FRI
Clavicle:
Forearm:
Wrist:
Humerus:
Match balance:
df.m <- read.xlsx("/Users/mtk/Dropbox/Research/Projects/FRI/FRI/fri_matched-cohort_final.xlsx")
df.m <- df.m %>%
mutate(fri = case_when(
fri == '0' ~ 'no_fri',
fri == '1' ~ 'yes_fri'
))
df.m <- df.m %>%
mutate(
across(c(mrn,
fri,
gender,
asa,
group),
factor)
)
df.m %>%
group_by(fri) %>%
summarise(
across(c(age, bmi),
list(mean = mean, sd = sd),
na.rm = TRUE,
.names = "{col}_{fn}"))# A tibble: 2 × 5
fri age_mean age_sd bmi_mean bmi_sd
<fct> <dbl> <dbl> <dbl> <dbl>
1 no_fri 49.4 19.7 25.7 4.90
2 yes_fri 48.6 19.2 25.3 4.42
t.test(age ~ fri,
data = df.m)
Welch Two Sample t-test
data: age by fri
t = 0.23017, df = 73.672, p-value = 0.8186
alternative hypothesis: true difference in means between group no_fri and group yes_fri is not equal to 0
95 percent confidence interval:
-5.995311 7.561203
sample estimates:
mean in group no_fri mean in group yes_fri
49.36434 48.58140
t.test(bmi ~ fri,
data = df.m)
Welch Two Sample t-test
data: bmi by fri
t = 0.47457, df = 79.12, p-value = 0.6364
alternative hypothesis: true difference in means between group no_fri and group yes_fri is not equal to 0
95 percent confidence interval:
-1.213262 1.972952
sample estimates:
mean in group no_fri mean in group yes_fri
25.65891 25.27907
tab <- table(df.m$gender, df.m$fri)
round(prop.table(tab, margin = 2)*100,1)
no_fri yes_fri
0 45.7 41.9
1 54.3 58.1
tab2 <- table(df.m$asa, df.m$fri)
round(prop.table(tab2, margin = 2)*100,1)
no_fri yes_fri
1 17.1 23.3
2 54.3 51.2
3 19.4 16.3
4 9.3 7.0
5 0.0 2.3
fisher.test(tab)
Fisher's Exact Test for Count Data
data: tab
p-value = 0.7248
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.551754 2.515470
sample estimates:
odds ratio
1.169566
fisher.test(tab2)
Fisher's Exact Test for Count Data
data: tab2
p-value = 0.477
alternative hypothesis: two.sided