1 Regular Expression


a) Use the words data set, find all the words that match the following pattern:

   • are exactly four letters long
   • are either four or five letters long
   • the second letter is “s” or “t”
   • contains the pattern like “oxx” where “o” is one letter and “x” is another letter
   • contains “a”, “e” and “o” at the same time


 sum(str_detect(words,"^....$"))
## [1] 263
str_view(words, "^....$")
##   [2] │ <able>
##  [33] │ <also>
##  [49] │ <area>
##  [64] │ <away>
##  [66] │ <baby>
##  [67] │ <back>
##  [71] │ <ball>
##  [72] │ <bank>
##  [74] │ <base>
##  [77] │ <bear>
##  [78] │ <beat>
##  [88] │ <best>
##  [92] │ <bill>
##  [98] │ <blow>
##  [99] │ <blue>
## [101] │ <boat>
## [102] │ <body>
## [103] │ <book>
## [104] │ <both>
## [120] │ <busy>
## ... and 243 more
str_view(words, "^.....?$")
##  [2] │ <able>
##  [3] │ <about>
## [14] │ <admit>
## [18] │ <after>
## [20] │ <again>
## [23] │ <agent>
## [25] │ <agree>
## [28] │ <allow>
## [30] │ <along>
## [33] │ <also>
## [42] │ <apart>
## [45] │ <apply>
## [49] │ <area>
## [50] │ <argue>
## [63] │ <aware>
## [64] │ <away>
## [65] │ <awful>
## [66] │ <baby>
## [67] │ <back>
## [71] │ <ball>
## ... and 443 more
str_view(words, "^.[st].*")
##  [55] │ <as>
##  [56] │ <ask>
##  [57] │ <associate>
##  [58] │ <assume>
##  [59] │ <at>
##  [60] │ <attend>
## [277] │ <especial>
## [434] │ <issue>
## [435] │ <it>
## [436] │ <item>
## [587] │ <other>
## [588] │ <otherwise>
## [797] │ <staff>
## [798] │ <stage>
## [799] │ <stairs>
## [800] │ <stand>
## [801] │ <standard>
## [802] │ <start>
## [803] │ <state>
## [804] │ <station>
## ... and 18 more
str_view(words, "(.)(.)\\2")
##  [5] │ <acc>ept
##  [6] │ <acc>ount
##  [8] │ acr<oss>
## [12] │ <add>
## [13] │ <add>r<ess>
## [16] │ <aff>ect
## [17] │ <aff>ord
## [19] │ after<noo>n
## [25] │ ag<ree>
## [27] │ <all>
## [28] │ <all>ow
## [43] │ <app>arent
## [44] │ <app>ear
## [45] │ <app>ly
## [46] │ <app>oint
## [47] │ <app>roach
## [48] │ <app>ropriate
## [53] │ <arr>ange
## [57] │ <ass>ociate
## [58] │ <ass>ume
## ... and 137 more
str_view(words, "(.*a.*e.*o.*)|(.*a.*o.*e.*)|(.*e.*a.*o.*)|(.*e.*o.*a.*)|(.*o.*a.*e.*)|(.*o.*e.*a.*)")
##   [4] │ <absolute>
##  [19] │ <afternoon>
##  [39] │ <another>
##  [48] │ <appropriate>
##  [57] │ <associate>
## [166] │ <colleague>
## [177] │ <compare>
## [268] │ <encourage>
## [580] │ <operate>
## [585] │ <organize>
## [648] │ <probable>
## [654] │ <programme>
## [683] │ <reason>
## [695] │ <relation>


b) Use the sentences data set, make the following plot

    • a bar plot counting sentences with and without “the” (or “The”).
    • a scatter plot with x being the average length of words in a sentence, and y being the number             of words starting with “a” or “e” or “i” or “o” or “u” in the sentence.
sentence_1<-as.tibble(sentences)
## Warning: `as.tibble()` was deprecated in tibble 2.0.0.
## ℹ Please use `as_tibble()` instead.
## ℹ The signature and semantics have changed, see `?as_tibble`.
sentence2 <- sentence_1 %>% 
  mutate(the_group = ifelse(str_detect(value, "(the|The)"), "Yes","No")) %>%
  
  print()
## # A tibble: 720 × 2
##    value                                       the_group
##    <chr>                                       <chr>    
##  1 The birch canoe slid on the smooth planks.  Yes      
##  2 Glue the sheet to the dark blue background. Yes      
##  3 It's easy to tell the depth of a well.      Yes      
##  4 These days a chicken leg is a rare dish.    Yes      
##  5 Rice is often served in round bowls.        No       
##  6 The juice of lemons makes fine punch.       Yes      
##  7 The box was thrown beside the parked truck. Yes      
##  8 The hogs were fed chopped corn and garbage. Yes      
##  9 Four hours of steady work faced us.         No       
## 10 A large size in stockings is hard to sell.  No       
## # … with 710 more rows
  ggplot(sentence2) + geom_bar(mapping = aes(x = the_group)) +
    labs(title = "Comparison sentenes with/without 'the'", x = "Sentences with/without 'the'",y = "Count") +
  theme(plot.title = element_text(hjust = 0.5, size = rel(1.5)), axis.title= element_text(size = rel(1.1)))


c) Application

    i) Download the Oxford English Dictionary as a “.txt” file from https://course.mt.feitian.edu/files/47745/
    download?download_frd=1
    ii) Read it into RStudio with read_lines() function (check how to use it by yourself)
    iii) Turn the dictionary into a tibble and remove all blank lines
    iv) Use regular expression to extract all words for each item in a separate column named “words”
mydic_data <- read_lines("Oxford_English_Dictionary.txt")
mydic_data1 <- tibble(
  word = mydic_data, 
  i = seq_along(word)
)
mydic_data1
## # A tibble: 72,325 × 2
##    word                                                                        i
##    <chr>                                                                   <int>
##  1 "A "                                                                        1
##  2 ""                                                                          2
##  3 ""                                                                          3
##  4 ""                                                                          4
##  5 "A-  prefix (also an- before a vowel sound) not, without (amoral). [gr…     5
##  6 ""                                                                          6
##  7 "Aa  abbr. 1 automobile association. 2 alcoholics anonymous. 3 anti-ai…     7
##  8 ""                                                                          8
##  9 "Aardvark  n. Mammal with a tubular snout and a long tongue, feeding o…     9
## 10 ""                                                                         10
## # … with 72,315 more rows
mydic_data2 <- mydic_data1%>% 
  filter(str_detect(word, "[^.*]")) %>%
  print()
## # A tibble: 36,740 × 2
##    word                                                                        i
##    <chr>                                                                   <int>
##  1 "A "                                                                        1
##  2 "A-  prefix (also an- before a vowel sound) not, without (amoral). [gr…     5
##  3 "Aa  abbr. 1 automobile association. 2 alcoholics anonymous. 3 anti-ai…     7
##  4 "Aardvark  n. Mammal with a tubular snout and a long tongue, feeding o…     9
##  5 "Ab-  prefix off, away, from (abduct). [latin]"                            11
##  6 "Aback  adv. \u007f take aback surprise, disconcert. [old english: rel…    13
##  7 "Abacus  n. (pl. -cuses) 1 frame with wires along which beads are slid…    15
##  8 "Abaft  naut. —adv. In the stern half of a ship. —prep. Nearer the ste…    17
##  9 "Abandon  —v. 1 give up. 2 forsake, desert. 3 (often foll. By to; ofte…    19
## 10 "Abandoned  adj. 1 deserted, forsaken. 2 unrestrained, profligate."        21
## # … with 36,730 more rows
mydic_data2 %>%
  extract(word, 
          c("words"), 
          "(..+ [ ])", 
          remove = T) %>%
  print()
## # A tibble: 36,740 × 2
##    words             i
##    <chr>         <int>
##  1  <NA>             1
##  2 "A-  "            5
##  3 "Aa  "            7
##  4 "Aardvark  "      9
##  5 "Ab-  "          11
##  6 "Aback  "        13
##  7 "Abacus  "       15
##  8 "Abaft  "        17
##  9 "Abandon  "      19
## 10 "Abandoned  "    21
## # … with 36,730 more rows


2. Factors


####a) Use the BankChurners.csv to answer the following questions: • Which features can be regarded as a factor? • Which features can be regarded as an ordered factor (ordinal)? • Read BankChurners.csv into RStudio, then change the columns that you answered above into factors or ordered factors. • Visualize the effect of education level on average utilization ratio


bank_data <- read_csv("BankChurners.csv")

Answer: These features can be regarded as a factor : Attrition_Flag, Gender, Education_level,Marital_Status, Income_Category, Card_Category.


Answer:Education_level,Income_Category, Card_Category can be regarded as ordered factor(ordinal).

bank_data$Education_Level <- factor(bank_data$Education_Level)
bank_data$Income_Category <- factor(bank_data$Income_Category)
bank_data$Card_Category <- factor(bank_data$Card_Category)
glimpse(bank_data)
## Rows: 10,127
## Columns: 23
## $ CLIENTNUM                                                                                                                          <dbl> …
## $ Attrition_Flag                                                                                                                     <chr> …
## $ Customer_Age                                                                                                                       <dbl> …
## $ Gender                                                                                                                             <chr> …
## $ Dependent_count                                                                                                                    <dbl> …
## $ Education_Level                                                                                                                    <fct> …
## $ Marital_Status                                                                                                                     <chr> …
## $ Income_Category                                                                                                                    <fct> …
## $ Card_Category                                                                                                                      <fct> …
## $ Months_on_book                                                                                                                     <dbl> …
## $ Total_Relationship_Count                                                                                                           <dbl> …
## $ Months_Inactive_12_mon                                                                                                             <dbl> …
## $ Contacts_Count_12_mon                                                                                                              <dbl> …
## $ Credit_Limit                                                                                                                       <dbl> …
## $ Total_Revolving_Bal                                                                                                                <dbl> …
## $ Avg_Open_To_Buy                                                                                                                    <dbl> …
## $ Total_Amt_Chng_Q4_Q1                                                                                                               <dbl> …
## $ Total_Trans_Amt                                                                                                                    <dbl> …
## $ Total_Trans_Ct                                                                                                                     <dbl> …
## $ Total_Ct_Chng_Q4_Q1                                                                                                                <dbl> …
## $ Avg_Utilization_Ratio                                                                                                              <dbl> …
## $ Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_1 <dbl> …
## $ Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_2 <dbl> …
ggplot(bank_data) + geom_bar(mapping = aes(x = Education_Level,fill = Attrition_Flag), position = "dodge") +
    labs(title = "Education level effect on attrition status", x = "Education level",y = "Count") +
  theme(plot.title = element_text(hjust = 0.5, size = rel(1.5)), axis.title= element_text(size = rel(1.1)))


b) Use the gss_cat data set

• What are the levels of marital variable? • Combine “Separated”, “Divorced”, “Widowed” into a new category “Once Married” • Use the new levels, explore whether there is an effect of martial status on tvhours.


Answer: there are 6 levels : “No answer”, “Never married”, “separated”, “Divorced”, “Widowed”, “Married”.


gss_cat1 <- gss_cat %>%
  mutate(marital = fct_recode(marital,
    "No answer"    = "No answer",
    "Never married"      = "Never married",
    "Once_Married" = "Separated",
    "Once_Married" = "Divorced",
    "Once_Married"        = "Widowed",
    "Married"      = "Married"
  )) %>%
  
  print()
## # A tibble: 21,483 × 9
##     year marital         age race  rincome        partyid    relig denom tvhours
##    <int> <fct>         <int> <fct> <fct>          <fct>      <fct> <fct>   <int>
##  1  2000 Never married    26 White $8000 to 9999  Ind,near … Prot… Sout…      12
##  2  2000 Once_Married     48 White $8000 to 9999  Not str r… Prot… Bapt…      NA
##  3  2000 Once_Married     67 White Not applicable Independe… Prot… No d…       2
##  4  2000 Never married    39 White Not applicable Ind,near … Orth… Not …       4
##  5  2000 Once_Married     25 White Not applicable Not str d… None  Not …       1
##  6  2000 Married          25 White $20000 - 24999 Strong de… Prot… Sout…      NA
##  7  2000 Never married    36 White $25000 or more Not str r… Chri… Not …       3
##  8  2000 Once_Married     44 White $7000 to 7999  Ind,near … Prot… Luth…      NA
##  9  2000 Married          44 White $25000 or more Not str d… Prot… Other       0
## 10  2000 Married          47 White $25000 or more Strong re… Prot… Sout…       3
## # … with 21,473 more rows
gss_cat2 <- gss_cat1 %>%
  filter(!is.na(tvhours)) %>%
  print()
## # A tibble: 11,337 × 9
##     year marital         age race  rincome        partyid    relig denom tvhours
##    <int> <fct>         <int> <fct> <fct>          <fct>      <fct> <fct>   <int>
##  1  2000 Never married    26 White $8000 to 9999  Ind,near … Prot… Sout…      12
##  2  2000 Once_Married     67 White Not applicable Independe… Prot… No d…       2
##  3  2000 Never married    39 White Not applicable Ind,near … Orth… Not …       4
##  4  2000 Once_Married     25 White Not applicable Not str d… None  Not …       1
##  5  2000 Never married    36 White $25000 or more Not str r… Chri… Not …       3
##  6  2000 Married          44 White $25000 or more Not str d… Prot… Other       0
##  7  2000 Married          47 White $25000 or more Strong re… Prot… Sout…       3
##  8  2000 Married          53 White $25000 or more Not str d… Prot… Other       2
##  9  2000 Married          52 White $25000 or more Strong de… Prot… Sout…       1
## 10  2000 Once_Married     52 White $25000 or more Ind,near … None  Not …       1
## # … with 11,327 more rows
data1 <- gss_cat2$tvhours[gss_cat2$marital == "Married"]
data1
##    [1]  0  3  2  1  7  3  1  2  1  2  1  4  5  3  3  2  2  2  2  1  3  1  4  2
##   [25]  2  4  2  1  5  8  1  1  2  1  6  2  2  1  5 15  1  2  2  0  2  2  2  1
##   [49]  2  1  5  5 11  2  2  4  5  1  2  2  1  4 11  1  4  3  2  1  3  6  4  1
##   [73]  4 10  1  2  1  1  1  3  2  3  1  0  3  1  3  1  2  2  1  8  2  3  4  8
##   [97]  2  2  1  2  4  3  1  4  2  5  1  2  4 12  2  3  2  2  0  2  1  2  3  3
##  [121]  1  1  2  7  2  7  2  4  4  6  1 15  4  0  2  1  6  1  1  1  1  1  4  4
##  [145]  2  2  8  5  2  1  2  2  1  0  1  3  3  2  1  2  2  5  1 20  1  4  2  2
##  [169]  2  3  2  2  3  1  2  2  1  1  4  8  2  2  1  2  4  2  2  4  3  2  3  3
##  [193]  0  3  6  4  2  3  1  2  4  3  2  1  2  2  1  5  1  2  2  2  1  1  3  2
##  [217]  1  4  3  2  1  4  3  1  5  5  4  2  2  2  2  3  2  4  2  1  1  7  2  3
##  [241]  1  3  1  2  2  3  1  0  1  1  3  1  1  3  3  6  2  1  4  4  4  4  1  2
##  [265]  2  1  3  1  1  2  4  1  2  3  1  0  3  2  2  3  6  6  3  3 12  3  2  5
##  [289]  3  2  0  3  2  1  3  3  4  2  2  5  2  2  1  0  2  1  4 13  2  4  3  2
##  [313]  1  2  1  2 15  3  1  5  3  1  3  4  2  1  3  1  2  4  1  2  8  2  4  4
##  [337]  1  6  2  2  1  2  2  2  2  3  3  8  8  2  1  3  4  1  6  5  4  2  2  6
##  [361]  2  2  1  1  2  1  5  3  3  1  3  2  2  1  3  2  3  2  2  3  0  2  2  5
##  [385]  2  1  1  2  2  3  2  5  2  2  1  3  1  2  2  2  3  1  2  4  4  3  1  4
##  [409]  4  2  2  4  2  2  1  5  8  2  2  2  1  2  1  1  2  1  2  2  2  1  2  4
##  [433]  1  4  4  2  2  1  2  4  5  4  4  0  2  2 10  3  4  5  2  1  5  1  4  5
##  [457]  2  6  2  0  5  1  1  1  2  5  2  1  3  3  2  1  1  3  1  1  1  4  2  3
##  [481]  3  2  1  2  2  3  8  4  1  2  2  2  4  4  2  2  2  3  3  2  3  0  1  1
##  [505]  0  4  1  1  0  5  3  1  2  2  4 10  1 12  1  1  2  5  3  3  2  2  5  3
##  [529]  0  1  3  1  3  2  3  2  5  1  1  2  1  3  5  1  2  3  2  5  3  2  1  0
##  [553]  3  4  3  5 21  3  2  4  4  6  3  6  0  5  4  3  1  2  3  3  3  3  2  2
##  [577]  6  5  2  5  2  6  1  4  3  1  0  3  4  3  2  2  1  2  1  1  3  4  4  2
##  [601]  1  0  7  2  2  2  4  4 10  4  1  1  3  3  0  3  2  3  1  4  4  0 12  1
##  [625]  4  2  4  0  3  1  2  4  4  3  6  6  2  2  0  1  1  4 14  2  3  3  1  6
##  [649]  2  2  1  2  4  6  6 15  6  1  3  1  4  3  3  3  6  2  1  2  2  1  2  2
##  [673]  1  2  2  4  3  1  6  2  1  4  4  2  2  1  2  2  1  2  3  2  4  3  8  5
##  [697]  4  2  1  1  2  1  1  3  3  4  1  1  3  3 10  1  2  3  2  4  3  1  0  2
##  [721]  2  2  2  2  4  2  3  2  2  3  5  1  8  2  0  4  2  4  1  0  4  4  1  3
##  [745]  1  1  4  2  1  2  2  2  1  2  0  3  3  3  4 11  2  6  1  2 10  2  4  3
##  [769]  3  3  2  2  3  3  2  1  2  1  2  5  2  2 12 10  2  1  4  2  4  0  3  1
##  [793]  3  3  2  1  2  0  3  3  3  5  0  1  2  0  4  0  2  1  1  1  2  3  7  2
##  [817]  2  3  1  3  1  1  1  1  2  2  2  4  2  1  3  1  6  3  1  6  1  3  1  6
##  [841]  3  6  6  2  2  4  1  3  6  3  3  1  1  1  3  3  2  3  1  2  2  8  1  1
##  [865]  1  1  1  2  2  4  3  1  0  4  5  4  2  2  1  0  5  1  8  3  1  2  1  3
##  [889]  1  2 12  6  0  1  1  2  6  4  2  2  6  7  4  4  1  2  3  0  2  3  5  2
##  [913]  2  3  4  3  2  4  0  1  1  4  0  2  6  3  1  3  1  0  2  4  4  1  5  0
##  [937]  2  1  2  3  1  3  3  4  1  1  2  2  1  3  2  1  3  5  2  2  2  4  5  3
##  [961]  2  1  3  2  4  1  2  3  1  2  4  1  3  2  5  2  1  3  1  7  3  2  3  2
##  [985]  1  8  3  4  3 11  3  2  1  1  2  3  2  1  3  1  5  3  1  0  3  1  2  1
## [1009]  2  1  2  1  2  2  5  3  2  3  3  5  1  2  1  4  2  8  4  1  2  2  0  3
## [1033]  3  2  1  2  2  3  2  2  3  1  1  2  2  2  3  2  5  2  2  1  1  1  4  3
## [1057]  2  4  2  2  3  3  1  8  2  2  1  3  5  3  1  2  1  3  1  3  2  3  3  4
## [1081]  2  5  2  1  3  1  3  2  1  1  8  2  4  3  2  1  3  1  4  1  1  2  2  3
## [1105]  1  4  1  3  3  4  5  1  1  3  5  1  1  5  2  1  1  4  3  3  1  2  2  1
## [1129]  1  3  2  2  2  3  5  7  2  1  1  4  2  3  4  4  4  5  4  3  8  1  3  3
## [1153]  3  2  2  3  1  1  2  5  1  3  0  2  2 12  3  2  1  1  1  3  3  4  4  1
## [1177]  1  1  4  2  4  2  3  5  2  8  0  4  6  2  2  1  2  1  1  3  4  1  2  0
## [1201]  2  2  4  5  1  2  1  2  2  6  2  5  2  5 12  2  7  0  1  2  2  6  1  2
## [1225]  2  2  2  3  0  1  3  3  1  3  3  8  3  1  2  3  1  1  0  4  5  1  1  1
## [1249]  5  4  3  8  2  1  4  4  2  1  1  3  4  4  1  2  6  0  1  1  1  2 12  1
## [1273]  2  5  3  2  2  1  3  2  2  3  1  8  1  2  3  3  2  0  2  1  1  0  1  2
## [1297]  1  4  0  1  3  3  2  1  2  1  5  2  2 10  1  0  1  2  1  1  4  3  5  4
## [1321]  2  2  1  0  0  0  1  2  1  1  2  1  3  1  2  8  3  4  2  1  1  4  1  2
## [1345]  1  2  2  1  2  2  2  1  2  1  1  7  1  0  3  2  2  4  1  4  2  3  2  1
## [1369]  1  3  0  4  2  1  3  1  3  5  4  3  1  2  3  1  2  2  3  3  1  2  2  1
## [1393]  8  2  3  5 15  3  4  3  2  4  1  2  4  2  3  3  1  6  1  2  2  0  2  1
## [1417]  2  3  5  3  0  4  2  4  1  0  3  2  1  1  4  1  2  1  4  2  2  3  3  2
## [1441]  2  2  5  3  1 16  2 12  1  2  4  1  2  4  4  2  1  2  1  2  1  2  3  3
## [1465]  1  2  3  5  5  0  2  1  4  3  2  1  2  3  1  5  3  3  2  3  3  1  4  0
## [1489]  3  2  1  0  5  1  1  6  0  3  3  2  8  1  2  0  2  2  2  2  5  2  1  2
## [1513]  2  2  1  3  0  2  1  2  2  2  3  1  1  3  1  1  1  5  4  1  2  2  1  2
## [1537] 14  0  1  4 10  5  2  1  3  7  5  1  2  2  8  4  1  4  4  2  2  2  2  2
## [1561]  2  1  2  2  2  0  0  1  2  4  2  4  3  1  1 20 10  1  8  1  2  2  2  2
## [1585]  1  4  1  1  8  1  8  1  1  1  3  2  3  5  0  2  2 20  2  2  1  4  2  2
## [1609]  1  1  4  5  1  3  3  1  2  2  8  1  1  2  4  1  4  2  2  3  2  3  2  1
## [1633]  1  4  4  3  1  1  1  1  0  6  1  1  2  1  2  1  3  1  2  2  2  1  1  2
## [1657]  4  2  1  1  0  3  2  2  3  1  6  1  3  3  1  1  3  1  3  3  2  3  2  0
## [1681]  2  5  2  4  3  2  2  2  0  3  4  1  3  1  2  1  2  3  2  1  4  0  2  5
## [1705]  1  2  6  2  2  2  1  3  2  1  1  2  4  2  2  1  3  2  4  3  0  2  1  4
## [1729]  1  3  3  2  3  1  4  1  4  2  2  2  2  3  0  4  4  3  1  2  1  3  2  4
## [1753]  2  3  2  3  4  1  2  1  1  2  2  2  2  2  1  1  1  5  4  1  2  1  3  1
## [1777]  2  1  1  5  1  2  1  2  6  1  1  2  2  4  1  5  5  2  2  2  1  1  5  3
## [1801]  1  2  5  3  3  1  2  2  6  2  1  4  2  2  2  2  2  1  4  4  4  5  1  5
## [1825]  4  1  1  2  3  2  2  2  1  3  8  6  2  1  1  2  1  5  3  3  2  2  2  1
## [1849]  2  8  2  2 14  4  1  0  4  8  6  4  4  4  4  5  1  0  2  1  2  3  3  2
## [1873]  1  2  2  3  1  1  4  2  3  5  6  3  3 10  3  3  2  1  4  2  1  2  1  2
## [1897]  4  3  3  2  2  3  2  2  3  1  2  3  3  2  0  4  1  1  2  2  1  2  4  2
## [1921]  2  1  2  6  3  2  6  1  2  2  2  2  2  2  2  2  3  1  2  1  1  2  3  2
## [1945]  4  2  1  5  3  0  1  2  6  2  2  1  2  2  1  2  1  2  1  2  2  1  2  5
## [1969]  1  5  6  6  1  4  2 10  4  3  3  1  1  0  2  2  5  2  1  1  5  1  1  2
## [1993]  2  1  4  2  2  2  4  1  2  3  1  1  4  3  2  4  6  3  2  3  1  1  2  1
## [2017]  1  1  1  2  3  4  0  5  6  4  1  3  2  3  3  2  3  1  3  4  1  2  3  8
## [2041]  1  2  6  5  3  2  2  2  1  2  1  5  2  1  3  1  2  2  6  2  3  4  1  0
## [2065]  3  0  1  1  2  4  1  4  2  6  2  1  1  2  3  0  1  5  4  1  2  2  2  5
## [2089]  2  1  1  3  4  2  1  4  6  4  2  4  3  6  4  1  2  3  2  2  2  1  2  6
## [2113]  3  4  2  1  2  1  2  4  1  1  3  2  1  2  2  2  3  2  2  3  1  2  1  1
## [2137]  3  5  4  1  1  1  3  2  3  2  0  2  6  1  2  1  2  2  3  4 12  1  1  1
## [2161]  1  1  1  1  3  3  3  3  3  2  3  1  3  2  2  1  1  6  3  3  3  3  2  5
## [2185]  2  4  3  2  6  7  4  3  4  1  2  3  4  1  7  3  2  1  2  1  1  2  1  1
## [2209]  2  5  0  3  1  4  4  4  2  6  2  4  5  4  2  2  2  1  4  2  3  2  1  3
## [2233]  4  2  1  5  4  2  2  4  2  2  2  4  3  5  3  2  3  1  1  1  0  4  3  5
## [2257]  2  1  1  1  8  7  1  3  2  0  1  2  1  2  2  2  1  1  3  1  2  3  3  2
## [2281]  3  3  1  2  3  1  3  4  3 15  3  1  0  4  5  4 10  2  3  3  2  4  2  1
## [2305]  2  2  2  2  1  1  1  3  2  1  0  2  3  2  1  2  2  4  2  2  4  1  1  3
## [2329]  4  2  1  4 10  2  2  5  5  2  3  1  2  1  2  2  5  1  4  1  5  2  2  5
## [2353]  5  1  8  3  2  1  1  0  2  1  4  1  7  2  5  2  2  0  1  5  2  2  1  2
## [2377]  1  1  1  1  2  0  1  2  3  6  2  2  3  2  2  1  1  4  4  3  2  0 10  1
## [2401]  4  1  2  2  0  2  1  1  4  4  5  3  3  4  0  2  6  2  3  2  2  3  2  4
## [2425]  4  8  2  4  4  6  1  3  3  2  3  4  1  3  1  8  3  1  1  3  1  2  3  2
## [2449]  1  1  3  1  2  3  3  4  8  2  2  1  4  1  3  2  5  1  2  1  2  3  1  2
## [2473]  1  6  2  2  3  2  3  1  1  4  3  1  4  2  7  1  4  2  1  2  3  4  2  2
## [2497]  1  3  2  2  3  2  2  4  3  6  2  1  3  4  3  2  2 12  3  3 10  2  1  4
## [2521]  5  3  2  3  3  8  3  4  3  2  3  1  2  8  1  5  2  2  3  2  2  4  1  2
## [2545]  3 10  2  3  4 12  4  2  3  2  5  1  3  3  4  1  2  0  4  2  3  5  1  3
## [2569]  3  2  3  5  1  4  4  3  6  2  5  2  3  0 14  1  1  2  3  2  2  1  3  0
## [2593]  3  1  2  2  6  2  1  1  3  2  1  2  2  8  2  2  6  2  2  3  4  3  0  2
## [2617]  8  1  2  2  3  5  0  2  4  2  2  2  1  4  1  1  2  2  2  4  1  2  2  4
## [2641]  7  4  2  3  2  1  2  1  3  1  2  0  3  3  1  3  5  2  0  2  4  1  2  1
## [2665]  1  2  1  1 12  1  4  1  3  4  2  1  0  4  2  5  3  3  4  2  2  2  3  1
## [2689]  0  1  4  5  1  2  2  0  2  1  3  1  1  4  2  1  4  5  1  4  2  2  0  2
## [2713]  3  3  2  5  2  1  5  2  2  5  6  2  5  2  2  2  2  3  2  3  5  2  2  1
## [2737]  4  2  0  3  4  2 12  2  1  2  2  0  3  2  2  1  2  1  1  1  4  2  3  0
## [2761]  2  1  3  1  1  1  5  5  2  1  2  3  1  2  4  0  1  2  3  1 10  1  3  2
## [2785]  2  1  1  1  0  2  1  2  5  0  2  4  0  4  3  2  2  1  3  3  4  1  6  3
## [2809]  4  2  3  3  3  6  2  3  1  2  2  2  1  4  1  2  1  1  2  2  3  2  0  1
## [2833]  4  2  1  2  2  2  0  1  1  2  2  1  2  2  1  2  3  2  2  8  4  3  1  4
## [2857]  1  1  2  1  2  1  1  1  3  1  3  2  4  4 12  2  2  2  5  4  1  2  1  6
## [2881]  3  4  3  2  2  6  2  6  2  3  1  4  1  2  2  2  1  3  2  4  1  2  1  3
## [2905]  2  2  2  2  1  2  2  2  1  0  2  2  4  1  1  1  4  0  2  6  4  8  1  2
## [2929]  2  1  0  5  2  3  4  6  4  2  3  3  2  4  2  5  3  4  3  6  1  1  4  1
## [2953]  3  2  4  2  1  6  2  7  4  3  4  5  2  2  3 15  0  2  2  1  1  4 12  0
## [2977]  2  1  8  2  4  1  4  2  3  2  2  3  6  8  4  2  6  1  1  1  1  3  1  1
## [3001]  2  3  3  1  3  2  1  1  1  2  3  2  5  0  0  2  3  3  3  1  2  0  2  2
## [3025]  2  1  1  1  3  3  1  4  1  3  3  2  4  2  1  2  4  2  1  1  1  1  1  4
## [3049]  4  2  4  1  5  2  2  1  1  1  2  2  6  8  0  8  1  5  0  1  2  4  4  4
## [3073]  2  2  2  4  2  1  1  2  4  6  0  2  0  1  2  4  5  3  1  3  3  4  1  2
## [3097]  1  1  1  1 10  2  1  2  8  3  4  5  4  6  2  3  2  2  2  2  3  8  3  3
## [3121]  3  8  2  4  1  3  1  1  3  2  2  5  5  1  4  3  2  3  1  3  3  0  4  3
## [3145]  6  3  1  6  5  1  2  3  4  2  4  2  1  1  3  3  1  3  1  3  4  0  1  1
## [3169]  1  4  3  2  1  1  1  1  5  4  8  5  0 10  6  5  1  2  5  3  6  2  4  4
## [3193]  2  2  3  0  3  3  2  2  2  1  2  6  3  4  4  1  2  2  2  2  3  2  4  1
## [3217]  2  1  4  2  3  3  4  3  3  3  2  8  2  1  2  1  7  2  4  5  3  8  2  2
## [3241]  2  3  3  3  2  2  1  2  4  2  3  1  2  2  1  3  0  4  4  3  2  4  1  2
## [3265]  6  5  0  2  2  2  3  2  4  2  2  3  4  1  3  3  2  3  3  5  2  2  1  2
## [3289]  2  2  1  3  3  0  3  2  2  2  2  1  2  1  1  0  2  0  1  2  2  2  2  4
## [3313]  1  4  1  3  4  2  6  1  2  3  1  3  3  3  2  2  4  3  1  8  2  2  6  3
## [3337]  3  2  2  1  4  5  3  3  3  1  3  4  2  2  4  5  2  3  3  2  2  4  2  1
## [3361]  1  2  2 10  1  2  6  2  2  3  2  0  3  2  3  7  1  2  8  1  1  5  3  1
## [3385]  3  2  1  2  1  2  3  2  2  2  2  3  2  5  2  0  3  1  5  2  0  3  5  2
## [3409]  3  1  3  2  1  3  3  2  1  4  2  3  4  1  3  1  3  3  2  4  8  7  6  3
## [3433]  2  3  3  2  2  0  3  2  1  3  1  1  3  2  2  2  4  3  1  5  1  3  1  3
## [3457]  4  6  1  1  3  7  1  6  8  3  2  3  2  2  2  5  2  2  2  1  1  2  4 14
## [3481]  3  1  1  0  3  2  4  1  0  2  5  3  2  6  1  1  1  2  2  2  2  2  1  4
## [3505]  2  2  2  1  4  2  3  1  0  3  2  0  1  5  0  3 10  2  2  5  2  3  2  1
## [3529]  2  6  2  3  2  2  2  1  4  3  5  1  3  1  1  1  1  3  2  3  4  3  3  2
## [3553]  2  2  2  1  0  3  2  1  2  1  3  1  4  1  2  1  0  4  6  2  3  2  1  2
## [3577]  4  3  2  2  0  4  3  1  1  1  4  2  1  2  1  8  2  5  0  1  1  2  3  3
## [3601]  0  4  6  2  0  2  2  1  3  1  1  5  4  3  5  2  3  1  4  2  2  3  1  3
## [3625]  0  2  1  3  5  2  1  4  3  1  1  1  1  1  2  5  2  2  4  0  2  1  3  1
## [3649]  4  2  3  1  2  1  2  8  3  1  2  2  2  1  2  2  3  3  6  0  4  1  2  3
## [3673]  3  1  1  4  2  1  1  1  2  5  2  1  5  3  3  1  2  1  4  7  6  3  1  1
## [3697]  3  5  2  4  1  0  3  3  3 10  2  4  3  2  5  2  2  1  5  2  5  2  2  1
## [3721]  2  6  2  1  1  0  4  2  0  1  1  0  3  2  1  3  1  1  2  2  2  6  3  4
## [3745]  3  4  2  4  1  0  3  1  5  2  1  5  0  3  1  2  0  2  7  2  2  0  2  3
## [3769]  2  5  3 12  3  5  5  3  2  4  3 12  1  0  1  5  3  2  3  2  2  1 18  1
## [3793]  1  3  4  3  8  2  2  4  0  2  1  2  1  3  3  2  5  2  2  3  4  3  5  5
## [3817]  6  2  8  3  4  4  1  8  6  3  7  4  3  2  4  0  4  2  2  1  3  2  5  2
## [3841]  3  2  6  6  1  1  3  4  4  3  1  2  1  2  2  6  1  0  3  4  1  4  3  2
## [3865]  3  0  2  8  1  3  2  4  1  1  0  0  5  0  1  6  2  2  2  5  1  0  2  3
## [3889]  1  1  1  1  1  1  2  1  2  1  3  1  1  2  2  4  4  3  2  9  2  3  4  2
## [3913]  6  3  3  3  0  2  3  4  3  2  2  1  2  1  0  2  2  2  8  1  1  4  2  3
## [3937]  2  1  2  2  1  2  1  1  2  4  1  2  1  5  0  0  2  2  2  1  0  2  1  3
## [3961]  3  1  3  4  1  2  0  1  2  2  1  3  6  1  2  1  1  4  2  4  3  1  1  2
## [3985]  6  4  2  2  1  3  2  1  0  2 22  5  2  8  1  1  2  3  1  2  0  3  2  3
## [4009]  2  0  2  4  5  2  0  3  4  0  1  1  6  2  2  6  1  1  1  6  3  1  4  1
## [4033]  1  3  1  6  1  1  2  1  4  2  2  5  0  5  1  4  1  1  2  3  2  3  6  2
## [4057]  3  2  1  2  1  2  2  3  2  1  2  4  1  4  1  3  4  8  0  3  1  1  3  1
## [4081]  1  2  1  6  0  2  1  2  0  2  0  1  1  4  1  3  1  1  2  2  3  1  3  4
## [4105]  0  2  3  3  2  2  3  4  3  5 14  2  2  5  2  3  1  1  4  3  2  4  8  2
## [4129]  3  2  2  2  2  2  2  2  3  3  3  1  2  1  1  3  4  0  1  1  4  3  2  5
## [4153]  1  6  4  1  3  4  2  4  0  2  2  3  1  2  1  2  2  5  4  5  2  5  3  6
## [4177]  2  5  0  2 10  6  8  1  2  3  2  1  1  4  2  2  1  7 10  2  4  1  2 12
## [4201]  2  8  4  3  4  5  6  3  2  2  3  2  1  3  2  2  2  2  2  1  2  1  1  1
## [4225]  3  3  3  1  1  3  3  1  1  3  4  1  0  8  2  2  2  3  3  1  2  2  2  7
## [4249] 10  1  6  3  4  3  3  0 15  1  1  1  2  2  4  4  4  5  2  1  0  2  6  0
## [4273]  2  3  3  1  1  1  4  3  8  1  3  0  2  2 13  3  1  2  2  2  6  5  5  1
## [4297]  3  2  2  3  1  1  2  2  4  0  3 12 12  3  1  4  3  0  0  0  2  2  2  2
## [4321]  2  2  1  2  2  2  3  2  1  1  4  1 10  2  3  4  2  6  2  1  1  3  4  3
## [4345]  2  2  4  1  0  2  0  3  2  1  3  1  1  3  2  3  8  1  1  4  4  1  1  3
## [4369]  2  1  3  3  3  4  1  8  4  2 10  2  4  4  1  1  5  4  2  0  3  4  3  1
## [4393]  7  3  2  3  1  1  3  3  4  1  6 10  0  1  4  3  3  2  3  4 10  2 24  4
## [4417]  5  7  6  2  3  4 10  8  2  1  4  3  2  2  4  4  4  2  1  4  0  2  1  1
## [4441]  4  2  1  4  2  2  6  2  1  3  4  2  2  1  2  4  0  1  0  2  1  5  6  2
## [4465]  2  2  2  1  2  0  2  1  1  1  3  2  3  2  1  2  2  1  4  1 14  1  0  3
## [4489]  2  2  2  3  4  2  2  1  3  4  2  6  2  2  3  4  1  2  0  1  3  3  0  1
## [4513]  2  1  4  2  1  2  1 12  2  4  4  2  0  2  3  2  2  2  2  1  2  1  3  3
## [4537]  4  1  1  2  1  0  4  1  1  1  2  4  1  5  1  2  0  2  4  2  1  2  2  1
## [4561]  0  1  2  1  1  3  2  2  3  4  3  2  5  1  3  3  3 12  2  3  5  3  3  2
## [4585]  1  3  2  3  2  1  3  1  1  2  3  2  2  1  2  3  3  3  8  1  2  5  4  1
## [4609]  3  5  1  3  2  3  2  8  3  2  3  1  3  4  1  2  3  5  0  3  2  5  2  1
## [4633]  4  0  5  1  4  3  3  2  3  1  2  3  1  3 12  3  3  1  4  2  4  1  3  2
## [4657]  2  1  3  1  1  1  2  9  4  4  2  1  0  1  3  1  4  2  4  4  1  0  2  2
## [4681]  3  2  2  1  2  1  1  4  1  5  1  3  1  1  4  3  1  2  3  3  1  4  3  1
## [4705]  3  2  3  4  1  2  2  1  1  3  1  0  4  3  2  1  2  3  1  6  5  2  2  0
## [4729]  6  2  2  6  1  4  3  2  3  6  4  4  3  2  4  2  5  2  2  3  2  4  1  2
## [4753]  6  1  5  3  1  2  3  3  4  4  4  2  3  0  3  6  4  6  2  2  2  4  3  2
## [4777]  2  2  2  1  4  2  4  2  5  2  4  6  1  2  3  2  2  1  3  1  4  1  3  1
## [4801]  5  1  1  2  6  1  1  1  6  2  1  1  1  0  1  1  3  2  3  2  4  3  2  1
## [4825]  4  1  2  2  3  0  2  2  1  2  5  3  2  1  6  0  2  2  1  3 10  8  2  3
## [4849]  2  2  6  2  4  0  2  2  2  1  2  1  0  2  2  5  2  3  2  3  4  2  5  1
## [4873]  5  4  2  1  5  3  6  2  1  1  0  2  6  5  1  2  4  4  5  4  4  1  1  5
## [4897]  2  2  3  2  0  6  2  4  1  1 16  4  3  2  4  4  2  4  6  1  4  1  4  2
## [4921]  2  2  3  1  2  2  3  3  3  2  2  5  1  1  3  2  2  3  4  1  2  6  1  3
## [4945]  2  3  3  4  8  2  2  1  1  1  2  3  4  3  4  3  3  6  1  4  0  5  8  1
## [4969]  2  1  1  3  1  1  1  6  1  5  3  1  1  5  2  4  4  0  4  1  1  2  3  3
## [4993]  3  2  3  8  8  6  5  3  1  3  0 10  2  1  3  3  2  3  3  3  1  1  5  4
## [5017]  2  3  2  2  3  5  1  1  1  3  1  8  1  3  4  3  1  3  2  3  0  3  4  2
## [5041]  2  1  3  1  4  2  0  3  6  4  2  5  3  3  6  1  0  1  2  6  1  2  1  3
## [5065]  1  4  1  1  2  4  3  2  6  2  5  3  2  3  4 10  1  1  1  3  4  3  4  3
## [5089]  2  1  0  2  0  0  2  1  2  1  3  4  4  2  4  5  3  5  4  1  0  2  4  3
## [5113]  3  3  0  3  1  3  3  3  2  7  4  4  1  5  2  2  2  3  1  1  5  2  3  0
## [5137]  1  1  2  2  5  1  2  4  4  2  8  5  5  2  4  2  3 24  2  3  2  3  1  3
## [5161]  4  6  1  3  2  0  2  0  0  1  2  0
data2 <- gss_cat2$tvhours[gss_cat2$marital == "Once_Married"]
data2
##    [1]  2  1  1  1  3  4  7  3  2  2  4  3 12  4  8  4  2  7  1  8  2  0  3  1
##   [25]  1  3  3  1  3  2  2  4  3  0  5 10  0  3  4  2  1  4  4  2 10  1  2  1
##   [49]  4  8  1  1  4  0  3  1  1  3  8  5  4  3  6  6  3  8  3  3  1  1  8  1
##   [73] 12  1  2  3  1 12  1  2  6  4  3 11  2  8  2  4  6  1  2  4 12  1  0  5
##   [97]  3  3  2  2  8  8  2  0  2  3  1  2  4  1  4  3  4  3  1  5  2  3  2  2
##  [121]  3  2  3  6  1  1  2  2  3  5  1  1  4  3  0  0  8  1  5  3 10  3  5  3
##  [145]  8  2  1  2  7  4  2  3  3  3  4  2  6  2  7  3  4  4  3  4  2 12 12  2
##  [169]  6  1  2  2  1  2  0  1  3  1  0  2  4  4  3  2  2  2 15  0  3  2  6  2
##  [193]  0  0  4  2  3  2  2  2  4  8  3 12  2  2  3  8  2  3  1 10  3  4  0  1
##  [217]  3  2  1  3  2  4  1  2  2  2  3  3  4  3  7  2  8  1  4  4  3  6  0  2
##  [241]  2  1  2  2  2  2  2  3  4  3  2  2  2  4  3  3 10  3 10  1 24  4  2 10
##  [265]  1  3  4  4  4  2  0  5  2  1  4  1  2  5  1  0  6  4 10  1  2  3  3  1
##  [289]  3  1  1  1  2  1  4  1  1  2  5  8  8  0  2  2  4  2  4  2  2 12  2  6
##  [313]  3  5  1  1  4  4  2  3  5  4  2  4  1  1  5  1  1  6  4  4  2  3  4  1
##  [337]  2  1  0  2  3  1  2  2  3  0  6  5  1  3  5  2  5  5  1  2  2  2  3  1
##  [361]  0  4  7  4  3  2  2  2  2  0  2  2  3  3  3  2  2  8  2  6  3  2 12  5
##  [385]  1  3 15  8  3  1  1  1  2  2  3  2  3  3  1  1  4  1  5  2  1  0  5  1
##  [409]  3  2  5  1  0  4  0  7  6  0  2  4  4  1  5  0  0  2  2  3  5  4  4  3
##  [433]  1  1  2  4  8  2  1  1  4  4 12  1  1  0  2  2  5  5  2  4  4  3  4 10
##  [457]  6  5  7  0  2  3  4  2  0  2  2  2  2  1  8  2  3  3  8  3  3  1  2  6
##  [481]  4  3  1  2  3  4  3  5  1  2  2 12  2  4  6  8  3  4  3  2  1  5  2  4
##  [505]  0  0  2  3  4  5  3  2  8  2  2  3  4  8  3  2  8  2  4  2  1  2  2  5
##  [529]  1  0  1  1  0  2  2  2  2  2  1  4  2  1  1  4  6  5  1  2 10  1  5  8
##  [553]  8  6  1  2  4  5  4  4  4  4  2  1  2  1  4  6  2  7  1  4  1  1  4  4
##  [577]  3  2  4  2  2  2  1  1  1  4  1  3  4  2  2  5  3  2 12  2  5  3  5  6
##  [601]  5  2  4  2  5  3  4  3  2  0  5  3  4  3  2  4  2  2  1  5  5  4  4  1
##  [625]  2  5  5  3  5  2  1  2  3  2  1  6  8  1  1  2  4  0  5  8  2  5  2  6
##  [649]  2  5  5  2  2  5  3  3  2  4  0  3  8  1  4  2  3  2  5  3  5  4  2  3
##  [673]  2  4  1  4  2  8  2  2  3  4  6  4  6  5  6  3 16  4  5  3  1  1  1  2
##  [697]  4  2  4  8  1  0  2  3  1  1  2  0  1  8  1  3  5  0  2  0  2  8  9  2
##  [721]  4 22  2  3  2  2  3  4  5  5  3  3  6  1  6  5  4  5  3  1  2  4  3  4
##  [745]  2  2  2  5 10  2  2  3  2  3  1  4  2 12  0  6  1  2  8  1  2  3  2  2
##  [769]  2  1  1  2 10  2  3  2  1  1  2  2  3  6  3  2  0  1  3  3  0  4  2  4
##  [793]  3 20  3  1  6  2  2  2  1  4  4  1  2  2  3  8  2  5  2  6  1  2  4  8
##  [817] 12  4  3  4  3  3  2  6  2  8  1  2  3  1  3  6  2  3  3  2  1  3  4  2
##  [841] 12  2  3  1  4  4  5  1  2  7  6  1  1  2  1  1  8  3  0  4  4  2  8  1
##  [865]  1  8  2  1  2  1  3  3  5  7  1  3  3  3  2  1  2  1  4  2  3  3  4  1
##  [889]  6  1  1  4 10  1  3  3  3  2  1  5  1  0  5  3  1  1  2  4  1 16  1  2
##  [913]  2  8 10  1  8  1  7  2 10 14  4  1  3  3  1  2  1  4  4  4  3  1  2  4
##  [937]  0  5  4  1  0  3  0  4  4  3  3  4  4  1  1  1  8  2  1  3  2  2  2  2
##  [961]  4  4  0  3  4  6  5  4  4  3  2  1  1  4  3  2  6  2  2  2  1  5  6  7
##  [985]  3  1  4  6  9  4  1  2  0  2  2  2  4  2  2  4  2  0  2  3  8  4  5  0
## [1009]  0  3  1  4  9  4  0  4  4 12 12  2  6 13  4  1  4  0  1  2  2  2  6  6
## [1033]  4  5  2  1  2  1  4  5  5  9  1  5  1  3  5  1  1  1  4  4  3  1  2  1
## [1057]  5  1  0  5  6  4  4  6  1  4  2  6  5  2  3  1  6  4  2  1  2  5  5  2
## [1081]  2  6  4  1  5  1  1  5  6  2  4  0  3  2  4  6  6  1  2  2  3  9  2  6
## [1105]  3  4  6  3  3  5  2  5  2  4  5  1  1  2  7  4  4  2  3  2  3  2  3  4
## [1129]  3  4  2  2  2  5  0  2  1  4  4  1  2  2  3 10  3  5  6  6  1  2  3 10
## [1153] 12  5  8  2  2  5  2  1  2  5  2  1  2  1  3  2  1  0  6  2  3  1  2  5
## [1177]  2 12  1  3  3  1  4  1  5  1  2  3  2  3  4  1  1  2  2  2  5  2  1  4
## [1201]  5  3  1  2  2  1  2  5  3  2  2  6  2  9  2  6  2  6  5  3  4  2  6  3
## [1225]  6  7  2  2  8  1  5  6  6  2  1  1  2 12 14  1  3  3  4  6  1 10  3  3
## [1249]  5  2  8  0  4  2  3  5  3  6  0  4  2  0  5  2  2  0  3  3  1  5  1  1
## [1273]  2  5  2  3  3  4  2  1  4  2  2  2  1  4  2  2  1  0  3  1  2  2  2  3
## [1297]  2  0  3  3  2  4  4  5  3  7  4  2  4  3  6 10  5  8  3  4  8  5  3  2
## [1321]  6  2  6  3  3  3  2  3  5  5  3  3  2  3  5  3  1  3  1  3  3  2  3  4
## [1345]  6  3  2  5  3  1  3  1  4  2  4  3  3  3  3  3  1  5  2  2  3  2  5  5
## [1369]  5  2  3  3  3  3  7  3  3  7  2  3  0  2  4  6  5  3  2  2  8  0  1  2
## [1393]  5  2 13  2  1  3  1  2  3  2  6  4  5  1  5  2  2  2  1  4  2  3  2  1
## [1417]  0  1  5  2  4  3  2  2  3  2  2  2  4  4  4  5  3  3  2  3  0  2  1  1
## [1441]  4  3  2  4  1  2  4  1  7  4  0  6  8  2  8  2  4  3  0  1  6  1  1  6
## [1465]  3  1  2  4  5  5  2 12 24 18  3  4  6  3  1  1  3  4  5  1  4  3  4  2
## [1489]  0  0  3  4  1  2  2  2  1  3  4  1 14  3  6  4  3  1 12 12  2  2  6 10
## [1513]  3 12  1  4  6  5  2 15  1  2  8  4 14 10  7  6  6  2  2  2  2  2  2  4
## [1537]  3  3  1  3  1  0  8  6  2  4  3  2  1  3  6  8  5  1  4  2  2  1  2  2
## [1561]  3  5  3  0  3  2  7  4  4  5  2  6  3  1  2  2  2  6  3  5  3  4  1  4
## [1585]  6  8  4  2  3  2  2  4  3  4  4  1  3  4  1  1  1  1  2  1  2  5  3  6
## [1609]  1  5  8  6  0  2  6  2  4  3  4  6  2 10  3  1  4  1 10  1  3  3  1  4
## [1633]  2  8  2  5  4  0  4  6  4  6  2  0  4 18  0  4  3  2  3  2  1  4  3  1
## [1657]  2 24  1  2 10  7  1  2  6  1  1 10  3  1  3  4  5  8  3  3  2  0  6  8
## [1681]  2  0  1  3  4  3  4  2  2  2  4  3  1  1  1  4  2  2  3  3  3  3  6  4
## [1705]  2  1 16  6  3  8  5  3  2  0  2  0  4  1  1  5  3  3  1  4  2  8  4  4
## [1729]  4  2  2  3  2  0  8  4  3  2  6  1  2  6 16  8  0  4  9  5  3 14  2  4
## [1753]  4  0  4  6  4  1  2  3  3  2  0  3  2  3  1  2  5 12  1  3  3  2  1  4
## [1777]  3 10  2  2  1  8  2  0  2  2  5  1  0  0  1  1 12  8  6  1  2  2  4  2
## [1801]  1  2  3  2  0  6  3  4  1  2  2  2  3  2  4  8  3  1  0  4  5  3  5  2
## [1825]  1  3  0  2  8  1  4  2  0  3  4  9  6  6  6  1  2  8  6  0 15  4  1  5
## [1849]  5  6  3 24  4  5  3  1  1  1  6  3  3  3  3  3  8  8  5  1  8 10  5  4
## [1873]  6  1  1  4  2  2  3  3  5  2  6  2  5 12  1  2  4  4  2 10  4  2  0  1
## [1897]  2  1  3  0  2  6  1  5  4  4 10  2  2  4  4  7  2  6  2  1  3  5  3  1
## [1921]  2  5  5  0  0  3  3  5  1  4  5  4  2  4  1  6  3  2  0  1  2  4  2  0
## [1945]  3  1  4  4  4  7  1  2  3  2  2  2  2  2  1  3  2  6 20  2  6  5  9  3
## [1969]  3  6  4  6  1  2  4  1  2  0  4  2  2  2 18 24  2  4  7  2  4  1  0  3
## [1993]  3  3 24  2  3  2  5  4  5  8  3  2  1  4  2  6  1  2  4  2  3  4  0  2
## [2017]  3  0  6  1  4  1  3  2  1  6  3  5  0  3 10  3 14  5  4  8  2  1  0  1
## [2041]  3  1  6 12  1  2  1  6 14  5  0  1  4  1  5  2  0  1  8  2  3  2  3  5
## [2065]  3  3  2  7  2  4  3  2  2  2  5  6  1  3  0  5 12  0  5  2  2  2  0  2
## [2089]  3  3  2  8  2  2  5  2  2  2  1  6  5  2  3  3  3  3  7  1  2  2  2  8
## [2113]  2  1  1  3  1  1  1  3  8  5  5  5  5  1  1  1  3  2  4  5  6  4  2  5
## [2137]  4  2  6  8  2  4  1  1  0  5  5  1  3  3  0  5  4  5  5  1  3  4  8  1
## [2161]  2  1  4  1  2  3  2  1  1  7  6  2  2 14  4  1  1  3  3  2  4  2  2  2
## [2185]  0  1  4  1  5  2  2  5  2  3  4  2  1  2 12  6  2  1  5  1  1  3  3  2
## [2209]  1  2  5  2  4  1  3  6 16  2  2  3  5  3  3  1  4  0  4  1  2  5  6  3
## [2233]  1  2  2  7  0  4  4  2  4  6  4  4  6  3  4  1  3  4  4  3  1  4  4  2
## [2257]  1  1  0 12  3  3  3  8  0  3  3  3  5  4  4  0  2  4  1  2  2  5  4  3
## [2281]  0  1 24  1  6  6  4  3  2  3  3  6  2  1  8  4  5 12  0  2  3  5  6  5
## [2305]  3  8  9  2  5  2  4  1  0  2  3  1  2  2  6  4  4  1  0 11  2  3  4  6
## [2329]  2  3  4  2  4  5  2  2  2 24  5  7  7  1  2  1 10  1  2  2  4  3  3  4
## [2353]  4  2  3  3  3  0  2  1  4  2  2  3  5  3  2  1  2  2  4  3  3  0 20  0
## [2377]  0  4  2  4  1  3  1  2 12  2  4  2 15  1  4  4  3  4  4  3  3  2 12  5
## [2401]  1  3  1  2  3  4  7  4  2  3  0  2  3  4  0  4  2  6  3  4  1  2  4  6
## [2425]  8  2  7  2  3  2  2  4  4  8  6 10  4  1  1  2  6  3  1  7  8  8  3  8
## [2449]  3  0  5  6  3  1  4  2  2  3  5  3  0  1  6  6  1  2  2  2  3  3  8  0
## [2473]  8  2  3  4  4  8  4  2  4  2  3  1  3  3  5  2  2  2  3  4  1  4  2  1
## [2497]  1  7  2  6  7  1  0  1  1  0  3  5  2  1  0 12  1  5  2  2  2  1  0 14
## [2521]  3  3 10  2  5  6  6  1  2  4 10  3  4  3  8  1  3  4  0  2  3  8  2  2
## [2545]  4  2  3  2  3  3  3  2  3 10  1  3  0  4  2  2  1  5  1  1  5  0  3  2
## [2569]  2  1  4  0  3  4  2  4  5  4  2  3  3  1  2  1  3  0  0  0  1  3  2  5
## [2593] 24  3  5  1  2  4  2  4  1  2  2  8  4  3  3  6  2  2  7  4  6  3  3  4
## [2617]  8  4  2  6 10  1  0  1  2  5  4  6 12  6  4  2  6  2  1  4  2  1  8 24
## [2641]  8  1  3  5  3  6  6  3  2  2  5  0  5  1  1  5  3  3  2  3  5  2  2  1
## [2665]  4  3  4  7  4  2  4  4  2  2  4  4  6  0  7  3  4  2  6  2  4  4  1  2
## [2689]  3  0  3  1  3  3  4  4  3  2  1  0  2  3  0  3  5  1  2 10  3  2  2  4
## [2713]  3  2  1  0  4  3  2  3  2  1  1  2 10  8  5  5  4  4  1  3  4  0  5  6
## [2737]  4  1  2  6  4  2  0  2  3  5 20  1  1  2  3  1  3  5  4  1  3  5  5  3
## [2761]  4  0  3  0  0  1  3  5  2  3  1  2  1  4  4  6  7  4  6  2  1  5  2  6
## [2785]  4  2  1  6  6  6 12  2  3  2  2  1  2  2  3  2  8  2  2  1  8  5  2  5
## [2809]  1  2  3  1  5 14  4  4 10  2  4  1  5  1  6  0  2  4  3  4  0  6  1  2
## [2833]  1  5  3  3  0  1  4  2  0  8  4  2  1  3  0  4  3  3  0  2  3  5  2  3
## [2857]  6 12  1  4  2  3  0  1  2  2  2  3  8  6  2  2  2  3  6  2  1  1 12  1
## [2881]  5  4  4  1  0  1  5  4  6  1  5  5  0  2  5  4  2  3  8  2  2  3  7  1
## [2905]  3  2  1  0  5  4  0  3  3  2  8  3  4  2  3  7  4  1  2  4  2  5 24  2
## [2929]  1  5  1  6  4  2  6  2  1  4  5  2  0  2  2  8  5  3  5  2  1  4  3  2
## [2953]  4  2  3  2  4  2  1  3  2  4  6  3  1  5  4  2  0  6  2  2  4  3  1  4
## [2977] 10  5  4  6  6  3  3  2  2  4  4  5 12  0  1  2  1  1  4  5  0  4  2  3
## [3001]  3  5  4  2  1  2  3  3  2  2  3  2  2  4  4  2 24  4  4  3  2  4  2  0
## [3025]  3  2  2  6  2  4  3  0  3  3  2  3  2  0  2  4  7  2  2  5  2  2  2  1
## [3049]  3  2  8  8  3  3  2  2  1  3  2  4  5  3  5  2  2  4  3  3  0  1  4  3
## [3073]  1  8 24  4  4  4  5  4  2  6  6  4  3  2  3  2  2  2  0  2  2  3  8  2
## [3097]  4  2  8  0  3  2  3  2  3  2  6  4  4  0  0  2  0  0  6  1  3  2  2  0
## [3121]  1  1  1  6  6  0  1  1  0  4  4  3  2  5  2  4  0  1  2  5  1  5  6  3
## [3145]  2  3  5  6  2  4  3  1  2  0  2  2  3  4  3  4  2
t.test(data1, data2)
## 
##  Welch Two Sample t-test
## 
## data:  data1 and data2
## t = -12.613, df = 5171.8, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.8714187 -0.6369681
## sample estimates:
## mean of x mean of y 
##  2.650425  3.404619

Answer: Yes, marital status does have effect on tvhours since the p-value is extreme low.