The data came from here
ipf_lifts <- readr::read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2019/2019-10-08/ipf_lifts.csv")
## Rows: 41152 Columns: 16
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (10): name, sex, event, equipment, age_class, division, weight_class_kg...
## dbl (5): age, bodyweight_kg, best3squat_kg, best3bench_kg, best3deadlift_kg
## date (1): date
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Explore data
ipf_lifts %>% count(name)
## # A tibble: 17,803 × 2
## name n
## <chr> <int>
## 1 A-Yun Lin 6
## 2 A Almeida 1
## 3 A Ernandos-Ortega 1
## 4 A. Ali 1
## 5 A. Avalio 1
## 6 A. Bojanic 1
## 7 A. Candelaria 1
## 8 A. Croeneboom 1
## 9 A. Cullen 1
## 10 A. De Vega 1
## # … with 17,793 more rows
ipf_lifts %>% count(event)
## # A tibble: 3 × 2
## event n
## <chr> <int>
## 1 B 12564
## 2 SB 2
## 3 SBD 28586
ipf_lifts %>% count(equipment)
## # A tibble: 3 × 2
## equipment n
## <chr> <int>
## 1 Raw 7567
## 2 Single-ply 33309
## 3 Wraps 276
ipf_lifts %>% count(name, event, equipment, age_class)
## # A tibble: 26,409 × 5
## name event equipment age_class n
## <chr> <chr> <chr> <chr> <int>
## 1 A-Yun Lin SBD Raw 70-74 1
## 2 A-Yun Lin SBD Single-ply 40-44 2
## 3 A-Yun Lin SBD Single-ply 45-49 3
## 4 A Almeida SBD Single-ply <NA> 1
## 5 A Ernandos-Ortega SBD Single-ply 18-19 1
## 6 A. Ali B Raw <NA> 1
## 7 A. Avalio SBD Single-ply <NA> 1
## 8 A. Bojanic SBD Single-ply <NA> 1
## 9 A. Candelaria SBD Single-ply <NA> 1
## 10 A. Croeneboom SBD Single-ply <NA> 1
## # … with 26,399 more rows
ipf_lifts %>% count(place)
## # A tibble: 34 × 2
## place n
## <chr> <int>
## 1 1 6480
## 2 10 1064
## 3 11 789
## 4 12 586
## 5 13 443
## 6 14 323
## 7 15 233
## 8 16 164
## 9 17 105
## 10 18 67
## # … with 24 more rows
Get top 10 lifters with the most first place events.
top_10_tbl <- ipf_lifts %>%
filter(place == "1") %>%
count(name, sort = T) %>%
head(10)
top_10_tbl
## # A tibble: 10 × 2
## name n
## <chr> <int>
## 1 Hideaki Inaba 28
## 2 Andrzej Stanaszek 24
## 3 Sergey Fedosienko 24
## 4 Ielja Strik 22
## 5 Hiroyuki Isagawa 21
## 6 Jarosław Olech 21
## 7 Hana Takáčová 20
## 8 Daiki Kodama 18
## 9 Alexey Sivokon 17
## 10 Priscilla Ribic 17
top_10_tbl <- top_10_tbl %>%
mutate(name = factor(name))
top_10_tbl$name
## [1] Hideaki Inaba Andrzej Stanaszek Sergey Fedosienko Ielja Strik
## [5] Hiroyuki Isagawa Jarosław Olech Hana Takáčová Daiki Kodama
## [9] Alexey Sivokon Priscilla Ribic
## 10 Levels: Alexey Sivokon Andrzej Stanaszek Daiki Kodama ... Sergey Fedosienko
Make two bar charts here - one before ordering another after
top_10_tbl %>%
ggplot(aes(n, name)) +
geom_point()
top_10_tbl %>%
ggplot(aes(n, fct_reorder(name, n))) +
geom_point()
Show examples of three functions:
No need to do anything here.