dinner_dine_in <- dinner %>%
filter(`Dining Option` == "Dine In")
total_sales <- dinner_dine_in %>%
group_by(Server) %>%
summarize(Total_Sales = sum(`Net Price`))
app_sales <- dinner_dine_in %>%
filter(`Menu Group` %in% c("Appetizers & Salads (D)","Sharables (D)","Appetizers & Salads","All Night Happy Hour","Happy Hour")) %>%
group_by(Server) %>%
summarise(App_Sales = sum(`Net Price`)) %>%
left_join(total_sales, app_sales, by = "Server") %>%
mutate(App_Sales_Percentage = round(App_Sales/Total_Sales *100, 2)) %>%
arrange(desc(App_Sales))
as.data.frame(app_sales)
## Server App_Sales Total_Sales App_Sales_Percentage
## 1 Kyle Vu 454.0 3026.48 15.00
## 2 Brian Diggs 411.0 3326.00 12.36
## 3 Emily Willenborg 294.0 2051.25 14.33
## 4 Brittany Knott 279.0 1527.50 18.27
## 5 Amy Nguyen 256.0 1272.00 20.13
## 6 Delaney Walsh 227.2 1134.20 20.03
## 7 Amy (Linh) Nguyen 193.0 1015.50 19.01
## 8 Emily Cipollone 164.0 1038.65 15.79
## 9 Christiana Kummer-Salazar 94.0 914.25 10.28
## 10 Katey Peace 54.0 254.50 21.22
## 11 Adam Kanoza 21.0 27.75 75.68
## 12 Edward Conklin 0.0 0.00 NaN
## 13 Elena Hand 0.0 0.00 NaN
dinner_dine_in <- dinner %>%
filter(`Dining Option` == "Dine In")
total_sales <- dinner_dine_in %>%
group_by(Server) %>%
summarize(Total_Sales = sum(`Net Price`))
NA_beverage_sales <- dinner_dine_in %>%
filter(`Menu Group` == "NA Beverages") %>%
group_by(Server) %>%
summarise(NA_Beverage_Sales = sum(`Net Price`)) %>%
left_join(total_sales, NA_beverage_sales, by = "Server") %>%
mutate(NA_Beverages_Percentage = round(NA_Beverage_Sales/Total_Sales *100, 2)) %>%
arrange(desc(NA_Beverage_Sales))
as.data.frame(NA_beverage_sales)
## Server NA_Beverage_Sales Total_Sales
## 1 Emily Willenborg 99.5 2051.25
## 2 Brian Diggs 98.5 3326.00
## 3 Kyle Vu 90.5 3026.48
## 4 Brittany Knott 65.0 1527.50
## 5 Amy Nguyen 63.0 1272.00
## 6 Amy (Linh) Nguyen 42.5 1015.50
## 7 Emily Cipollone 41.5 1038.65
## 8 Christiana Kummer-Salazar 32.0 914.25
## 9 Katey Peace 22.0 254.50
## 10 Delaney Walsh 13.0 1134.20
## NA_Beverages_Percentage
## 1 4.85
## 2 2.96
## 3 2.99
## 4 4.26
## 5 4.95
## 6 4.19
## 7 4.00
## 8 3.50
## 9 8.64
## 10 1.15
dinner_dine_in <- dinner %>%
filter(`Dining Option` == "Dine In")
total_sales <- dinner_dine_in %>%
group_by(Server) %>%
summarize( Total_Sales = sum(`Net Price`))
drink_sales <- dinner_dine_in %>%
filter(`Sales Category` %in% c("Liquor","Draft Beer", "Wine","Bottled Beer"))%>%
group_by(Server) %>%
summarise(Alcohol_Sales = sum(`Net Price`)) %>%
left_join(total_sales, drink_sales, by = "Server") %>%
mutate(Alcohol_Sales_Percentage = round(Alcohol_Sales/Total_Sales *100, 2)) %>%
arrange(desc(Alcohol_Sales))
as.data.frame(drink_sales)
## Server Alcohol_Sales Total_Sales Alcohol_Sales_Percentage
## 1 Brian Diggs 608.50 3326.00 18.30
## 2 Kyle Vu 527.99 3026.48 17.45
## 3 Delaney Walsh 289.00 1134.20 25.48
## 4 Emily Willenborg 227.00 2051.25 11.07
## 5 Brittany Knott 212.00 1527.50 13.88
## 6 Christiana Kummer-Salazar 206.50 914.25 22.59
## 7 Amy Nguyen 171.50 1272.00 13.48
## 8 Amy (Linh) Nguyen 107.00 1015.50 10.54
## 9 Emily Cipollone 90.00 1038.65 8.67
## 10 Katey Peace 11.00 254.50 4.32
## 11 Adam Kanoza 6.00 27.75 21.62
## 12 Bao Nguyen 0.00 0.00 NaN