54 0.55 0.28 1.00
## 
## Mean item complexity =  1.4
## Test of the hypothesis that 4 factors are sufficient.
## 
## df null model =  36  with the objective function =  5.05 with Chi Square =  6669.3
## df of  the model are 6  and the objective function was  0.14 
## 
## The root mean square of the residuals (RMSR) is  0.02 
## The df corrected root mean square of the residuals is  0.04 
## 
## The harmonic n.obs is  185 with the empirical chi square  4.07  with prob <  0.67 
## The total n.obs was  1326  with Likelihood Chi Square =  179.63  with prob <  4.1e-36 
## 
## Tucker Lewis Index of factoring reliability =  0.843
## RMSEA index =  0.148  and the 90 % confidence intervals are  0.13 0.167
## BIC =  136.49
## Fit based upon off diagonal values = 1
fa.diagram(fa.none)

5. CFA models

3 factor model: Fluency factor: animals and vegitables, fwords and lwords Procesing speed/inhib: set shifting, flanker, match Working memory: running dots, dot count

Results: standard model, no covariance between fluency items

## lavaan 0.6.15 ended normally after 102 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        32
## 
##                                                   Used       Total
##   Number of observations                          1324        1326
##   Number of missing patterns                        71            
## 
## Model Test User Model:
##                                                       
##   Test statistic                                43.062
##   Degrees of freedom                                22
##   P-value (Chi-square)                           0.005
## lavaan 0.6.15 ended normally after 88 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        30
## 
##                                                   Used       Total
##   Number of observations                          1324        1326
##   Number of missing patterns                        71            
## 
## Model Test User Model:
##                                                       
##   Test statistic                               366.351
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2646.284
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.869
##   Tucker-Lewis Index (TLI)                       0.803
##                                                       
##   Robust Comparative Fit Index (CFI)             0.894
##   Robust Tucker-Lewis Index (TLI)                0.842
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -11454.478
##   Loglikelihood unrestricted model (H1)     -11271.303
##                                                       
##   Akaike (AIC)                               22968.957
##   Bayesian (BIC)                             23124.609
##   Sample-size adjusted Bayesian (SABIC)      23029.313
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.104
##   90 Percent confidence interval - lower         0.095
##   90 Percent confidence interval - upper         0.113
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
##                                                       
##   Robust RMSEA                                   0.153
##   90 Percent confidence interval - lower         0.121
##   90 Percent confidence interval - upper         0.187
##   P-value H_0: Robust RMSEA <= 0.050             0.000
##   P-value H_0: Robust RMSEA >= 0.080             1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.059
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                     Estimate  Std.Err  z-value  P(>|z|)
##   Flu.factor =~                                        
##     animals_r          1.000                           
##     veg_r              0.910    0.040   22.971    0.000
##     fwords_r           0.938    0.051   18.541    0.000
##     lwords_r           0.980    0.052   18.989    0.000
##   PSinhib.factor =~                                    
##     flanker_r          1.000                           
##     match_r            1.070    0.080   13.455    0.000
##     setshift_r         0.542    0.044   12.390    0.000
##   Wrkmem.facotr =~                                     
##     rundots_r          1.000                           
##     dotcount_r         2.188    0.306    7.146    0.000
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)
##   Flu.factor ~~                                        
##     PSinhib.factor     3.356    0.315   10.658    0.000
##     Wrkmem.facotr      0.964    0.143    6.757    0.000
##   PSinhib.factor ~~                                    
##     Wrkmem.facotr      1.393    0.179    7.801    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .animals_r         6.745    0.082   82.167    0.000
##    .veg_r             6.000    0.086   69.638    0.000
##    .fwords_r          6.335    0.086   74.001    0.000
##    .lwords_r          6.083    0.088   69.430    0.000
##    .flanker_r         6.481    0.130   49.785    0.000
##    .match_r           8.449    0.070  120.046    0.000
##    .setshift_r        5.251    0.066   79.570    0.000
##    .rundots_r         3.580    0.056   63.871    0.000
##    .dotcount_r        6.999    0.137   51.028    0.000
##     Flu.factor        0.000                           
##     PSinhib.factor    0.000                           
##     Wrkmem.facotr     0.000                           
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .animals_r         1.968    0.181   10.852    0.000
##    .veg_r             3.041    0.202   15.031    0.000
##    .fwords_r          2.727    0.223   12.210    0.000
##    .lwords_r          2.701    0.231   11.693    0.000
##    .flanker_r         2.254    0.322    6.998    0.000
##    .match_r           1.004    0.225    4.461    0.000
##    .setshift_r        0.728    0.089    8.186    0.000
##    .rundots_r         0.533    0.080    6.700    0.000
##    .dotcount_r        3.911    0.447    8.747    0.000
##     Flu.factor        4.392    0.320   13.745    0.000
##     PSinhib.factor    4.667    0.629    7.422    0.000
##     Wrkmem.facotr     0.542    0.110    4.950    0.000

Results: covaraince model, covariance between fluency items (animal + vegitable; l words + f words)

## lavaan 0.6.15 ended normally after 102 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        32
## 
##                                                   Used       Total
##   Number of observations                          1324        1326
##   Number of missing patterns                        71            
## 
## Model Test User Model:
##                                                       
##   Test statistic                                43.062
##   Degrees of freedom                                22
##   P-value (Chi-square)                           0.005
## lavaan 0.6.15 ended normally after 102 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        32
## 
##                                                   Used       Total
##   Number of observations                          1324        1326
##   Number of missing patterns                        71            
## 
## Model Test User Model:
##                                                       
##   Test statistic                                43.062
##   Degrees of freedom                                22
##   P-value (Chi-square)                           0.005
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2646.284
##   Degrees of freedom                                36
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.992
##   Tucker-Lewis Index (TLI)                       0.987
##                                                       
##   Robust Comparative Fit Index (CFI)             0.968
##   Robust Tucker-Lewis Index (TLI)                0.948
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -11292.833
##   Loglikelihood unrestricted model (H1)     -11271.303
##                                                       
##   Akaike (AIC)                               22649.667
##   Bayesian (BIC)                             22815.696
##   Sample-size adjusted Bayesian (SABIC)      22714.047
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.027
##   90 Percent confidence interval - lower         0.015
##   90 Percent confidence interval - upper         0.039
##   P-value H_0: RMSEA <= 0.050                    1.000
##   P-value H_0: RMSEA >= 0.080                    0.000
##                                                       
##   Robust RMSEA                                   0.088
##   90 Percent confidence interval - lower         0.045
##   90 Percent confidence interval - upper         0.129
##   P-value H_0: Robust RMSEA <= 0.050             0.070
##   P-value H_0: Robust RMSEA >= 0.080             0.652
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.040
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                     Estimate  Std.Err  z-value  P(>|z|)
##   Flu.factor =~                                        
##     animals_r          1.000                           
##     veg_r              0.888    0.038   23.477    0.000
##     fwords_r           0.707    0.044   16.151    0.000
##     lwords_r           0.744    0.045   16.477    0.000
##   PSinhib.factor =~                                    
##     flanker_r          1.000                           
##     match_r            1.076    0.080   13.508    0.000
##     setshift_r         0.538    0.044   12.264    0.000
##   Wrkmem.facotr =~                                     
##     rundots_r          1.000                           
##     dotcount_r         2.199    0.307    7.169    0.000
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)
##  .animals_r ~~                                         
##    .veg_r             -0.202    0.220   -0.920    0.357
##  .fwords_r ~~                                          
##    .lwords_r           2.552    0.207   12.346    0.000
##   Flu.factor ~~                                        
##     PSinhib.factor     3.754    0.331   11.352    0.000
##     Wrkmem.facotr      1.079    0.151    7.139    0.000
##   PSinhib.factor ~~                                    
##     Wrkmem.facotr      1.396    0.179    7.810    0.000
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .animals_r         6.767    0.080   84.283    0.000
##    .veg_r             6.003    0.085   70.401    0.000
##    .fwords_r          6.322    0.087   72.615    0.000
##    .lwords_r          6.066    0.089   68.174    0.000
##    .flanker_r         6.474    0.130   49.685    0.000
##    .match_r           8.448    0.070  120.142    0.000
##    .setshift_r        5.249    0.066   79.328    0.000
##    .rundots_r         3.579    0.056   63.976    0.000
##    .dotcount_r        6.994    0.137   50.984    0.000
##     Flu.factor        0.000                           
##     PSinhib.factor    0.000                           
##     Wrkmem.facotr     0.000                           
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .animals_r         1.072    0.245    4.373    0.000
##    .veg_r             2.552    0.270    9.444    0.000
##    .fwords_r          3.971    0.232   17.093    0.000
##    .lwords_r          3.999    0.240   16.652    0.000
##    .flanker_r         2.298    0.322    7.133    0.000
##    .match_r           0.939    0.216    4.351    0.000
##    .setshift_r        0.749    0.088    8.466    0.000
##    .rundots_r         0.534    0.079    6.747    0.000
##    .dotcount_r        3.906    0.447    8.744    0.000
##     Flu.factor        5.248    0.375   13.991    0.000
##     PSinhib.factor    4.668    0.631    7.393    0.000
##     Wrkmem.facotr     0.542    0.109    4.964    0.000

Results: model comparison; Covaraince model has better fit

## 
## Chi-Squared Difference Test
## 
##         Df   AIC   BIC   Chisq Chisq diff   RMSEA Df diff Pr(>Chisq)    
## fit.cov 22 22650 22816  43.062                                          
## fit.a   24 22969 23125 366.351     323.29 0.34833       2  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1