# R Version Disclosure
## This data was analyzed with R Version 2023.03.0+386 (2023.03.0+386)
#Data File
PP <- read.csv("protein.csv", header = T, na.strings=c(".", "", " ", "NA", "-99"))
#Sample Size: Number of participants (rows)
nrow(PP)
## [1] 1005
#"How old are you?"
## Age Range, Descriptives, and Standard Deviation
range(PP$Dem_Age, na.rm = T)
## [1] 13 83
describe(PP$Dem_Age, na.rm = T)
## PP$Dem_Age
## n missing distinct Info Mean Gmd .05 .10
## 987 18 66 1 42.08 17.25 21 23
## .25 .50 .75 .90 .95
## 30 40 53 65 70
##
## lowest : 13 18 19 20 21, highest: 78 79 81 82 83
sd(PP$Dem_Age, na.rm = T)
## [1] 15.1872
## Ethnicity: Which racial or ethnic group best describes you? (1 = Asian, Asian-American, 2 = Black, Black American, 3 = Hispanic/Latino-American, 4 = Native American, 5 = Native Pacific Islander, 6 = White/Caucasian-American, 7 = Other)
table(PP$Dem_Ethnicity)
##
## 1 2 3 4 5 6 7
## 44 178 66 11 5 680 19
PP$Ethnicity <- NA
PP$Ethnicity[PP$Dem_Ethnicity == 1] <- 'Asian'
PP$Ethnicity[PP$Dem_Ethnicity == 2] <- 'Black'
PP$Ethnicity[PP$Dem_Ethnicity == 3] <- 'Hispanic'
PP$Ethnicity[PP$Dem_Ethnicity == 4] <- 'Nat Amer'
PP$Ethnicity[PP$Dem_Ethnicity == 5] <- 'Nat Pac'
PP$Ethnicity[PP$Dem_Ethnicity == 6] <- 'White'
PP$Ethnicity[PP$Dem_Ethnicity == 7] <- 'Other'
describe(PP$Dem_Ethnicity)
## PP$Dem_Ethnicity
## n missing distinct Info Mean Gmd
## 1003 2 7 0.682 4.865 1.718
##
## lowest : 1 2 3 4 5, highest: 3 4 5 6 7
##
## Value 1 2 3 4 5 6 7
## Frequency 44 178 66 11 5 680 19
## Proportion 0.044 0.177 0.066 0.011 0.005 0.678 0.019
# Education: Please indicate the highest level of education you have completed (1 = Elementary/Grammar School, 2 = Middle School, 3 = High School or Equivalent, 4 = Vocational/Technical School (2 years), 5 = Some College, 6 = College or University (4 years), 7 = Master's Degree (MS, MA, MBA, etc.), 8 = Doctoral Degree (PhD), 9 = Professional Degree (MD, JD, etc.).
PP$EdNum <- as.numeric(as.character(PP$Dem_Edu))
PP$EDU <- factor(PP$EdNum, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10),
labels = c("Elementary/Grammar School", "Middle School", "High School or Equivalent", "Vocational/Technical School (2 years)", "Some College", "College or University (4 years)", "Master's Degree (MS, MA, MBA, etc.)", "Doctoral Degree (PhD)", "Doctoral Degree (PhD)", "Other"))
table(PP$EDU)
##
## Elementary/Grammar School Middle School
## 3 13
## High School or Equivalent Vocational/Technical School (2 years)
## 310 82
## Some College College or University (4 years)
## 296 191
## Master's Degree (MS, MA, MBA, etc.) Doctoral Degree (PhD)
## 80 23
## Other
## 5
length(PP$EdNum)
## [1] 1005
# Frequencies: Sex (1 = female, 2 = male, 3 = other (self-describe))
PP$Dem_Gender <- factor(PP$Dem_Gen, levels = c(1, 2, 3),
labels = c("Female", "Male", "Other"))
table(PP$Dem_Gender)
##
## Female Male Other
## 614 384 5
PP$Dem_Gender <- as.numeric(as.character(PP$Dem_Gen))
describe(PP$Dem_Gender)
## PP$Dem_Gender
## n missing distinct Info Mean Gmd
## 1003 2 3 0.714 1.393 0.4852
##
## Value 1 2 3
## Frequency 614 384 5
## Proportion 0.612 0.383 0.005
# Please indicate your current household income in U.S. dollars. (Prefer Not to Say"; "Under $10,000"; "$10,000 - $19,999"; "$20,000 - $29,999"; "$30,000 - $39,999"; "$40,000 - $49,999"; "$50,000 - $74,999"; "$75,000 - $99,999"; "$100,000 - $149,999"; "$150,000 or More)
PP$SESNum <- as.numeric(as.character(PP$Dem_SES))
PP$SES <- factor(PP$SESNum, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10),
labels = c("Prefer Not to Say", "Under $10,000", "$10,000 - $19,999", "$20,000 - $29,999", "$30,000 - $39,999", "$40,000 - $49,999", "$50,000 - $74,999", "$75,000 - $99,999", "$100,000 - $149,999", "$150,000 or More"))
table(PP$SES)
##
## Prefer Not to Say Under $10,000 $10,000 - $19,999 $20,000 - $29,999
## 67 115 112 132
## $30,000 - $39,999 $40,000 - $49,999 $50,000 - $74,999 $75,000 - $99,999
## 135 101 156 83
## $100,000 - $149,999 $150,000 or More
## 65 37
# Type of Community/Living Environment: Which of the following best describes the area you live in? (1 = Urban, 2 = Suburban, 3 = Rural)
PP$LivNum <- as.numeric(as.character(PP$Dem_Living))
PP$LIVING <- factor(PP$LivNum, levels = c(1, 2, 3),
labels = c("Urban", "Suburban", "Rural"))
table(PP$LIVING)
##
## Urban Suburban Rural
## 316 425 262
# Willingness to support was measured with 4 items on a 0-100 scale ( 0 = 'Strongly disagree' to 100 = 'Strongly agree'). Support score calculated by averaging these items.
### Item 1: I support this.
### Item 2: I would purchase this product.
### Item 3: Society should support this.
### Item 4: Society should purchase this product.
# Behavioral Intent (SUPPORT) Scales and Scores
### Rename Variables
PP$BehavInt1_GFFB <- PP$GFFB_BehavIntent_29
PP$BehavInt2_GFFB <- PP$GFFB_BehavIntent_28
PP$BehavInt3_GFFB <- PP$GFFB_BehavIntent_27
PP$BehavInt4_GFFB <- PP$GFFB_BehavIntent_26
#Histograms
hist(PP$BehavInt1_GFFB, main = 'I support this.')
hist(PP$BehavInt2_GFFB, main = 'I would purchase this product.')
hist(PP$BehavInt3_GFFB, main = 'Society should support this.')
hist(PP$BehavInt4_GFFB, main = 'Society should purchase this product.')
#Support Score
PP$Behav_Score_GFFB <- rowMeans(PP [, c("BehavInt1_GFFB", "BehavInt2_GFFB", "BehavInt3_GFFB", "BehavInt4_GFFB")], na.rm=TRUE)
PP$Behav_Scale_GFFB <- data.frame(PP$BehavInt1_GFFB, PP$BehavInt2_GFFB, PP$BehavInt3_GFFB, PP$BehavInt4_GFFB)
describe(PP$Behav_Score_GFFB)
## PP$Behav_Score_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 498 507 242 0.999 57.91 33.2 0.425 11.425
## .25 .50 .75 .90 .95
## 41.500 59.250 80.750 99.250 100.000
##
## lowest : 0.00 0.50 0.75 1.25 1.75, highest: 99.00 99.25 99.50 99.75 100.00
sd(PP$Behav_Score_GFFB, na.rm= TRUE)
## [1] 29.21738
#Correlation
PP$Support.GFFB <-cbind (PP$BehavInt1_GFFB, PP$BehavInt2_GFFB, PP$BehavInt3_GFFB, PP$BehavInt4_GFFB)
cor(PP$Support.GFFB, use = "pairwise.complete.obs")
## [,1] [,2] [,3] [,4]
## [1,] 1.0000000 0.8314723 0.8708751 0.8670036
## [2,] 0.8314723 1.0000000 0.7982267 0.7824067
## [3,] 0.8708751 0.7982267 1.0000000 0.8803280
## [4,] 0.8670036 0.7824067 0.8803280 1.0000000
##GFPRB
PP$BehavInt1_GFPRB <- PP$PBPB_BehavIntent_29
PP$BehavInt2_GFPRB <- PP$PBPB_BehavIntent_28
PP$BehavInt3_GFPRB <- PP$PBPB_BehavIntent_27
PP$BehavInt4_GFPRB <- PP$PBPB_BehavIntent_26
# Histograms
hist(PP$BehavInt1_GFPRB, main = 'I support this.')
hist(PP$BehavInt2_GFPRB, main = 'I would purchase this product.')
hist(PP$BehavInt3_GFPRB, main = 'Society should support this.')
hist(PP$BehavInt4_GFPRB, main = 'Society should purchase this product.')
PP$Behav_Score_GFPRB <- rowMeans(PP [, c("BehavInt1_GFPRB", "BehavInt2_GFPRB", "BehavInt3_GFPRB", "BehavInt4_GFPRB")], na.rm=TRUE)
PP$Behav_Scale_GFPRB <- data.frame(PP$BehavInt1_GFPRB, PP$BehavInt2_GFPRB, PP$BehavInt3_GFPRB, PP$BehavInt4_GFPRB)
describe(PP$Behav_Score_GFPRB)
## PP$Behav_Score_GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 522 483 252 0.999 57.53 33.44 0.5125 9.8000
## .25 .50 .75 .90 .95
## 37.8750 60.0000 80.5000 97.1250 100.0000
##
## lowest : 0.00 0.25 0.50 0.75 1.00, highest: 98.50 98.75 99.25 99.75 100.00
sd(PP$Behav_Score_GFPRB, na.rm= TRUE)
## [1] 29.36235
#Correlation
PP$Support.GFPRB <-cbind (PP$BehavInt1_GFPRB, PP$BehavInt2_GFPRB, PP$BehavInt3_GFPRB, PP$BehavInt4_GFPRB)
cor(PP$Support.GFPRB, use = "pairwise.complete.obs")
## [,1] [,2] [,3] [,4]
## [1,] 1.0000000 0.8284063 0.8612284 0.8438345
## [2,] 0.8284063 1.0000000 0.7901925 0.8035970
## [3,] 0.8612284 0.7901925 1.0000000 0.8805271
## [4,] 0.8438345 0.8035970 0.8805271 1.0000000
##CBB
PP$BehavInt1_CBB <- PP$CBB_BehavIntent_29
PP$BehavInt2_CBB <- PP$CBB_BehavIntent_28
PP$BehavInt3_CBB <- PP$CBB_BehavIntent_27
PP$BehavInt4_CBB <- PP$CBB_BehavIntent_26
# Histograms
hist(PP$BehavInt1_CBB, main = 'I support this.')
hist(PP$BehavInt2_CBB, main = 'I would purchase this product.')
hist(PP$BehavInt3_CBB, main = 'Society should support this.')
hist(PP$BehavInt4_CBB, main = 'Society should purchase this product.')
# Scales
PP$Behav_Score_CBB <- rowMeans(PP [, c("BehavInt1_CBB", "BehavInt2_CBB", "BehavInt3_CBB", "BehavInt4_CBB")], na.rm=TRUE)
PP$Behav_Scale_CBB <- data.frame(PP$BehavInt1_CBB, PP$BehavInt2_CBB, PP$BehavInt3_CBB, PP$BehavInt4_CBB)
describe(PP$Behav_Score_CBB)
## PP$Behav_Score_CBB
## n missing distinct Info Mean Gmd .05 .10
## 516 489 249 0.999 49.36 36.5 0.00 0.25
## .25 .50 .75 .90 .95
## 21.44 52.50 74.81 94.25 100.00
##
## lowest : 0.00 0.25 0.50 0.75 1.00, highest: 99.00 99.25 99.50 99.75 100.00
sd(PP$Behav_Score_CBB, na.rm= TRUE)
## [1] 31.7638
#Correlation
PP$Support.CBB <-cbind (PP$BehavInt1_CBB, PP$BehavInt2_CBB, PP$BehavInt3_CBB, PP$BehavInt4_CBB)
cor(PP$Support.CBB, use = "pairwise.complete.obs")
## [,1] [,2] [,3] [,4]
## [1,] 1.0000000 0.8872947 0.8861464 0.8609682
## [2,] 0.8872947 1.0000000 0.8424466 0.8318791
## [3,] 0.8861464 0.8424466 1.0000000 0.8710896
## [4,] 0.8609682 0.8318791 0.8710896 1.0000000
##PBPB
PP$BehavInt1_PBPB <- PP$PBPB_BehavIntent_29
PP$BehavInt2_PBPB <- PP$PBPB_BehavIntent_28
PP$BehavInt3_PBPB <- PP$PBPB_BehavIntent_27
PP$BehavInt4_PBPB <- PP$PBPB_BehavIntent_26
# Histograms
hist(PP$BehavInt1_PBPB, main = 'I support this.')
hist(PP$BehavInt2_PBPB, main = 'I would purchase this product.')
hist(PP$BehavInt3_PBPB, main = 'Society should support this.')
hist(PP$BehavInt4_PBPB, main = 'Society should purchase this product.')
PP$Behav_Score_PBPB <- rowMeans(PP [, c("BehavInt1_PBPB", "BehavInt2_PBPB", "BehavInt3_PBPB", "BehavInt4_PBPB")], na.rm=TRUE)
PP$Behav_Scale_PBPB <- data.frame(PP$BehavInt1_PBPB, PP$BehavInt2_PBPB, PP$BehavInt3_PBPB, PP$BehavInt4_PBPB)
describe(PP$Behav_Score_PBPB)
## PP$Behav_Score_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 522 483 252 0.999 57.53 33.44 0.5125 9.8000
## .25 .50 .75 .90 .95
## 37.8750 60.0000 80.5000 97.1250 100.0000
##
## lowest : 0.00 0.25 0.50 0.75 1.00, highest: 98.50 98.75 99.25 99.75 100.00
sd(PP$Behav_Score_PBPB, na.rm= TRUE)
## [1] 29.36235
#Correlation
PP$Support.PBPB <-cbind (PP$BehavInt1_PBPB, PP$BehavInt2_PBPB, PP$BehavInt3_PBPB, PP$BehavInt4_PBPB)
cor(PP$Support.PBPB, use = "pairwise.complete.obs")
## [,1] [,2] [,3] [,4]
## [1,] 1.0000000 0.8284063 0.8612284 0.8438345
## [2,] 0.8284063 1.0000000 0.7901925 0.8035970
## [3,] 0.8612284 0.7901925 1.0000000 0.8805271
## [4,] 0.8438345 0.8035970 0.8805271 1.0000000
##PBFB
PP$BehavInt1_PBFB <- PP$PBFB_BehavIntent_29
PP$BehavInt2_PBFB <- PP$PBFB_BehavIntent_28
PP$BehavInt3_PBFB <- PP$PBFB_BehavIntent_27
PP$BehavInt4_PBFB <- PP$PBFB_BehavIntent_26
# Histograms
hist(PP$BehavInt1_PBFB, main = 'I support this.')
hist(PP$BehavInt2_PBFB, main = 'I would purchase this product.')
hist(PP$BehavInt3_PBFB, main = 'Society should support this.')
hist(PP$BehavInt4_PBFB, main = 'Society should purchase this product.')
PP$Behav_Score_PBFB <- rowMeans(PP [, c("BehavInt1_PBFB", "BehavInt2_PBFB", "BehavInt3_PBFB", "BehavInt4_PBFB")], na.rm=TRUE)
PP$Behav_Scale_PBFB <- data.frame(PP$BehavInt1_PBFB, PP$BehavInt2_PBFB, PP$BehavInt3_PBFB, PP$BehavInt4_PBFB)
describe(PP$Behav_Score_PBFB)
## PP$Behav_Score_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 479 526 257 1 52.69 35.61 0.00 1.95
## .25 .50 .75 .90 .95
## 29.88 54.25 77.62 93.65 99.75
##
## lowest : 0.00 0.25 0.50 0.75 1.00, highest: 98.25 99.00 99.25 99.75 100.00
sd(PP$Behav_Score_PBFB, na.rm= TRUE)
## [1] 31.0349
#Correlation
PP$Support.PBFB <-cbind (PP$BehavInt1_PBFB, PP$BehavInt2_PBFB, PP$BehavInt3_PBFB, PP$BehavInt4_PBFB)
cor(PP$Support.PBFB, use = "pairwise.complete.obs")
## [,1] [,2] [,3] [,4]
## [1,] 1.0000000 0.8170622 0.8522341 0.8256578
## [2,] 0.8170622 1.0000000 0.7768021 0.8080175
## [3,] 0.8522341 0.7768021 1.0000000 0.8944153
## [4,] 0.8256578 0.8080175 0.8944153 1.0000000
##VB
PP$BehavInt1_VB <- PP$VB_BehavIntent_29
PP$BehavInt2_VB <- PP$VB_BehavIntent_28
PP$BehavInt3_VB <- PP$VB_BehavIntent_27
PP$BehavInt4_VB <- PP$VB_BehavIntent_26
# Histograms
hist(PP$BehavInt1_VB, main = 'I support this.')
hist(PP$BehavInt2_VB, main = 'I would purchase this product.')
hist(PP$BehavInt3_VB, main = 'Society should support this.')
hist(PP$BehavInt4_VB, main = 'Society should purchase this product.')
PP$Behav_Score_VB <- rowMeans(PP [, c("BehavInt1_VB", "BehavInt2_VB", "BehavInt3_VB", "BehavInt4_VB")], na.rm=TRUE)
PP$Behav_Scale_VB <- data.frame(PP$BehavInt1_VB, PP$BehavInt2_VB, PP$BehavInt3_VB, PP$BehavInt4_VB)
describe(PP$Behav_Score_VB)
## PP$Behav_Score_VB
## n missing distinct Info Mean Gmd .05 .10
## 471 534 238 0.999 62.93 30.95 8.375 22.250
## .25 .50 .75 .90 .95
## 47.750 66.000 84.500 99.000 100.000
##
## lowest : 0.00 0.25 0.75 1.25 1.50, highest: 99.00 99.25 99.50 99.75 100.00
sd(PP$Behav_Score_VB, na.rm= TRUE)
## [1] 27.38456
#Correlation
PP$Support.PBFB <-cbind (PP$BehavInt1_PBFB, PP$BehavInt2_PBFB, PP$BehavInt3_PBFB, PP$BehavInt4_PBFB)
cor(PP$Support.PBFB, use = "pairwise.complete.obs")
## [,1] [,2] [,3] [,4]
## [1,] 1.0000000 0.8170622 0.8522341 0.8256578
## [2,] 0.8170622 1.0000000 0.7768021 0.8080175
## [3,] 0.8522341 0.7768021 1.0000000 0.8944153
## [4,] 0.8256578 0.8080175 0.8944153 1.0000000
# Naturalness perception was measured with 4 items on a 0-100 scale ( 0 = 'Strongly disagree' to 100 = 'Strongly agree'). Naturalness score calculated by averaging these items.
### Item 1: This is natural.
### Item 2: This involves humans altering naturally occurring processes.
### Item 3: This relies on science-based technology.
### Item 4: This is artificial.
# Defines variables in the naturalness scale and reverse codes items 2, 3, and 4.
PP$Nat_1_GFFB <- PP$GFFB_Naturalness_30
PP$Nat_2R_GFFB <- (100-PP$GFFB_Naturalness_31)
PP$Nat_3R_GFFB <- (100-PP$GFFB_Naturalness_35)
PP$Nat_4R_GFFB <- (100-PP$GFFB_Naturalness_36)
# Histograms
hist(PP$Nat_1_GFFB, main = 'This is natural.')
hist(PP$Nat_2R_GFFB, main = 'This involves humans altering naturally occurring processes.')
hist(PP$Nat_3R_GFFB, main = 'This relies on science-based technology.')
hist(PP$Nat_4R_GFFB, main = 'This is artificial.')
# Scales and Scores
PP$Naturalness.GFFB <- rowMeans(PP [, c( "Nat_1_GFFB" , "Nat_2R_GFFB", "Nat_3R_GFFB", "Nat_4R_GFFB")], na.rm=TRUE)
describe(PP$Naturalness.GFFB)
## PP$Naturalness.GFFB
## n missing distinct Info Mean Gmd .05 .10
## 499 506 219 1 49.53 23.65 21.38 25.20
## .25 .50 .75 .90 .95
## 34.75 48.00 62.12 79.30 93.35
##
## lowest : 0.00 0.25 1.00 6.25 7.00, highest: 98.25 98.50 99.25 99.50 100.00
sd(PP$Naturalness.GFFB, na.rm = TRUE)
## [1] 21.26861
PP$Naturalness_Scale_GFFB_Tot <- data.frame(PP$Nat_1_GFFB , PP$Nat_4R_GFFB, PP$Nat_2R_GFFB , PP$Nat_3R_GFFB)
describe(PP$Naturalness_Scale_GFFB_Tot)
## PP$Naturalness_Scale_GFFB_Tot
##
## 4 Variables 1005 Observations
## --------------------------------------------------------------------------------
## PP.Nat_1_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 497 508 94 0.998 58.65 34.6 0 13
## .25 .50 .75 .90 .95
## 35 61 84 100 100
##
## lowest : 0 1 4 5 6, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_4R_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 495 510 100 0.998 50.37 36.65 0 6
## .25 .50 .75 .90 .95
## 26 48 79 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_2R_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 496 509 96 0.998 42.95 35 0.0 0.0
## .25 .50 .75 .90 .95
## 18.0 39.0 66.0 92.5 100.0
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_3R_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 498 507 97 0.999 46.71 34.94 0.00 6.00
## .25 .50 .75 .90 .95
## 23.00 44.50 68.75 97.30 100.00
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
#Correlation
PP$Nat.GFFB <-cbind (PP$Nat_1_GFFB , PP$Nat_2R_GFFB , PP$Nat_3R_GFFB, PP$Nat_4R_GFFB)
cor(PP$Nat.GFFB, use = "pairwise.complete.obs")
## [,1] [,2] [,3] [,4]
## [1,] 1.0000000 0.1821792 -0.1493404 0.1770718
## [2,] 0.1821792 1.0000000 0.4422381 0.6077149
## [3,] -0.1493404 0.4422381 1.0000000 0.4976025
## [4,] 0.1770718 0.6077149 0.4976025 1.0000000
# Defines Naturalness variables and reverse coding items 2, 3, and 4.
PP$Nat_1_GFPRB <- PP$GFPRB_Naturalness_30
PP$Nat_2R_GFPRB <- (100-PP$GFPRB_Naturalness_31)
PP$Nat_3R_GFPRB <- (100-PP$GFPRB_Naturalness_35)
PP$Nat_4R_GFPRB <- (100-PP$GFPRB_Naturalness_36)
# Histograms
hist(PP$Nat_1_GFPRB, main = 'This is natural.')
hist(PP$Nat_2R_GFPRB, main = 'This involves humans altering naturally occurring processes.')
hist(PP$Nat_3R_GFPRB, main = 'This relies on science-based technology.')
hist(PP$Nat_4R_GFPRB, main = 'This is artificial.')
#### Score and Scale
PP$Naturalness.GFPRB <- rowMeans(PP [, c( "Nat_1_GFPRB" , "Nat_4R_GFPRB", "Nat_2R_GFPRB" , "Nat_3R_GFPRB")], na.rm=TRUE)
describe(PP$Naturalness.GFPRB)
## PP$Naturalness.GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 514 491 240 0.999 62.49 27.37 25.00 32.08
## .25 .50 .75 .90 .95
## 44.81 59.12 81.44 98.75 100.00
##
## lowest : 0.00 1.75 7.00 10.75 11.75, highest: 99.00 99.25 99.50 99.75 100.00
sd(PP$Naturalness.GFPRB, na.rm = TRUE)
## [1] 23.85977
PP$Naturalness_Scale_GFPRB_Tot <- data.frame(PP$Nat_1_GFPRB , PP$Nat_4R_GFPRB, PP$Nat_2R_GFPRB , PP$Nat_3R_GFPRB)
#Correlation
PP$Nat.GFPRB <-cbind (PP$Nat_1_GFPRB , PP$Nat_2R_GFPRB , PP$Nat_3R_GFPRB,PP$Nat_4R_GFPRB)
cor(PP$Nat.GFPRB, use = "pairwise.complete.obs")
## [,1] [,2] [,3] [,4]
## [1,] 1.0000000 0.2527056 0.1424887 0.3835835
## [2,] 0.2527056 1.0000000 0.5088795 0.6761920
## [3,] 0.1424887 0.5088795 1.0000000 0.5228007
## [4,] 0.3835835 0.6761920 0.5228007 1.0000000
#Defines naturalness variables and reverse codes items 2, 3, and 4.
PP$Nat_1_CBB <- PP$CBB_Naturalness_30
PP$Nat_2R_CBB <- (100-PP$CBB_Naturalness_31)
PP$Nat_3R_CBB <- (100-PP$CBB_Naturalness_35)
PP$Nat_4R_CBB <- (100-PP$CBB_Naturalness_36)
# Histogram
hist(PP$Nat_1_CBB, main = 'This is natural.')
hist(PP$Nat_2R_CBB, main = 'This involves humans altering naturally occurring processes.')
hist(PP$Nat_3R_CBB, main = 'This relies on science-based technology.')
hist(PP$Nat_4R_CBB, main = 'This is artificial.')
#### Score and Scale
PP$Naturalness.CBB <- rowMeans(PP [, c( "Nat_1_CBB" , "Nat_4R_CBB", "Nat_2R_CBB" , "Nat_3R_CBB")], na.rm=TRUE)
describe(PP$Naturalness.CBB)
## PP$Naturalness.CBB
## n missing distinct Info Mean Gmd .05 .10
## 516 489 224 0.999 34.32 24.5 0.00 0.75
## .25 .50 .75 .90 .95
## 17.94 35.38 49.00 59.00 67.12
##
## lowest : 0.00 0.25 0.50 1.00 1.25, highest: 96.25 98.50 99.50 99.75 100.00
sd(PP$Naturalness.CBB, na.rm = TRUE)
## [1] 21.71332
PP$Naturalness_Scale_CBB_Tot <- data.frame(PP$Nat_1_CBB , PP$Nat_4R_CBB, PP$Nat_2R_CBB , PP$Nat_3R_CBB)
describe(PP$Naturalness_Scale_CBB_Tot)
## PP$Naturalness_Scale_CBB_Tot
##
## 4 Variables 1005 Observations
## --------------------------------------------------------------------------------
## PP.Nat_1_CBB
## n missing distinct Info Mean Gmd .05 .10
## 515 490 96 0.996 45.56 39.24 0 0
## .25 .50 .75 .90 .95
## 13 47 75 98 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_4R_CBB
## n missing distinct Info Mean Gmd .05 .10
## 514 491 93 0.991 32.77 33.56 0.00 0.00
## .25 .50 .75 .90 .95
## 5.25 25.00 49.00 81.70 98.00
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_2R_CBB
## n missing distinct Info Mean Gmd .05 .10
## 514 491 88 0.987 29.75 30.74 0.00 0.00
## .25 .50 .75 .90 .95
## 2.00 25.00 47.00 73.00 85.35
##
## lowest : 0 1 2 3 4, highest: 91 94 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_3R_CBB
## n missing distinct Info Mean Gmd .05 .10
## 514 491 89 0.987 29.07 30.45 0.00 0.00
## .25 .50 .75 .90 .95
## 2.00 24.00 47.00 69.70 84.35
##
## lowest : 0 1 2 3 4, highest: 94 95 96 99 100
## --------------------------------------------------------------------------------
#Correlation
PP$Nat.CBB <-cbind (PP$Nat_1_CBB, PP$Nat_2R_CBB, PP$Nat_3R_CBB,PP$Nat_4R_CBB)
cor(PP$Nat.CBB, use = "pairwise.complete.obs")
## [,1] [,2] [,3] [,4]
## [1,] 1.0000000 0.2131318 0.1020426 0.2589238
## [2,] 0.2131318 1.0000000 0.6201159 0.6227848
## [3,] 0.1020426 0.6201159 1.0000000 0.4981525
## [4,] 0.2589238 0.6227848 0.4981525 1.0000000
#Defines naturalness variables and reverse codes items 2, 3 and 4.
PP$Nat_1_PBPB <- PP$PBPB_Naturalness_30
PP$Nat_2R_PBPB <- (100-PP$PBPB_Naturalness_31)
PP$Nat_3R_PBPB <- (100-PP$PBPB_Naturalness_35)
PP$Nat_4R_PBPB <- (100-PP$PBPB_Naturalness_36)
#Histograms
hist(PP$Nat_1_PBPB, main = 'This is natural.')
hist(PP$Nat_2R_PBPB, main = 'This involves humans altering naturally occurring processes.')
hist(PP$Nat_3R_PBPB, main = 'This relies on science-based technology.')
hist(PP$Nat_4R_PBPB, main = 'This is artificial.')
#### Score and Scale
PP$Naturalness.PBPB <- rowMeans(PP [, c( "Nat_1_PBPB" , "Nat_4R_PBPB", "Nat_2R_PBPB" , "Nat_3R_PBPB")], na.rm=TRUE)
describe(PP$Naturalness.PBPB)
## PP$Naturalness.PBPB
## n missing distinct Info Mean Gmd .05 .10
## 524 481 236 1 42.37 22.52 2.288 12.900
## .25 .50 .75 .90 .95
## 29.688 44.000 53.750 67.100 74.962
##
## lowest : 0.00 0.50 0.75 1.00 1.25, highest: 92.25 96.75 97.00 98.50 100.00
sd(PP$Naturalness.PBPB, na.rm = TRUE)
## [1] 20.16823
PP$Naturalness_Scale_PBPB_Tot <- data.frame(PP$Nat_1_PBPB , PP$Nat_4R_PBPB, PP$Nat_2R_PBPB , PP$Nat_3R_PBPB)
describe(PP$Naturalness_Scale_PBPB_Tot)
## PP$Naturalness_Scale_PBPB_Tot
##
## 4 Variables 1005 Observations
## --------------------------------------------------------------------------------
## PP.Nat_1_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 524 481 99 0.998 53.99 36.26 0 3
## .25 .50 .75 .90 .95
## 29 58 79 99 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_4R_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 524 481 97 0.998 43.33 34.89 0 0
## .25 .50 .75 .90 .95
## 20 39 68 87 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_2R_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 522 483 96 0.998 39.82 33.02 0.0 0.0
## .25 .50 .75 .90 .95
## 18.0 35.0 61.0 83.9 97.0
##
## lowest : 0 1 2 3 4, highest: 95 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_3R_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 522 483 88 0.996 32.13 28.98 0.0 0.0
## .25 .50 .75 .90 .95
## 11.0 29.0 48.0 70.9 82.0
##
## lowest : 0 1 2 3 4, highest: 94 97 98 99 100
## --------------------------------------------------------------------------------
#Correlation
PP$Nat.PBPB <-cbind (PP$Nat_1_PBPB, PP$Nat_2R_PBPB , PP$Nat_3R_PBPB, PP$Nat_4R_PBPB)
cor(PP$Nat.PBPB, use = "pairwise.complete.obs")
## [,1] [,2] [,3] [,4]
## [1,] 1.00000000 0.2050461 -0.02094861 0.2790013
## [2,] 0.20504614 1.0000000 0.44902730 0.4896993
## [3,] -0.02094861 0.4490273 1.00000000 0.3952031
## [4,] 0.27900132 0.4896993 0.39520306 1.0000000
#Reverse Code Items #2-4
PP$Nat_1_PBFB <- PP$PBFB_Naturalness_30
PP$Nat_2R_PBFB <- (100-PP$PBFB_Naturalness_31)
PP$Nat_3R_PBFB <- (100-PP$PBFB_Naturalness_35)
PP$Nat_4R_PBFB <- (100-PP$PBFB_Naturalness_36)
#Define Variables
PP$Nat_1_PBFB <- PP$PBFB_Naturalness_30
PP$Nat_2R_PBFB <- PP$PBFB_Naturalness_31
PP$Nat_3R_PBFB <- PP$PBFB_Naturalness_35
PP$Nat_4R_PBFB <- PP$PBFB_Naturalness_36
# Histograms
hist(PP$Nat_1_PBFB, main = 'This is natural.')
hist(PP$Nat_2R_PBFB, main = 'This involves humans altering naturally occurring processes.')
hist(PP$Nat_3R_PBFB, main = 'This relies on science-based technology.')
hist(PP$Nat_4R_PBFB, main = 'This is artificial.')
#### Scale and Score
PP$Naturalness.PBFB <- rowMeans(PP [, c( "Nat_1_PBFB" , "Nat_4R_PBFB", "Nat_2R_PBFB" , "Nat_3R_PBFB")], na.rm=TRUE)
describe(PP$Naturalness.PBFB)
## PP$Naturalness.PBFB
## n missing distinct Info Mean Gmd .05 .10
## 481 524 217 1 62.27 19.97 29.00 41.50
## .25 .50 .75 .90 .95
## 52.00 63.25 75.00 83.25 93.75
##
## lowest : 0.00 0.25 2.75 4.25 7.50, highest: 97.50 98.50 99.00 99.75 100.00
sd(PP$Naturalness.PBFB, na.rm = TRUE)
## [1] 18.3293
PP$Naturalness_Scale_PBFB_Tot <- data.frame(PP$Nat_1_PBFB , PP$Nat_4R_PBFB, PP$Nat_2R_PBFB , PP$Nat_3R_PBFB)
describe(PP$Naturalness_Scale_PBFB_Tot)
## PP$Naturalness_Scale_PBFB_Tot
##
## 4 Variables 1005 Observations
## --------------------------------------------------------------------------------
## PP.Nat_1_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 481 524 97 0.998 51.85 38.41 0 0
## .25 .50 .75 .90 .95
## 23 53 81 98 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_4R_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 480 525 95 0.996 61.33 35.17 0 14
## .25 .50 .75 .90 .95
## 37 66 88 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_2R_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 480 525 95 0.996 65.55 32.51 6.95 24.00
## .25 .50 .75 .90 .95
## 46.50 71.50 90.00 100.00 100.00
##
## lowest : 0 1 2 3 6, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_3R_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 478 527 86 0.994 70.53 29.62 8.40 29.00
## .25 .50 .75 .90 .95
## 54.25 75.50 93.75 100.00 100.00
##
## lowest : 0 1 3 4 5, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
#Correlation
PP$Nat.PBFB <-cbind (PP$Nat_1_PBFB, PP$Nat_2R_PBFB , PP$Nat_3R_PBFB, PP$Nat_4R_PBFB)
cor(PP$Nat.PBFB, use = "pairwise.complete.obs")
## [,1] [,2] [,3] [,4]
## [1,] 1.000000000 -0.09751735 -0.005024283 -0.2611645
## [2,] -0.097517348 1.00000000 0.534934052 0.4945029
## [3,] -0.005024283 0.53493405 1.000000000 0.4480419
## [4,] -0.261164491 0.49450290 0.448041865 1.0000000
#Define variables
PP$Nat_1_VB <- PP$VB_Naturalness_30
PP$Nat_2R_VB <- (100-PP$VB_Naturalness_31)
PP$Nat_3R_VB <- (100-PP$VB_Naturalness_35)
PP$Nat_4R_VB <- (100-PP$VB_Naturalness_36)
# Histograms
hist(PP$Nat_1_VB, main = 'This is natural.')
hist(PP$Nat_2R_VB, main = 'This involves humans altering naturally occurring processes.')
hist(PP$Nat_3R_VB, main = 'This relies on science-based technology.')
hist(PP$Nat_4R_VB, main = 'This is artificial.')
#### Scale and Score
PP$Naturalness.VB <- rowMeans(PP [, c( "Nat_1_VB" , "Nat_4R_VB", "Nat_2R_VB" , "Nat_3R_VB")], na.rm=TRUE)
describe(PP$Naturalness.VB)
## PP$Naturalness.VB
## n missing distinct Info Mean Gmd .05 .10
## 472 533 237 1 51.39 25.22 16.50 25.00
## .25 .50 .75 .90 .95
## 36.19 49.00 65.50 84.00 96.36
##
## lowest : 0.00 1.25 3.00 3.25 4.25, highest: 99.00 99.25 99.50 99.75 100.00
sd(PP$Naturalness.VB, na.rm = TRUE)
## [1] 22.39438
PP$Naturalness_Scale_VB_Tot <- data.frame(PP$Nat_1_VB , PP$Nat_4R_VB, PP$Nat_2R_VB , PP$Nat_3R_VB )
describe(PP$Naturalness_Scale_VB_Tot)
## PP$Naturalness_Scale_VB_Tot
##
## 4 Variables 1005 Observations
## --------------------------------------------------------------------------------
## PP.Nat_1_VB
## n missing distinct Info Mean Gmd .05 .10
## 472 533 93 0.996 65.13 32.6 4.55 21.00
## .25 .50 .75 .90 .95
## 50.00 71.00 89.00 100.00 100.00
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_4R_VB
## n missing distinct Info Mean Gmd .05 .10
## 472 533 96 0.998 49.87 37.8 0 4
## .25 .50 .75 .90 .95
## 21 48 80 99 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_2R_VB
## n missing distinct Info Mean Gmd .05 .10
## 472 533 99 0.998 49.76 36.59 0 6
## .25 .50 .75 .90 .95
## 24 48 78 99 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.Nat_3R_VB
## n missing distinct Info Mean Gmd .05 .10
## 472 533 91 0.999 40.8 33.64 0.00 2.00
## .25 .50 .75 .90 .95
## 19.00 34.00 61.25 91.80 100.00
##
## lowest : 0 1 2 3 4, highest: 95 96 98 99 100
## --------------------------------------------------------------------------------
#Correlation
PP$Nat.VB <-cbind (PP$Nat_1_VB, PP$Nat_2R_VB , PP$Nat_3R_VB, PP$Nat_4R_VB)
cor(PP$Nat.VB, use = "pairwise.complete.obs")
## [,1] [,2] [,3] [,4]
## [1,] 1.0000000 0.2334202 0.1060943 0.3288012
## [2,] 0.2334202 1.0000000 0.4771669 0.6057221
## [3,] 0.1060943 0.4771669 1.0000000 0.4076616
## [4,] 0.3288012 0.6057221 0.4076616 1.0000000
# Benefit perception was measured with 3 items on a 0-100 scale ( 0 = 'Strongly disagree' to 100 = 'Strongly agree'). Benefit score calculated by averaging these items.
### Item 1: This is beneficial to my health.
### Item 2: This is beneficial to society.
### Item 3: This is beneficial to the environment.
#GFFB
PP$Benefit_1_GFFB <- PP$GFFB_Benefit_18
describe(PP$Benefit_1_GFFB)
## PP$Benefit_1_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 497 508 95 0.998 56.94 33.7 0 15
## .25 .50 .75 .90 .95
## 36 59 80 100 100
##
## lowest : 0 1 2 3 5, highest: 95 97 98 99 100
range(PP$Benefit_1_GFFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_1_GFFB, main = 'This is beneficial to my health.')
PP$Benefit_2_GFFB <- PP$GFFB_Benefit_40
describe(PP$Benefit_2_GFFB)
## PP$Benefit_2_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 497 508 97 0.999 56.99 33.41 0 12
## .25 .50 .75 .90 .95
## 37 60 80 98 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Benefit_2_GFFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_2_GFFB, main = 'This is beneficial to society.')
PP$Benefit_3_GFFB <- PP$GFFB_Benefit_41
describe(PP$Benefit_3_GFFB)
## PP$Benefit_3_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 495 510 101 0.999 54.58 33.36 0.0 11.4
## .25 .50 .75 .90 .95
## 33.0 55.0 76.5 96.6 100.0
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Benefit_3_GFFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_3_GFFB, main = 'This is beneficial to the environment.')
#GFFB Benefit Scale
PP$Ben_Score_GFFB <- rowMeans(PP [, c("Benefit_1_GFFB", "Benefit_2_GFFB", "Benefit_3_GFFB")], na.rm=TRUE)
describe(PP$Ben_Score_GFFB)
## PP$Ben_Score_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 497 508 219 0.999 56.2 30.81 2.267 17.533
## .25 .50 .75 .90 .95
## 39.667 56.000 76.667 95.800 100.000
##
## lowest : 0.0000000 0.6666667 1.0000000 1.6666667 2.0000000
## highest: 98.3333333 99.0000000 99.3333333 99.6666667 100.0000000
sd(PP$Ben_Score_GFFB, na.rm = TRUE)
## [1] 27.07308
PP$Ben_Scale_GFFB <- data.frame(PP$Benefit_1_GFFB, PP$Benefit_2_GFFB, PP$Benefit_3_GFFB)
#GFFB Cronbach's alpha for benefit scale
psych::alpha(data.frame(PP$Benefit_1_GFFB, PP$Benefit_2_GFFB, PP$Benefit_3_GFFB))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$Benefit_1_GFFB, PP$Benefit_2_GFFB,
## PP$Benefit_3_GFFB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.92 0.92 0.88 0.78 11 0.0046 56 27 0.78
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.91 0.92 0.92
## Duhachek 0.91 0.92 0.92
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## PP.Benefit_1_GFFB 0.89 0.89 0.79 0.79 7.7 0.0072 NA
## PP.Benefit_2_GFFB 0.87 0.87 0.78 0.78 7.0 0.0079 NA
## PP.Benefit_3_GFFB 0.88 0.88 0.78 0.78 7.1 0.0078 NA
## med.r
## PP.Benefit_1_GFFB 0.79
## PP.Benefit_2_GFFB 0.78
## PP.Benefit_3_GFFB 0.78
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Benefit_1_GFFB 497 0.92 0.92 0.86 0.82 57 29
## PP.Benefit_2_GFFB 497 0.93 0.93 0.87 0.83 57 29
## PP.Benefit_3_GFFB 495 0.93 0.93 0.87 0.83 55 29
hist(PP$Ben_Score_GFFB, main = 'GFFB Benefit Scale Score')
#Correlation between benefit items in scale
PP$Ben.GFFB <-cbind (PP$Benefit_1_GFFB, PP$Benefit_2_GFFB, PP$Benefit_3_GFFB)
cor(PP$Ben.GFFB, use = "pairwise.complete.obs")
## [,1] [,2] [,3]
## [1,] 1.0000000 0.7796516 0.7770885
## [2,] 0.7796516 1.0000000 0.7942827
## [3,] 0.7770885 0.7942827 1.0000000
#GFPRB
PP$Benefit_1_GFPRB <- PP$GFPRB_Benefit_18
describe(PP$Benefit_1_GFPRB)
## PP$Benefit_1_GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 514 491 89 0.996 68.8 29.34 19 31
## .25 .50 .75 .90 .95
## 52 72 91 100 100
##
## lowest : 0 1 4 7 10, highest: 96 97 98 99 100
range(PP$Benefit_1_GFPRB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_1_GFPRB, main = 'This is beneficial to my health.')
PP$Benefit_2_GFPRB <- PP$GFPRB_Benefit_40
describe(PP$Benefit_2_GFPRB)
## PP$Benefit_2_GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 514 491 88 0.995 68.27 28.95 22.0 31.0
## .25 .50 .75 .90 .95
## 52.0 71.5 90.0 100.0 100.0
##
## lowest : 0 2 3 5 7, highest: 96 97 98 99 100
range(PP$Benefit_2_GFPRB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_2_GFPRB, main = 'This is beneficial to society.')
PP$Benefit_3_GFPRB <- PP$GFPRB_Benefit_41
describe(PP$Benefit_3_GFPRB)
## PP$Benefit_3_GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 513 492 94 0.996 64.86 31.85 13.6 24.0
## .25 .50 .75 .90 .95
## 49.0 68.0 89.0 100.0 100.0
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Benefit_3_GFPRB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_3_GFPRB, main = 'This is beneficial to the environment.')
#GFPRB Benefit Scale
PP$Ben_Score_GFPRB <- rowMeans(PP [, c("Benefit_1_GFPRB", "Benefit_2_GFPRB", "Benefit_3_GFPRB")], na.rm=TRUE)
describe(PP$Ben_Score_GFPRB)
## PP$Ben_Score_GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 514 491 193 0.998 67.33 27.03 25.87 33.43
## .25 .50 .75 .90 .95
## 52.42 67.00 87.25 100.00 100.00
##
## lowest : 0.0000000 0.3333333 1.3333333 2.3333333 4.0000000
## highest: 98.6666667 99.0000000 99.3333333 99.6666667 100.0000000
sd(PP$Ben_Score_GFPRB, na.rm = TRUE)
## [1] 24.01472
PP$Ben_Scale_GFPRB <- data.frame(PP$Benefit_1_GFPRB, PP$Benefit_2_GFPRB, PP$Benefit_3_GFPRB)
#GFPRB Cronbach's alpha for benefit scale
psych::alpha(data.frame(PP$Benefit_1_GFPRB, PP$Benefit_2_GFPRB, PP$Benefit_3_GFPRB))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$Benefit_1_GFPRB, PP$Benefit_2_GFPRB,
## PP$Benefit_3_GFPRB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.88 0.88 0.83 0.71 7.5 0.0065 67 24 0.71
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.87 0.88 0.89
## Duhachek 0.87 0.88 0.89
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## PP.Benefit_1_GFPRB 0.83 0.83 0.71 0.71 4.9 0.0108 NA
## PP.Benefit_2_GFPRB 0.82 0.82 0.69 0.69 4.5 0.0115 NA
## PP.Benefit_3_GFPRB 0.85 0.85 0.74 0.74 5.7 0.0095 NA
## med.r
## PP.Benefit_1_GFPRB 0.71
## PP.Benefit_2_GFPRB 0.69
## PP.Benefit_3_GFPRB 0.74
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Benefit_1_GFPRB 514 0.9 0.90 0.83 0.77 69 26
## PP.Benefit_2_GFPRB 514 0.9 0.91 0.84 0.79 68 26
## PP.Benefit_3_GFPRB 513 0.9 0.89 0.80 0.75 65 28
hist(PP$Ben_Score_GFPRB, main = 'GFPRB Benefit Scale Score')
#Correlation between benefit items in scale
PP$Ben.GFPRB <-cbind (PP$Benefit_1_GFPRB, PP$Benefit_2_GFPRB, PP$Benefit_3_GFPRB)
cor(PP$Ben.GFPRB, use = "pairwise.complete.obs")
## [,1] [,2] [,3]
## [1,] 1.0000000 0.7390440 0.6926519
## [2,] 0.7390440 1.0000000 0.7079603
## [3,] 0.6926519 0.7079603 1.0000000
#CBB
PP$Benefit_1_CBB <- PP$CBB_Benefit_18
describe(PP$Benefit_1_CBB)
## PP$Benefit_1_CBB
## n missing distinct Info Mean Gmd .05 .10
## 514 491 99 0.998 48.75 36.32 0.00 0.00
## .25 .50 .75 .90 .95
## 24.25 51.00 75.00 95.00 100.00
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Benefit_1_CBB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_1_CBB, main = 'This is beneficial to my health.')
PP$Benefit_2_CBB <- PP$CBB_Benefit_40
describe(PP$Benefit_2_CBB)
## PP$Benefit_2_CBB
## n missing distinct Info Mean Gmd .05 .10
## 514 491 97 0.999 53.39 34.83 0.0 4.0
## .25 .50 .75 .90 .95
## 32.0 54.0 78.5 95.0 100.0
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Benefit_2_CBB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_2_CBB, main = 'This is beneficial to society.')
PP$Benefit_3_CBB <- PP$CBB_Benefit_41
describe(PP$Benefit_3_CBB)
## PP$Benefit_3_CBB
## n missing distinct Info Mean Gmd .05 .10
## 513 492 97 0.998 55.54 35.25 0.0 4.2
## .25 .50 .75 .90 .95
## 34.0 59.0 80.0 98.8 100.0
##
## lowest : 0 2 3 4 5, highest: 96 97 98 99 100
range(PP$Benefit_3_CBB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_3_CBB, main = 'This is beneficial to the environment.')
#Benefit Scale
PP$Ben_Score_CBB <- rowMeans(PP [, c("Benefit_1_CBB", "Benefit_2_CBB", "Benefit_3_CBB")], na.rm=TRUE)
describe(PP$Ben_Score_CBB)
## PP$Ben_Score_CBB
## n missing distinct Info Mean Gmd .05 .10
## 514 491 228 1 52.55 32.46 0.00 8.10
## .25 .50 .75 .90 .95
## 34.00 53.17 73.67 91.70 99.78
##
## lowest : 0.0000000 0.3333333 0.6666667 1.0000000 1.3333333
## highest: 98.3333333 99.0000000 99.3333333 99.6666667 100.0000000
sd(PP$Ben_Score_CBB, na.rm = TRUE)
## [1] 28.37883
PP$Ben_Scale_CBB <- data.frame(PP$Benefit_1_CBB, PP$Benefit_2_CBB, PP$Benefit_3_CBB)
#Cronbach's alpha for benefit scale
psych::alpha(data.frame(PP$Benefit_1_CBB, PP$Benefit_2_CBB, PP$Benefit_3_CBB))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$Benefit_1_CBB, PP$Benefit_2_CBB,
## PP$Benefit_3_CBB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.91 0.91 0.87 0.77 9.9 0.005 53 28 0.76
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.9 0.91 0.92
## Duhachek 0.9 0.91 0.92
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Benefit_1_CBB 0.89 0.89 0.80 0.80 8.0 0.0070 NA 0.80
## PP.Benefit_2_CBB 0.86 0.86 0.75 0.75 6.0 0.0091 NA 0.75
## PP.Benefit_3_CBB 0.86 0.86 0.76 0.76 6.2 0.0088 NA 0.76
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Benefit_1_CBB 514 0.91 0.91 0.83 0.79 49 32
## PP.Benefit_2_CBB 514 0.92 0.93 0.87 0.83 53 30
## PP.Benefit_3_CBB 513 0.92 0.92 0.87 0.83 56 31
hist(PP$Ben_Score_CBB, main = 'CBB Benefit Scale Score')
#Correlation
PP$Ben.CBB <-cbind (PP$Benefit_1_CBB, PP$Benefit_2_CBB, PP$Benefit_3_CBB)
cor(PP$Ben.CBB, use = "pairwise.complete.obs")
## [,1] [,2] [,3]
## [1,] 1.0000000 0.7551648 0.7489175
## [2,] 0.7551648 1.0000000 0.8000254
## [3,] 0.7489175 0.8000254 1.0000000
#PBPB
PP$Benefit_1_PBPB <- PP$PBPB_Benefit_18
describe(PP$Benefit_1_PBPB)
## PP$Benefit_1_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 520 485 93 0.998 61.32 32.7 0 18
## .25 .50 .75 .90 .95
## 42 66 84 100 100
##
## lowest : 0 1 3 4 6, highest: 96 97 98 99 100
range(PP$Benefit_1_PBPB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_1_PBPB, main = 'This is beneficial to my health.')
PP$Benefit_2_PBPB <- PP$PBPB_Benefit_40
describe(PP$Benefit_2_PBPB)
## PP$Benefit_2_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 520 485 97 0.998 60.76 32.99 0.00 17.90
## .25 .50 .75 .90 .95
## 40.75 66.00 83.25 100.00 100.00
##
## lowest : 0 1 3 4 6, highest: 96 97 98 99 100
range(PP$Benefit_2_PBPB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_2_PBPB, main = 'This is beneficial to society.')
PP$Benefit_3_PBPB <- PP$PBPB_Benefit_41
describe(PP$Benefit_3_PBPB)
## PP$Benefit_3_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 520 485 92 0.998 62.35 31.35 0 23
## .25 .50 .75 .90 .95
## 46 67 83 100 100
##
## lowest : 0 2 3 6 8, highest: 96 97 98 99 100
range(PP$Benefit_3_PBPB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_3_PBPB, main = 'This is beneficial to the environment.')
#Benefit Scale
PP$Ben_Score_PBPB <- rowMeans(PP [, c("Benefit_1_PBPB", "Benefit_2_PBPB", "Benefit_3_PBPB")], na.rm=TRUE)
describe(PP$Ben_Score_PBPB)
## PP$Ben_Score_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 521 484 207 1 61.46 29.49 7.667 24.333
## .25 .50 .75 .90 .95
## 47.333 62.667 81.333 96.333 100.000
##
## lowest : 0.0000000 0.3333333 0.6666667 1.0000000 3.3333333
## highest: 97.3333333 98.6666667 99.0000000 99.3333333 100.0000000
sd(PP$Ben_Score_PBPB, na.rm = TRUE)
## [1] 26.1661
PP$Ben_Scale_PBPB <- data.frame(PP$Benefit_1_PBPB, PP$Benefit_2_PBPB, PP$Benefit_3_PBPB)
#Cronbach's alpha for benefit scale
psych::alpha(data.frame(PP$Benefit_1_PBPB, PP$Benefit_2_PBPB, PP$Benefit_3_PBPB))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$Benefit_1_PBPB, PP$Benefit_2_PBPB,
## PP$Benefit_3_PBPB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.9 0.9 0.86 0.76 9.3 0.0053 61 26 0.76
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.89 0.9 0.91
## Duhachek 0.89 0.9 0.91
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## PP.Benefit_1_PBPB 0.87 0.87 0.76 0.76 6.5 0.0085 NA
## PP.Benefit_2_PBPB 0.84 0.84 0.73 0.73 5.4 0.0098 NA
## PP.Benefit_3_PBPB 0.87 0.87 0.78 0.78 6.9 0.0080 NA
## med.r
## PP.Benefit_1_PBPB 0.76
## PP.Benefit_2_PBPB 0.73
## PP.Benefit_3_PBPB 0.78
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Benefit_1_PBPB 520 0.91 0.91 0.84 0.80 61 29
## PP.Benefit_2_PBPB 520 0.93 0.92 0.87 0.83 61 29
## PP.Benefit_3_PBPB 520 0.91 0.91 0.83 0.79 62 28
hist(PP$Ben_Score_PBPB, main = 'PBPB Benefit Scale Score')
#Correlation
PP$Ben.PBPB <-cbind (PP$Benefit_1_PBPB, PP$Benefit_2_PBPB, PP$Benefit_3_PBPB)
cor(PP$Ben.PBPB, use = "pairwise.complete.obs")
## [,1] [,2] [,3]
## [1,] 1.0000000 0.7743993 0.7312628
## [2,] 0.7743993 1.0000000 0.7626700
## [3,] 0.7312628 0.7626700 1.0000000
#PBFB
PP$Benefit_1_PBFB <- PP$PBFB_Benefit_18
describe(PP$Benefit_1_PBFB)
## PP$Benefit_1_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 479 526 97 0.998 55.03 36.29 0 0
## .25 .50 .75 .90 .95
## 33 57 81 97 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Benefit_1_PBFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_1_PBFB, main = 'This is beneficial to my health.')
PP$Benefit_2_PBFB <- PP$PBFB_Benefit_40
describe(PP$Benefit_2_PBFB)
## PP$Benefit_2_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 479 526 97 0.998 57.11 34.94 0.0 2.8
## .25 .50 .75 .90 .95
## 36.0 61.0 82.0 97.0 100.0
##
## lowest : 0 1 2 3 5, highest: 95 96 97 99 100
range(PP$Benefit_2_PBFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_2_PBFB, main = 'This is beneficial to society.')
PP$Benefit_3_PBFB <- PP$PBFB_Benefit_41
describe(PP$Benefit_3_PBFB)
## PP$Benefit_3_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 479 526 93 0.998 59.31 33.82 0.0 4.8
## .25 .50 .75 .90 .95
## 39.0 64.0 82.5 99.0 100.0
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Benefit_3_PBFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_3_PBFB, main = 'This is beneficial to the environment.')
#Benefit Scale
PP$Ben_Score_PBFB <- rowMeans(PP [, c("Benefit_1_PBFB", "Benefit_2_PBFB", "Benefit_3_PBFB")], na.rm=TRUE)
describe(PP$Ben_Score_PBFB)
## PP$Ben_Score_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 479 526 202 1 57.15 32.14 0.00 8.60
## .25 .50 .75 .90 .95
## 39.67 57.33 80.67 95.00 100.00
##
## lowest : 0.0000000 0.3333333 0.6666667 1.3333333 1.6666667
## highest: 98.0000000 98.3333333 99.0000000 99.6666667 100.0000000
sd(PP$Ben_Score_PBFB, na.rm = TRUE)
## [1] 28.36827
PP$Ben_Scale_PBFB <- data.frame(PP$Benefit_1_PBFB, PP$Benefit_2_PBFB, PP$Benefit_3_PBFB)
#Cronbach's alpha for benefit scale
psych::alpha(data.frame(PP$Benefit_1_PBFB, PP$Benefit_2_PBFB, PP$Benefit_3_PBFB))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$Benefit_1_PBFB, PP$Benefit_2_PBFB,
## PP$Benefit_3_PBFB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.91 0.91 0.87 0.78 10 0.0048 57 28 0.76
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.9 0.91 0.92
## Duhachek 0.9 0.91 0.92
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## PP.Benefit_1_PBFB 0.86 0.86 0.76 0.76 6.3 0.0086 NA
## PP.Benefit_2_PBFB 0.86 0.86 0.76 0.76 6.3 0.0086 NA
## PP.Benefit_3_PBFB 0.89 0.89 0.80 0.80 8.2 0.0068 NA
## med.r
## PP.Benefit_1_PBFB 0.76
## PP.Benefit_2_PBFB 0.76
## PP.Benefit_3_PBFB 0.80
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Benefit_1_PBFB 479 0.93 0.93 0.88 0.83 55 32
## PP.Benefit_2_PBFB 479 0.93 0.93 0.88 0.83 57 31
## PP.Benefit_3_PBFB 479 0.91 0.91 0.84 0.80 59 30
hist(PP$Ben_Score_PBFB, main = 'PBFB Benefit Scale Score')
#Correlation
PP$Ben.PBFB <-cbind (PP$Benefit_1_PBFB, PP$Benefit_2_PBFB, PP$Benefit_3_PBFB)
cor(PP$Ben.PBFB, use = "pairwise.complete.obs")
## [,1] [,2] [,3]
## [1,] 1.0000000 0.8048236 0.7603559
## [2,] 0.8048236 1.0000000 0.7602524
## [3,] 0.7603559 0.7602524 1.0000000
#VB
PP$Benefit_1_VB <- PP$VB_Benefit_18
describe(PP$Benefit_1_VB)
## PP$Benefit_1_VB
## n missing distinct Info Mean Gmd .05 .10
## 471 534 89 0.995 67.68 30.84 15.5 27.0
## .25 .50 .75 .90 .95
## 52.0 71.0 91.0 100.0 100.0
##
## lowest : 0 4 5 6 9, highest: 96 97 98 99 100
range(PP$Benefit_1_VB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_1_VB, main = 'This is beneficial to my health.')
PP$Benefit_2_VB <- PP$VB_Benefit_40
describe(PP$Benefit_2_VB)
## PP$Benefit_2_VB
## n missing distinct Info Mean Gmd .05 .10
## 470 535 87 0.995 67.49 30.23 18.00 28.90
## .25 .50 .75 .90 .95
## 51.00 73.00 88.75 100.00 100.00
##
## lowest : 0 3 4 5 13, highest: 96 97 98 99 100
range(PP$Benefit_2_VB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_2_VB, main = 'This is beneficial to society.')
PP$Benefit_3_VB <- PP$VB_Benefit_41
describe(PP$Benefit_3_VB)
## PP$Benefit_3_VB
## n missing distinct Info Mean Gmd .05 .10
## 470 535 90 0.995 68.14 29.79 17.45 31.80
## .25 .50 .75 .90 .95
## 52.00 72.00 90.00 100.00 100.00
##
## lowest : 0 3 4 5 12, highest: 96 97 98 99 100
range(PP$Benefit_3_VB, na.rm=TRUE)
## [1] 0 100
hist(PP$Benefit_3_VB, main = 'This is beneficial to the environment.')
#VB Benefit Scale
PP$Ben_Score_VB <- rowMeans(PP [, c("Benefit_1_VB", "Benefit_2_VB", "Benefit_3_VB")], na.rm=TRUE)
describe(PP$Ben_Score_VB)
## PP$Ben_Score_VB
## n missing distinct Info Mean Gmd .05 .10
## 471 534 189 0.999 67.74 27.66 23.83 35.33
## .25 .50 .75 .90 .95
## 52.00 70.00 87.00 100.00 100.00
##
## lowest : 0.000000 2.666667 11.000000 13.666667 19.000000
## highest: 98.333333 98.666667 99.333333 99.666667 100.000000
sd(PP$Ben_Score_VB, na.rm = TRUE)
## [1] 24.60428
PP$Ben_Scale_VB <- data.frame(PP$Benefit_1_VB, PP$Benefit_2_VB, PP$Benefit_3_VB)
#Cronbach's alpha for benefit scale
psych::alpha(data.frame(PP$Benefit_1_VB, PP$Benefit_2_VB, PP$Benefit_3_VB))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$Benefit_1_VB, PP$Benefit_2_VB,
## PP$Benefit_3_VB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.89 0.89 0.85 0.74 8.5 0.0058 68 25 0.74
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.88 0.89 0.91
## Duhachek 0.88 0.89 0.91
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Benefit_1_VB 0.85 0.85 0.75 0.75 5.9 0.0092 NA 0.75
## PP.Benefit_2_VB 0.84 0.84 0.73 0.73 5.4 0.0098 NA 0.73
## PP.Benefit_3_VB 0.85 0.85 0.74 0.74 5.7 0.0095 NA 0.74
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Benefit_1_VB 471 0.91 0.91 0.83 0.79 68 28
## PP.Benefit_2_VB 470 0.91 0.91 0.84 0.80 67 27
## PP.Benefit_3_VB 470 0.91 0.91 0.84 0.79 68 27
hist(PP$Ben_Score_VB, main = 'VB Benefit Scale Score')
#Correlation
PP$Ben.VB <-cbind (PP$Benefit_1_VB, PP$Benefit_2_VB, PP$Benefit_3_VB)
cor(PP$Ben.VB, use = "pairwise.complete.obs")
## [,1] [,2] [,3]
## [1,] 1.0000000 0.7395123 0.7308844
## [2,] 0.7395123 1.0000000 0.7456287
## [3,] 0.7308844 0.7456287 1.0000000
# Risk perception was measured with 2 items on a 0-100 scale ( 0 = 'Strongly disagree' to 100 = 'Strongly agree'). Risk score calculated by averaging these items.
### Item 1: This is risky to eat.
### Item 2: Producing this is risky for society.
### Item 3: Producing this is risky for the environment.
### Item 4: This is frightening.
#GFFB
PP$Risk_1_GFFB <- PP$GFFB_Risk_32
describe(PP$Risk_1_GFFB)
## PP$Risk_1_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 498 507 95 0.998 46.96 36.42 0 0
## .25 .50 .75 .90 .95
## 19 51 74 90 100
##
## lowest : 0 1 2 3 4, highest: 94 95 96 99 100
range(PP$Risk_1_GFFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_1_GFFB, main = 'This is risky to eat.')
PP$Risk_2_GFFB <- PP$GFFB_Risk_35
describe(PP$Risk_2_GFFB)
## PP$Risk_2_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 496 509 94 0.998 46.85 36.51 0.0 0.0
## .25 .50 .75 .90 .95
## 20.0 50.0 72.0 89.5 100.0
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Risk_2_GFFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_2_GFFB, main = 'Producing this is risky for society.')
PP$Risk_3_GFFB <- PP$GFFB_Risk_36
describe(PP$Risk_3_GFFB)
## PP$Risk_3_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 497 508 99 0.999 49.89 36.57 0.0 1.6
## .25 .50 .75 .90 .95
## 24.0 52.0 76.0 94.0 100.0
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Risk_3_GFFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_3_GFFB, main = 'Producing this is risky for the environment.')
PP$Risk_4_GFFB <- PP$GFFB_Risk_33
describe(PP$Risk_4_GFFB)
## PP$Risk_4_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 495 510 95 0.997 51.28 38.74 0.0 0.0
## .25 .50 .75 .90 .95
## 22.5 53.0 81.0 99.0 100.0
##
## lowest : 0 1 2 3 4, highest: 95 96 98 99 100
range(PP$Risk_4_GFFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_4_GFFB, main = 'This is frightening.')
#GFFB Risk Scale
PP$Risk_Score_GFFB <- rowMeans(PP [, c("Risk_1_GFFB", "Risk_2_GFFB", "Risk_3_GFFB", "Risk_4_GFFB")], na.rm=TRUE)
PP$Risk_Scale_GFFB <- data.frame(PP$Risk_1_GFFB, PP$Risk_2_GFFB, PP$Risk_3_GFFB, PP$Risk_4_GFFB)
describe(PP$Risk_Score_GFFB)
## PP$Risk_Score_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 499 506 264 1 48.87 31.98 0.00 5.40
## .25 .50 .75 .90 .95
## 28.00 51.75 68.38 86.05 95.52
##
## lowest : 0.00 0.25 0.50 0.75 1.00, highest: 97.00 98.75 99.00 99.50 100.00
sd(PP$Risk_Score_GFFB, na.rm = TRUE)
## [1] 27.89227
#GFFB Cronbach's alpha for risk scale
psych::alpha(data.frame(PP$Risk_1_GFFB, PP$Risk_2_GFFB, PP$Risk_3_GFFB, PP$Risk_4_GFFB))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$Risk_1_GFFB, PP$Risk_2_GFFB, PP$Risk_3_GFFB,
## PP$Risk_4_GFFB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.89 0.89 0.86 0.67 8 0.0059 49 28 0.66
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.88 0.89 0.9
## Duhachek 0.88 0.89 0.9
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Risk_1_GFFB 0.85 0.86 0.81 0.67 6.0 0.0080 0.0050 0.64
## PP.Risk_2_GFFB 0.83 0.83 0.77 0.63 5.1 0.0091 0.0024 0.61
## PP.Risk_3_GFFB 0.85 0.85 0.80 0.65 5.6 0.0085 0.0052 0.64
## PP.Risk_4_GFFB 0.88 0.88 0.84 0.72 7.7 0.0063 0.0011 0.73
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Risk_1_GFFB 498 0.86 0.87 0.80 0.75 47 32
## PP.Risk_2_GFFB 496 0.90 0.90 0.87 0.81 47 32
## PP.Risk_3_GFFB 497 0.88 0.88 0.83 0.78 50 32
## PP.Risk_4_GFFB 495 0.83 0.82 0.72 0.68 51 34
hist(PP$Risk_Score_GFFB, main = 'GFFB Risk Scale Score')
#Correlation
PP$Risk.GFFB <-cbind (PP$Risk_1_GFFB, PP$Risk_2_GFFB, PP$Risk_3_GFFB, PP$Risk_4_GFFB)
cor(PP$Risk.GFFB, use = "pairwise.complete.obs")
## [,1] [,2] [,3] [,4]
## [1,] 1.0000000 0.7283147 0.6825550 0.5893209
## [2,] 0.7283147 1.0000000 0.7471631 0.6384920
## [3,] 0.6825550 0.7471631 1.0000000 0.6153396
## [4,] 0.5893209 0.6384920 0.6153396 1.0000000
#GFPRB
PP$Risk_1_GFPRB <- PP$GFPRB_Risk_32
describe(PP$Risk_1_GFPRB)
## PP$Risk_1_GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 512 493 99 0.991 36.75 36.32 0.00 0.00
## .25 .50 .75 .90 .95
## 5.00 30.00 63.25 84.00 97.45
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Risk_1_GFPRB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_1_GFPRB, main = 'GFPRB - This is risky to eat.')
PP$Risk_2_GFPRB <- PP$GFPRB_Risk_35
describe(PP$Risk_2_GFPRB)
## PP$Risk_2_GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 511 494 97 0.996 39.91 36.48 0.0 0.0
## .25 .50 .75 .90 .95
## 10.0 36.0 66.5 88.0 99.0
##
## lowest : 0 1 2 3 4, highest: 94 97 98 99 100
range(PP$Risk_2_GFPRB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_2_GFPRB, main = 'Producing this is risky for society.')
PP$Risk_3_GFPRB <- PP$GFPRB_Risk_36
describe(PP$Risk_3_GFPRB)
## PP$Risk_3_GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 510 495 100 0.995 41.19 36.4 0 0
## .25 .50 .75 .90 .95
## 12 38 67 87 97
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Risk_3_GFPRB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_3_GFPRB, main = 'Producing this is risky for the environment.')
PP$Risk_4_GFPRB <- PP$GFPRB_Risk_33
describe(PP$Risk_4_GFPRB)
## PP$Risk_4_GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 511 494 99 0.992 37 37.4 0.0 0.0
## .25 .50 .75 .90 .95
## 4.0 29.0 63.5 88.0 98.0
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Risk_4_GFPRB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_4_GFPRB, main = 'This is frightening.')
#GFPRB Risk Scale
PP$Risk_Score_GFPRB <- rowMeans(PP [, c("Risk_1_GFPRB", "Risk_2_GFPRB", "Risk_3_GFPRB", "Risk_4_GFPRB")], na.rm=TRUE)
PP$Risk_Scale_GFPRB <- data.frame(PP$Risk_1_GFPRB, PP$Risk_2_GFPRB, PP$Risk_3_GFPRB, PP$Risk_4_GFPRB)
describe(PP$Risk_Score_GFPRB)
## PP$Risk_Score_GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 513 492 256 0.999 38.72 31.88 0.00 0.25
## .25 .50 .75 .90 .95
## 14.00 38.50 57.50 77.70 88.55
##
## lowest : 0.00 0.25 0.50 0.75 1.00, highest: 97.00 97.50 98.50 99.75 100.00
sd(PP$Risk_Score_GFPRB, na.rm = TRUE)
## [1] 27.86542
#GFPRB Cronbach's alpha for risk scale
psych::alpha(data.frame(PP$Risk_1_GFPRB, PP$Risk_2_GFPRB, PP$Risk_3_GFPRB, PP$Risk_4_GFPRB))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$Risk_1_GFPRB, PP$Risk_2_GFPRB,
## PP$Risk_3_GFPRB, PP$Risk_4_GFPRB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.89 0.89 0.86 0.67 8 0.0058 39 28 0.67
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.88 0.89 0.9
## Duhachek 0.88 0.89 0.9
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Risk_1_GFPRB 0.85 0.85 0.80 0.66 5.9 0.0081 0.0049 0.63
## PP.Risk_2_GFPRB 0.85 0.85 0.79 0.65 5.6 0.0083 0.0012 0.66
## PP.Risk_3_GFPRB 0.85 0.85 0.80 0.66 5.9 0.0080 0.0007 0.68
## PP.Risk_4_GFPRB 0.87 0.87 0.82 0.69 6.8 0.0071 0.0018 0.68
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Risk_1_GFPRB 512 0.87 0.87 0.81 0.76 37 32
## PP.Risk_2_GFPRB 511 0.88 0.88 0.83 0.78 40 32
## PP.Risk_3_GFPRB 510 0.87 0.87 0.81 0.76 41 32
## PP.Risk_4_GFPRB 511 0.85 0.84 0.76 0.72 37 33
hist(PP$Risk_Score_GFPRB, main = 'GFPRB Risk Scale Score')
#Correlation
PP$Risk.GFPRB <-cbind (PP$Risk_1_GFPRB, PP$Risk_2_GFPRB, PP$Risk_3_GFPRB, PP$Risk_4_GFPRB)
cor(PP$Risk.GFPRB, use = "pairwise.complete.obs")
## [,1] [,2] [,3] [,4]
## [1,] 1.0000000 0.6766418 0.6600000 0.6792032
## [2,] 0.6766418 1.0000000 0.7396801 0.6318567
## [3,] 0.6600000 0.7396801 1.0000000 0.6093402
## [4,] 0.6792032 0.6318567 0.6093402 1.0000000
#CBB
PP$Risk_1_CBB <- PP$CBB_Risk_32
describe(PP$Risk_1_CBB)
## PP$Risk_1_CBB
## n missing distinct Info Mean Gmd .05 .10
## 515 490 98 0.998 54.69 37.24 0 6
## .25 .50 .75 .90 .95
## 27 57 82 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Risk_1_CBB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_1_CBB, main = 'This is risky to eat.')
PP$Risk_2_CBB <- PP$CBB_Risk_35
describe(PP$Risk_2_CBB)
## PP$Risk_2_CBB
## n missing distinct Info Mean Gmd .05 .10
## 515 490 96 0.998 55.18 36.39 0.0 5.8
## .25 .50 .75 .90 .95
## 30.0 59.0 81.0 100.0 100.0
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Risk_2_CBB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_2_CBB, main = 'Producing this is risky for society.')
PP$Risk_3_CBB <- PP$CBB_Risk_36
describe(PP$Risk_3_CBB)
## PP$Risk_3_CBB
## n missing distinct Info Mean Gmd .05 .10
## 513 492 97 0.999 50.98 36.4 0 5
## .25 .50 .75 .90 .95
## 26 51 77 97 100
##
## lowest : 0 1 2 4 5, highest: 96 97 98 99 100
range(PP$Risk_3_CBB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_3_CBB, main = 'Producing this is risky for the environment.')
PP$Risk_4_CBB <- PP$CBB_Risk_33
describe(PP$Risk_4_CBB)
## PP$Risk_4_CBB
## n missing distinct Info Mean Gmd .05 .10
## 514 491 97 0.996 55.98 38.42 0 3
## .25 .50 .75 .90 .95
## 27 60 86 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Risk_4_CBB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_4_CBB, main = 'This is frightening.')
#CBB Risk Scale
PP$Risk_Score_CBB <- rowMeans(PP [, c("Risk_1_CBB", "Risk_2_CBB", "Risk_3_CBB", "Risk_4_CBB")], na.rm=TRUE)
PP$Risk_Scale_CBB <- data.frame(PP$Risk_1_CBB, PP$Risk_2_CBB, PP$Risk_3_CBB, PP$Risk_4_CBB)
describe(PP$Risk_Score_CBB)
## PP$Risk_Score_CBB
## n missing distinct Info Mean Gmd .05 .10
## 517 488 267 1 54.2 32.1 2.20 12.65
## .25 .50 .75 .90 .95
## 36.50 53.50 75.00 93.30 100.00
##
## lowest : 0.00 0.25 0.50 1.00 1.25, highest: 99.00 99.25 99.50 99.75 100.00
sd(PP$Risk_Score_CBB, na.rm = TRUE)
## [1] 28.05343
#CBB Cronbach's alpha for risk scale
psych::alpha(data.frame(PP$Risk_1_CBB, PP$Risk_2_CBB, PP$Risk_3_CBB, PP$Risk_4_CBB))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$Risk_1_CBB, PP$Risk_2_CBB, PP$Risk_3_CBB,
## PP$Risk_4_CBB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.89 0.89 0.87 0.68 8.5 0.0055 54 28 0.69
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.88 0.89 0.90
## Duhachek 0.88 0.89 0.91
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Risk_1_CBB 0.85 0.85 0.80 0.66 5.8 0.0081 0.00312 0.67
## PP.Risk_2_CBB 0.86 0.86 0.80 0.66 5.9 0.0079 0.00449 0.66
## PP.Risk_3_CBB 0.88 0.88 0.83 0.71 7.2 0.0067 0.00081 0.71
## PP.Risk_4_CBB 0.87 0.87 0.82 0.69 6.8 0.0071 0.00068 0.71
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Risk_1_CBB 515 0.89 0.89 0.84 0.80 55 32
## PP.Risk_2_CBB 515 0.88 0.89 0.84 0.79 55 32
## PP.Risk_3_CBB 513 0.85 0.85 0.77 0.73 51 32
## PP.Risk_4_CBB 514 0.86 0.86 0.80 0.75 56 33
hist(PP$Risk_Score_CBB, main = 'CBB Risk Scale Score')
#Correlation
PP$Risk.CBB <-cbind (PP$Risk_1_CBB, PP$Risk_2_CBB, PP$Risk_3_CBB, PP$Risk_4_CBB)
cor(PP$Risk.CBB, use = "pairwise.complete.obs")
## [,1] [,2] [,3] [,4]
## [1,] 1.0000000 0.7090082 0.6619614 0.7300456
## [2,] 0.7090082 1.0000000 0.7041794 0.6731257
## [3,] 0.6619614 0.7041794 1.0000000 0.5951831
## [4,] 0.7300456 0.6731257 0.5951831 1.0000000
#PBPB
PP$Risk_1_PBPB <- PP$PBPB_Risk_32
describe(PP$Risk_1_PBPB)
## PP$Risk_1_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 523 482 96 0.998 43.28 36.03 0 0
## .25 .50 .75 .90 .95
## 15 43 68 88 100
##
## lowest : 0 1 2 3 4, highest: 94 95 97 99 100
range(PP$Risk_1_PBPB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_1_PBPB, main = 'This is risky to eat.')
PP$Risk_2_PBPB <- PP$PBPB_Risk_35
describe(PP$Risk_2_PBPB)
## PP$Risk_2_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 524 481 100 0.998 43.06 35.68 0.00 0.00
## .25 .50 .75 .90 .95
## 15.00 41.00 68.00 86.00 98.85
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Risk_2_PBPB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_2_PBPB, main = 'Producing this is risky for society.')
PP$Risk_3_PBPB <- PP$PBPB_Risk_36
describe(PP$Risk_3_PBPB)
## PP$Risk_3_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 524 481 98 0.998 40.95 34.56 0.00 0.00
## .25 .50 .75 .90 .95
## 16.00 38.00 64.00 85.00 96.85
##
## lowest : 0 1 2 4 5, highest: 96 97 98 99 100
range(PP$Risk_3_PBPB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_3_PBPB, main = 'Producing this is risky for the environment.')
PP$Risk_4_PBPB <- PP$PBPB_Risk_33
describe(PP$Risk_4_PBPB)
## PP$Risk_4_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 522 483 98 0.996 42.61 36.32 0.00 0.00
## .25 .50 .75 .90 .95
## 14.25 39.00 68.00 87.90 100.00
##
## lowest : 0 1 2 3 4, highest: 94 95 98 99 100
range(PP$Risk_4_PBPB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_4_PBPB, main = 'This is frightening.')
#PBPB Risk Scale
PP$Risk_Score_PBPB <- rowMeans(PP [, c("Risk_1_PBPB", "Risk_2_PBPB", "Risk_3_PBPB", "Risk_4_PBPB")], na.rm=TRUE)
PP$Risk_Scale_PBPB <- data.frame(PP$Risk_1_PBPB, PP$Risk_2_PBPB, PP$Risk_3_PBPB, PP$Risk_4_PBPB)
describe(PP$Risk_Score_PBPB)
## PP$Risk_Score_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 524 481 258 1 42.48 31.14 0.000 2.325
## .25 .50 .75 .90 .95
## 20.188 44.250 60.250 79.600 90.962
##
## lowest : 0.00 0.25 0.50 0.75 1.00, highest: 98.00 98.25 98.50 99.75 100.00
sd(PP$Risk_Score_PBPB, na.rm = TRUE)
## [1] 27.19177
#PBPB Cronbach's alpha for risk scale
psych::alpha(data.frame(PP$Risk_1_PBPB, PP$Risk_2_PBPB, PP$Risk_3_PBPB, PP$Risk_4_PBPB))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$Risk_1_PBPB, PP$Risk_2_PBPB, PP$Risk_3_PBPB,
## PP$Risk_4_PBPB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.9 0.9 0.87 0.69 8.9 0.0052 42 27 0.7
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.89 0.9 0.91
## Duhachek 0.89 0.9 0.91
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Risk_1_PBPB 0.87 0.87 0.82 0.68 6.5 0.0073 0.00180 0.69
## PP.Risk_2_PBPB 0.86 0.86 0.81 0.67 6.1 0.0077 0.00306 0.64
## PP.Risk_3_PBPB 0.88 0.88 0.83 0.71 7.4 0.0065 0.00046 0.71
## PP.Risk_4_PBPB 0.87 0.87 0.82 0.69 6.7 0.0071 0.00191 0.71
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Risk_1_PBPB 523 0.88 0.88 0.83 0.78 43 31
## PP.Risk_2_PBPB 524 0.89 0.89 0.85 0.80 43 31
## PP.Risk_3_PBPB 524 0.85 0.86 0.78 0.74 41 30
## PP.Risk_4_PBPB 522 0.88 0.88 0.82 0.77 43 32
hist(PP$Risk_Score_PBPB, main = 'PBPB Risk Scale Score')
#Correlation
PP$Risk.PBPB <-cbind (PP$Risk_1_PBPB, PP$Risk_2_PBPB, PP$Risk_3_PBPB, PP$Risk_4_PBPB)
cor(PP$Risk.PBPB, use = "pairwise.complete.obs")
## [,1] [,2] [,3] [,4]
## [1,] 1.0000000 0.7104953 0.6402508 0.7367189
## [2,] 0.7104953 1.0000000 0.7216761 0.6915020
## [3,] 0.6402508 0.7216761 1.0000000 0.6392415
## [4,] 0.7367189 0.6915020 0.6392415 1.0000000
#PBFB
PP$Risk_1_PBFB <- PP$PBFB_Risk_32
describe(PP$Risk_1_PBFB)
## PP$Risk_1_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 480 525 100 0.999 49.52 37.36 0.00 2.00
## .25 .50 .75 .90 .95
## 21.75 51.00 76.00 97.00 100.00
##
## lowest : 0 1 2 3 4, highest: 95 96 97 98 100
range(PP$Risk_1_PBFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_1_PBFB, main = 'This is risky to eat.')
PP$Risk_2_PBFB <- PP$PBPB_Risk_35
describe(PP$Risk_2_PBFB)
## PP$Risk_2_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 524 481 100 0.998 43.06 35.68 0.00 0.00
## .25 .50 .75 .90 .95
## 15.00 41.00 68.00 86.00 98.85
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Risk_2_PBFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_2_PBFB, main = 'Producing this is risky for society.')
PP$Risk_3_PBFB <- PP$PBPB_Risk_36
describe(PP$Risk_3_PBFB)
## PP$Risk_3_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 524 481 98 0.998 40.95 34.56 0.00 0.00
## .25 .50 .75 .90 .95
## 16.00 38.00 64.00 85.00 96.85
##
## lowest : 0 1 2 4 5, highest: 96 97 98 99 100
range(PP$Risk_3_PBFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_3_PBFB, main = 'Producing this is risky for the environment.')
PP$Risk_4_PBFB <- PP$PBPB_Risk_33
describe(PP$Risk_4_PBFB)
## PP$Risk_4_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 522 483 98 0.996 42.61 36.32 0.00 0.00
## .25 .50 .75 .90 .95
## 14.25 39.00 68.00 87.90 100.00
##
## lowest : 0 1 2 3 4, highest: 94 95 98 99 100
range(PP$Risk_4_PBFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_4_PBFB, main = 'PBFB - This is frightening.')
#PBFB Risk Scale
PP$Risk_Score_PBFB <- rowMeans(PP [, c("Risk_1_PBFB", "Risk_2_PBFB", "Risk_3_PBFB", "Risk_4_PBFB")], na.rm=TRUE)
PP$Risk_Scale_PBFB <- data.frame(PP$Risk_1_PBFB, PP$Risk_2_PBFB, PP$Risk_3_PBFB, PP$Risk_4_PBFB)
describe(PP$Risk_Score_PBFB)
## PP$Risk_Score_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 795 210 317 1 45.56 33.89 0.000 3.133
## .25 .50 .75 .90 .95
## 21.833 47.250 67.000 87.733 100.000
##
## lowest : 0.0000000 0.2500000 0.3333333 0.5000000 1.0000000
## highest: 97.0000000 97.6666667 98.0000000 99.6666667 100.0000000
sd(PP$Risk_Score_PBFB, na.rm = TRUE)
## [1] 29.45914
#PBFB Cronbach's alpha for risk scale
psych::alpha(data.frame(PP$Risk_1_PBFB, PP$Risk_2_PBFB, PP$Risk_3_PBFB, PP$Risk_4_PBFB))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$Risk_1_PBFB, PP$Risk_2_PBFB, PP$Risk_3_PBFB,
## PP$Risk_4_PBFB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.84 0.85 0.82 0.58 5.5 0.0081 46 29 0.57
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.83 0.84 0.86
## Duhachek 0.83 0.84 0.86
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Risk_1_PBFB 0.87 0.87 0.82 0.68 6.5 0.0073 0.0018 0.69
## PP.Risk_2_PBFB 0.77 0.77 0.70 0.52 3.3 0.0129 0.0107 0.49
## PP.Risk_3_PBFB 0.79 0.79 0.73 0.56 3.8 0.0116 0.0133 0.49
## PP.Risk_4_PBFB 0.78 0.79 0.74 0.55 3.7 0.0121 0.0227 0.49
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Risk_1_PBFB 480 0.91 0.73 0.57 0.53 50 32
## PP.Risk_2_PBFB 524 0.90 0.88 0.84 0.77 43 31
## PP.Risk_3_PBFB 524 0.87 0.85 0.79 0.71 41 30
## PP.Risk_4_PBFB 522 0.87 0.85 0.79 0.73 43 32
hist(PP$Risk_Score_PBFB, main = 'PBFB Risk Scale Score')
#Correlation
PP$Risk.PBFB <-cbind (PP$Risk_1_PBFB, PP$Risk_2_PBFB, PP$Risk_3_PBFB, PP$Risk_4_PBFB)
cor(PP$Risk.PBFB, use = "pairwise.complete.obs")
## [,1] [,2] [,3] [,4]
## [1,] 1.0000000 0.5195135 0.4496435 0.5055023
## [2,] 0.5195135 1.0000000 0.7216761 0.6915020
## [3,] 0.4496435 0.7216761 1.0000000 0.6392415
## [4,] 0.5055023 0.6915020 0.6392415 1.0000000
#VB
PP$Risk_1_VB <- PP$VB_Risk_32
describe(PP$Risk_1_VB)
## PP$Risk_1_VB
## n missing distinct Info Mean Gmd .05 .10
## 471 534 92 0.997 35.1 33.26 0.0 0.0
## .25 .50 .75 .90 .95
## 9.0 29.0 56.5 79.0 88.0
##
## lowest : 0 1 2 3 4, highest: 91 92 96 99 100
range(PP$Risk_1_VB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_1_VB, main = 'This is risky to eat.')
PP$Risk_2_VB <- PP$VB_Risk_35
describe(PP$Risk_2_VB)
## PP$Risk_2_VB
## n missing distinct Info Mean Gmd .05 .10
## 469 536 91 0.996 37.72 35.36 0.0 0.0
## .25 .50 .75 .90 .95
## 10.0 33.0 60.0 86.2 100.0
##
## lowest : 0 1 2 3 4, highest: 94 95 96 98 100
range(PP$Risk_2_VB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_2_VB, main = 'Producing this is risky for society.')
PP$Risk_3_VB <- PP$VB_Risk_36
describe(PP$Risk_3_VB)
## PP$Risk_3_VB
## n missing distinct Info Mean Gmd .05 .10
## 471 534 96 0.997 36.56 34.05 0.0 0.0
## .25 .50 .75 .90 .95
## 10.0 31.0 58.0 82.0 93.5
##
## lowest : 0 1 2 3 4, highest: 94 95 97 98 100
range(PP$Risk_3_VB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_3_VB, main = 'Producing this is risky for the environment.')
PP$Risk_4_VB <- PP$VB_Risk_33
describe(PP$Risk_4_VB)
## PP$Risk_4_VB
## n missing distinct Info Mean Gmd .05 .10
## 470 535 95 0.996 36.27 35.59 0.0 0.0
## .25 .50 .75 .90 .95
## 8.0 28.5 62.0 82.1 95.1
##
## lowest : 0 1 2 3 4, highest: 94 96 98 99 100
range(PP$Risk_4_VB, na.rm=TRUE)
## [1] 0 100
hist(PP$Risk_4_VB, main = 'This is frightening.')
#VB Risk Scale
PP$Risk_Score_VB <- rowMeans(PP [, c("Risk_1_VB", "Risk_2_VB", "Risk_3_VB", "Risk_4_VB")], na.rm=TRUE)
PP$Risk_Scale_VB <- data.frame(PP$Risk_1_VB, PP$Risk_2_VB, PP$Risk_3_VB, PP$Risk_4_VB)
describe(PP$Risk_Score_VB)
## PP$Risk_Score_VB
## n missing distinct Info Mean Gmd .05 .10
## 471 534 247 1 36.41 30.29 0.00 1.25
## .25 .50 .75 .90 .95
## 13.62 32.75 55.00 73.00 84.88
##
## lowest : 0.00 0.25 0.50 0.75 1.00, highest: 95.00 96.50 97.25 99.00 100.00
sd(PP$Risk_Score_VB, na.rm = TRUE)
## [1] 26.56997
#VB Cronbach's alpha for risk scale
psych::alpha(data.frame(PP$Risk_1_VB, PP$Risk_2_VB, PP$Risk_3_VB, PP$Risk_4_VB))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$Risk_1_VB, PP$Risk_2_VB, PP$Risk_3_VB,
## PP$Risk_4_VB))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.89 0.89 0.87 0.68 8.5 0.0055 36 27 0.68
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.88 0.89 0.90
## Duhachek 0.88 0.89 0.91
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Risk_1_VB 0.86 0.86 0.81 0.67 6.1 0.0078 0.00301 0.65
## PP.Risk_2_VB 0.86 0.86 0.81 0.67 6.2 0.0077 0.00198 0.69
## PP.Risk_3_VB 0.86 0.86 0.81 0.68 6.4 0.0075 0.00072 0.68
## PP.Risk_4_VB 0.87 0.87 0.82 0.70 6.9 0.0069 0.00076 0.69
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Risk_1_VB 471 0.88 0.88 0.83 0.78 35 29
## PP.Risk_2_VB 469 0.88 0.88 0.82 0.78 38 31
## PP.Risk_3_VB 471 0.87 0.87 0.81 0.77 37 30
## PP.Risk_4_VB 470 0.86 0.86 0.78 0.74 36 31
hist(PP$Risk_Score_VB, main = 'VB Risk Scale Score')
#Correlation
PP$Risk.VB <-cbind (PP$Risk_1_VB, PP$Risk_2_VB, PP$Risk_3_VB, PP$Risk_4_VB)
cor(PP$Risk.VB, use = "pairwise.complete.obs")
## [,1] [,2] [,3] [,4]
## [1,] 1.0000000 0.6772380 0.6877016 0.7074650
## [2,] 0.6772380 1.0000000 0.7285788 0.6531574
## [3,] 0.6877016 0.7285788 1.0000000 0.6224504
## [4,] 0.7074650 0.6531574 0.6224504 1.0000000
# Familiarity was measured with 1 item on a 0-100 scale ( 0 = 'Strongly disagree' to 100 = 'Strongly agree').
## Item #1: This is familiar.
#GFFB
PP$Familiarity_GFFB <-PP$GFFB_Risk_31
length(PP$Familiarity_GFFB)
## [1] 1005
describe(PP$Familiarity_GFFB)
## PP$Familiarity_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 493 512 97 0.997 62.79 34.17 3 17
## .25 .50 .75 .90 .95
## 41 68 89 100 100
##
## lowest : 0 2 3 4 5, highest: 96 97 98 99 100
sd(PP$Familiarity_GFFB, na.rm = TRUE)
## [1] 30.18567
range(PP$Familiarity_GFFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Familiarity_GFFB, main = 'This is familiar.')
#GFPRB
PP$Familiarity_GFPRB <-PP$GFPRB_Risk_31
length(PP$Familiarity_GFPRB)
## [1] 1005
describe(PP$Familiarity_GFPRB)
## PP$Familiarity_GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 511 494 84 0.988 73.29 27.98 18.5 37.0
## .25 .50 .75 .90 .95
## 59.5 78.0 97.0 100.0 100.0
##
## lowest : 0 1 4 5 8, highest: 96 97 98 99 100
sd(PP$Familiarity_GFPRB, na.rm = TRUE)
## [1] 25.71012
range(PP$Familiarity_GFPRB, na.rm=TRUE)
## [1] 0 100
hist(PP$Familiarity_GFPRB, main = 'This is familiar.')
#CBB
PP$Familiarity_CBB <-PP$CBB_Risk_31
length(PP$Familiarity_CBB)
## [1] 1005
describe(PP$Familiarity_CBB)
## PP$Familiarity_CBB
## n missing distinct Info Mean Gmd .05 .10
## 515 490 99 0.997 46.27 38.6 0.0 0.0
## .25 .50 .75 .90 .95
## 15.0 50.0 74.5 95.6 100.0
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
sd(PP$Familiarity_CBB, na.rm = TRUE)
## [1] 33.51951
range(PP$Familiarity_CBB, na.rm=TRUE)
## [1] 0 100
hist(PP$Familiarity_CBB, main = 'This is familiar.')
#PBPB
PP$Familiarity_PBPB <-PP$PBPB_Risk_31
length(PP$Familiarity_PBPB)
## [1] 1005
describe(PP$Familiarity_PBPB)
## PP$Familiarity_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 524 481 98 0.999 54.46 34.8 0 7
## .25 .50 .75 .90 .95
## 30 57 79 95 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
sd(PP$Familiarity_PBPB, na.rm = TRUE)
## [1] 30.2881
range(PP$Familiarity_PBPB, na.rm=TRUE)
## [1] 0 100
hist(PP$Familiarity_PBPB, main = 'This is familiar.')
#PBFB
PP$Familiarity_PBFB <-PP$PBFB_Risk_31
length(PP$Familiarity_PBFB)
## [1] 1005
describe(PP$Familiarity_PBFB)
## PP$Familiarity_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 481 524 99 0.998 48.06 37.95 0 0
## .25 .50 .75 .90 .95
## 18 51 76 93 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
sd(PP$Familiarity_PBFB, na.rm = TRUE)
## [1] 32.91287
range(PP$Familiarity_PBFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Familiarity_PBFB, main = 'This is familiar.')
#VB
PP$Familiarity_VB <-PP$VB_Risk_31
length(PP$Familiarity_VB)
## [1] 1005
describe(PP$Familiarity_VB)
## PP$Familiarity_VB
## n missing distinct Info Mean Gmd .05 .10
## 472 533 98 0.999 62.01 32.89 1.55 16.00
## .25 .50 .75 .90 .95
## 45.00 67.50 85.00 100.00 100.00
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
sd(PP$Familiarity_VB, na.rm = TRUE)
## [1] 29.15807
range(PP$Familiarity_VB, na.rm=TRUE)
## [1] 0 100
hist(PP$Familiarity_VB, main = 'This is familiar.')
# Understanding was measured with 1 item on a 0-100 scale ( 0 = 'Strongly disagree' to 100 = 'Strongly agree').
### Item 1: I understand how this works.
PP$Understanding_GFFB <- PP$GFFB_Risk_30
length(PP$Understanding_GFFB)
## [1] 1005
describe(PP$Understanding_GFFB)
## PP$Understanding_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 497 508 94 0.994 69.54 29.72 16 29
## .25 .50 .75 .90 .95
## 53 74 93 100 100
##
## lowest : 0 1 2 4 6, highest: 96 97 98 99 100
sd(PP$Understanding_GFFB, na.rm=TRUE)
## [1] 26.81107
range(PP$Understanding_GFFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Understanding_GFFB, main = 'I understand how this works.')
PP$Understanding_GFPRB <- PP$GFPRB_Risk_30
length(PP$Understanding_GFPRB)
## [1] 1005
describe(PP$Understanding_GFPRB)
## PP$Understanding_GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 512 493 89 0.987 72.88 29.17 19.0 32.1
## .25 .50 .75 .90 .95
## 56.0 79.0 98.0 100.0 100.0
##
## lowest : 0 1 2 5 8, highest: 96 97 98 99 100
sd(PP$Understanding_GFPRB, na.rm=TRUE)
## [1] 26.7755
range(PP$Understanding_GFPRB, na.rm=TRUE)
## [1] 0 100
hist(PP$Understanding_GFPRB, main = 'I understand how this works.')
PP$Understanding_CBB <- PP$CBB_Risk_30
length(PP$Understanding_CBB)
## [1] 1005
describe(PP$Understanding_CBB)
## PP$Understanding_CBB
## n missing distinct Info Mean Gmd .05 .10
## 515 490 99 0.998 57.91 35.57 0 10
## .25 .50 .75 .90 .95
## 33 62 84 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
sd(PP$Understanding_CBB, na.rm=TRUE)
## [1] 31.06378
range(PP$Understanding_CBB, na.rm=TRUE)
## [1] 0 100
hist(PP$Understanding_CBB, main = 'I understand how this works.')
PP$Understanding_PBPB <- PP$PBPB_Risk_30
length(PP$Understanding_PBPB)
## [1] 1005
describe(PP$Understanding_PBPB)
## PP$Understanding_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 524 481 90 0.997 63.28 31.66 10.00 24.00
## .25 .50 .75 .90 .95
## 44.75 67.00 86.00 100.00 100.00
##
## lowest : 0 1 3 4 5, highest: 95 97 98 99 100
sd(PP$Understanding_PBPB, na.rm=TRUE)
## [1] 27.92296
range(PP$Understanding_PBPB, na.rm=TRUE)
## [1] 0 100
hist(PP$Understanding_PBPB, main = 'I understand how this works.')
PP$Understanding_PBFB <- PP$PBFB_Risk_30
length(PP$Understanding_PBFB)
## [1] 1005
describe(PP$Understanding_PBFB)
## PP$Understanding_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 480 525 97 0.998 57.91 35.23 0.00 10.00
## .25 .50 .75 .90 .95
## 33.75 64.00 82.00 100.00 100.00
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
sd(PP$Understanding_PBFB, na.rm=TRUE)
## [1] 30.87369
range(PP$Understanding_PBFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Understanding_PBFB, main = 'I understand how this works.')
#VB
PP$Understanding_VB <- PP$VB_Risk_30
length(PP$Understanding_VB)
## [1] 1005
describe(PP$Understanding_VB)
## PP$Understanding_VB
## n missing distinct Info Mean Gmd .05 .10
## 471 534 90 0.993 68.59 30.32 17 27
## .25 .50 .75 .90 .95
## 52 75 90 100 100
##
## lowest : 0 1 3 5 8, highest: 96 97 98 99 100
sd(PP$Understanding_VB, na.rm=TRUE)
## [1] 27.18276
range(PP$Understanding_VB, na.rm=TRUE)
## [1] 0 100
hist(PP$Understanding_VB, main = 'I understand how this works.')
#Familiarity and Understanding were highly correlated. Thus, we decided to combine them as a mean score.
#Create mean scores
PP$FR.GFFB <- rowMeans(PP [, c("Familiarity_GFFB", "Understanding_GFFB")], na.rm=TRUE)
PP$FR.GFPRB <- rowMeans(PP [, c("Familiarity_GFPRB", "Understanding_GFPRB")], na.rm=TRUE)
PP$FR.CBB <- rowMeans(PP [, c("Familiarity_CBB", "Understanding_CBB")], na.rm=TRUE)
PP$FR.PBPB <- rowMeans(PP [, c("Familiarity_PBPB", "Understanding_PBPB")], na.rm=TRUE)
PP$FR.PBFB <- rowMeans(PP [, c("Familiarity_PBFB", "Understanding_PBFB")], na.rm=TRUE)
PP$FR.VB <- rowMeans(PP [, c("Familiarity_VB", "Understanding_VB")], na.rm=TRUE)
#Descriptives
describe(PP$FR.GFFB)
## PP$FR.GFFB
## n missing distinct Info Mean Gmd .05 .10
## 498 507 156 0.998 66.18 28.02 18.85 33.35
## .25 .50 .75 .90 .95
## 50.00 67.25 86.50 100.00 100.00
##
## lowest : 0.0 1.5 7.0 8.0 10.0, highest: 98.0 98.5 99.0 99.5 100.0
describe(PP$FR.GFPRB)
## PP$FR.GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 513 492 141 0.996 73.05 26.21 31.3 44.6
## .25 .50 .75 .90 .95
## 54.0 77.5 93.5 100.0 100.0
##
## lowest : 0.0 4.5 9.0 13.0 14.0, highest: 98.0 98.5 99.0 99.5 100.0
describe(PP$FR.CBB)
## PP$FR.CBB
## n missing distinct Info Mean Gmd .05 .10
## 516 489 175 1 52.09 32.26 1.375 11.500
## .25 .50 .75 .90 .95
## 33.875 51.750 73.125 93.500 100.000
##
## lowest : 0.0 0.5 1.0 1.5 2.5, highest: 98.0 98.5 99.0 99.5 100.0
describe(PP$FR.PBPB)
## PP$FR.PBPB
## n missing distinct Info Mean Gmd .05 .10
## 524 481 160 1 58.87 27.62 17.65 25.50
## .25 .50 .75 .90 .95
## 45.88 57.50 77.62 91.85 100.00
##
## lowest : 0.0 0.5 1.5 2.5 3.5, highest: 96.0 96.5 98.0 99.5 100.0
describe(PP$FR.PBFB)
## PP$FR.PBFB
## n missing distinct Info Mean Gmd .05 .10
## 481 524 165 1 52.95 32.09 0.5 10.5
## .25 .50 .75 .90 .95
## 33.5 53.0 76.0 90.0 95.5
##
## lowest : 0.0 0.5 1.0 1.5 3.0, highest: 95.0 95.5 96.5 99.0 100.0
describe(PP$FR.VB)
## PP$FR.VB
## n missing distinct Info Mean Gmd .05 .10
## 472 533 155 0.999 65.33 26.92 22.05 36.50
## .25 .50 .75 .90 .95
## 50.00 66.50 84.12 99.00 100.00
##
## lowest : 0.0 1.0 2.5 6.0 7.5, highest: 98.0 98.5 99.0 99.5 100.0
#SD
sd(PP$FR.GFFB, na.rm = TRUE)
## [1] 24.79544
sd(PP$FR.GFPRB, na.rm = TRUE)
## [1] 23.67885
sd(PP$FR.CBB, na.rm = TRUE)
## [1] 28.1976
sd(PP$FR.PBPB, na.rm = TRUE)
## [1] 24.35105
sd(PP$FR.PBFB, na.rm = TRUE)
## [1] 28.00067
sd(PP$FR.VB, na.rm = TRUE)
## [1] 23.84396
#Histograms
hist(PP$FR.GFFB)
hist(PP$FR.GFPRB)
hist(PP$FR.CBB)
hist(PP$FR.PBPB)
hist(PP$FR.PBFB)
hist(PP$FR.VB)
#Scales
PP$FR_Scale_GFFB <- data.frame(PP$Familiarity_GFFB, PP$Understanding_GFFB)
PP$FR_Scale_GFPRB <- data.frame(PP$Familiarity_GFPRB, PP$Understanding_GFPRB)
PP$FR_Scale_CBB <- data.frame(PP$Familiarity_CBB, PP$Understanding_CBB)
PP$FR_Scale_PBPB <- data.frame(PP$Familiarity_PBPB, PP$Understanding_PBPB)
PP$FR_Scale_PBFB <- data.frame(PP$Familiarity_PBFB, PP$Understanding_PBFB)
PP$FR_Scale_VB <- data.frame(PP$Familiarity_VB, PP$Understanding_VB)
#Alphas
psych::alpha(PP$FR_Scale_GFFB)
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = PP$FR_Scale_GFFB)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.66 0.66 0.5 0.5 2 0.021 66 25 0.5
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.61 0.66 0.7
## Duhachek 0.62 0.66 0.7
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## PP.Familiarity_GFFB 0.56 0.5 0.25 0.5 0.98 NA 0
## PP.Understanding_GFFB 0.44 0.5 0.25 0.5 0.98 NA 0
## med.r
## PP.Familiarity_GFFB 0.5
## PP.Understanding_GFFB 0.5
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Familiarity_GFFB 493 0.88 0.86 0.61 0.5 63 30
## PP.Understanding_GFFB 497 0.85 0.86 0.61 0.5 70 27
psych::alpha(PP$FR_Scale_GFPRB)
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = PP$FR_Scale_GFPRB)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.76 0.76 0.62 0.62 3.2 0.015 73 24 0.62
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.73 0.76 0.79
## Duhachek 0.73 0.76 0.79
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## PP.Familiarity_GFPRB 0.59 0.62 0.38 0.62 1.6 NA 0
## PP.Understanding_GFPRB 0.64 0.62 0.38 0.62 1.6 NA 0
## med.r
## PP.Familiarity_GFPRB 0.62
## PP.Understanding_GFPRB 0.62
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Familiarity_GFPRB 511 0.9 0.9 0.71 0.62 73 26
## PP.Understanding_GFPRB 512 0.9 0.9 0.71 0.62 73 27
psych::alpha(PP$FR_Scale_CBB)
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = PP$FR_Scale_CBB)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.69 0.69 0.53 0.53 2.2 0.019 52 28 0.53
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.65 0.69 0.73
## Duhachek 0.65 0.69 0.73
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## PP.Familiarity_CBB 0.57 0.53 0.28 0.53 1.1 NA 0
## PP.Understanding_CBB 0.49 0.53 0.28 0.53 1.1 NA 0
## med.r
## PP.Familiarity_CBB 0.53
## PP.Understanding_CBB 0.53
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Familiarity_CBB 515 0.88 0.87 0.64 0.53 46 34
## PP.Understanding_CBB 515 0.86 0.87 0.64 0.53 58 31
psych::alpha(PP$FR_Scale_PBPB)
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = PP$FR_Scale_PBPB)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.57 0.57 0.4 0.4 1.3 0.027 59 24 0.4
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.51 0.57 0.62
## Duhachek 0.52 0.57 0.62
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## PP.Familiarity_PBPB 0.43 0.4 0.16 0.4 0.66 NA 0
## PP.Understanding_PBPB 0.37 0.4 0.16 0.4 0.66 NA 0
## med.r
## PP.Familiarity_PBPB 0.4
## PP.Understanding_PBPB 0.4
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Familiarity_PBPB 524 0.85 0.84 0.53 0.4 54 30
## PP.Understanding_PBPB 524 0.82 0.84 0.53 0.4 63 28
psych::alpha(PP$FR_Scale_PBFB)
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = PP$FR_Scale_PBFB)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.7 0.7 0.54 0.54 2.3 0.019 53 28 0.54
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.66 0.7 0.74
## Duhachek 0.66 0.7 0.74
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## PP.Familiarity_PBFB 0.58 0.54 0.29 0.54 1.2 NA 0
## PP.Understanding_PBFB 0.51 0.54 0.29 0.54 1.2 NA 0
## med.r
## PP.Familiarity_PBFB 0.54
## PP.Understanding_PBFB 0.54
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Familiarity_PBFB 481 0.89 0.88 0.64 0.54 48 33
## PP.Understanding_PBFB 480 0.87 0.88 0.64 0.54 58 31
psych::alpha(PP$FR_Scale_VB)
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = PP$FR_Scale_VB)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.6 0.6 0.43 0.43 1.5 0.025 65 24 0.43
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.55 0.6 0.65
## Duhachek 0.55 0.6 0.65
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## PP.Familiarity_VB 0.46 0.43 0.18 0.43 0.75 NA 0
## PP.Understanding_VB 0.40 0.43 0.18 0.43 0.75 NA 0
## med.r
## PP.Familiarity_VB 0.43
## PP.Understanding_VB 0.43
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Familiarity_VB 472 0.86 0.85 0.55 0.43 62 29
## PP.Understanding_VB 471 0.83 0.85 0.55 0.43 69 27
# Animal Welfare: How much do you agree or disagree with the following statements?
## Item 1: It is important to me that my food is produced in a way that animals have not experienced pain.
## Item 2: It is important to me that my food is produced in a way that animals' rights have been respected.
#Descriptives
describe(PP$AW_1)
## PP$AW_1
## n missing distinct Info Mean Gmd .05 .10
## 1001 4 99 0.99 69.77 30.34 16 28
## .25 .50 .75 .90 .95
## 52 75 96 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$AW_1, na.rm=TRUE)
## [1] 0 100
describe(PP$AW_2)
## PP$AW_2
## n missing distinct Info Mean Gmd .05 .10
## 1000 5 95 0.991 71.28 28.84 19.9 34.0
## .25 .50 .75 .90 .95
## 53.0 75.0 95.0 100.0 100.0
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$AW_2, na.rm=TRUE)
## [1] 0 100
#Histograms
hist(PP$AW_1, main = 'It is important to me that my food is produced in a way that animals have not experienced pain.')
hist(PP$AW_2, main = 'It is important to me that my food is produced in a way that animals rights have been respected.')
#Cronbach's Alpha
PP$AW_Scale <- data.frame(PP$AW_1, PP$AW_2)
PP$AW_Score <- rowMeans(PP [, c("AW_1", "AW_2")], na.rm=TRUE)
describe(PP$AW_Score)
## PP$AW_Score
## n missing distinct Info Mean Gmd .05 .10
## 1001 4 172 0.995 70.53 27.43 25.0 39.5
## .25 .50 .75 .90 .95
## 52.0 73.5 92.5 100.0 100.0
##
## lowest : 0.0 1.0 2.0 2.5 3.0, highest: 98.0 98.5 99.0 99.5 100.0
sd(PP$AW_Score,na.rm = TRUE)
## [1] 24.55248
psych::alpha(PP$AW_Scale)
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = PP$AW_Scale)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.82 0.82 0.69 0.69 4.5 0.011 71 25 0.69
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.79 0.82 0.84
## Duhachek 0.80 0.82 0.84
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.AW_1 0.73 0.69 0.48 0.69 2.3 NA 0 0.69
## PP.AW_2 0.66 0.69 0.48 0.69 2.3 NA 0 0.69
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.AW_1 1001 0.92 0.92 0.77 0.69 70 27
## PP.AW_2 1000 0.92 0.92 0.77 0.69 71 26
# Aversion to Tampering with Nature: How much do you agree or disagree with the following statements?
## Item 1: People who push for technological fixes to environmental problems are underestimating the risks.
## Item 2: People who say we shouldn’t tamper with nature are just being naïve.
## Item 3: Human beings have no right to meddle with the natural environment.
## Item 4: I would prefer to live in a world where humans leave nature alone.
## Item 5: Altering nature will be our downfall as a species.
# Item Definitions
PP$ATNS_1 <- as.numeric(as.character(PP$ATNS_36))
PP$ATNS_2 <- as.numeric(as.character(PP$ATNS_37))
PP$ATNS_3 <- as.numeric(as.character(PP$ATNS_38))
PP$ATNS_4 <- as.numeric(as.character(PP$ATNS_39))
PP$ATNS_5 <- as.numeric(as.character(PP$ATNS_40))
# Reverse Code Item 2
PP$ATNS_2R <- (100- PP$ATNS_2)
describe(PP$ATNS_2R)
## PP$ATNS_2R
## n missing distinct Info Mean Gmd .05 .10
## 999 6 101 0.999 48.8 35.98 0 8
## .25 .50 .75 .90 .95
## 24 47 75 99 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
# Descriptives
describe(PP$ATNS_1)
## PP$ATNS_1
## n missing distinct Info Mean Gmd .05 .10
## 1001 4 98 0.998 63.65 29.45 15 26
## .25 .50 .75 .90 .95
## 50 66 83 100 100
##
## lowest : 0 1 3 5 7, highest: 96 97 98 99 100
range(PP$ATNS_1, na.rm=TRUE)
## [1] 0 100
describe(PP$ATNS_2)
## PP$ATNS_2
## n missing distinct Info Mean Gmd .05 .10
## 999 6 101 0.999 51.2 35.98 0 1
## .25 .50 .75 .90 .95
## 25 53 76 92 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$ATNS_2, na.rm=TRUE)
## [1] 0 100
describe(PP$ATNS_3)
## PP$ATNS_3
## n missing distinct Info Mean Gmd .05 .10
## 1000 5 101 0.998 63.75 30.8 11.95 25.00
## .25 .50 .75 .90 .95
## 46.00 68.00 85.00 100.00 100.00
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$ATNS_3, na.rm=TRUE)
## [1] 0 100
describe(PP$ATNS_4)
## PP$ATNS_4
## n missing distinct Info Mean Gmd .05 .10
## 1000 5 98 0.995 67.9 29.41 17 30
## .25 .50 .75 .90 .95
## 52 72 88 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$ATNS_4, na.rm=TRUE)
## [1] 0 100
describe(PP$ATNS_5)
## PP$ATNS_5
## n missing distinct Info Mean Gmd .05 .10
## 1002 3 97 0.996 68.31 29.34 17 30
## .25 .50 .75 .90 .95
## 52 73 90 100 100
##
## lowest : 0 1 2 3 5, highest: 96 97 98 99 100
range(PP$ATNS_5, na.rm=TRUE)
## [1] 0 100
#Aversion to Tampering with Nature Scale Histograms by Item (No reversed codes)
hist(PP$ATNS_1, main = 'People who push for technological fixes to environmental problems are underestimating the risks.')
hist(PP$ATNS_2R, main = 'People who say we shouldn’t tamper with nature are just being naïve.')
hist(PP$ATNS_3, main = 'Human beings have no right to meddle with the natural environment.')
hist(PP$ATNS_4, main = 'I would prefer to live in a world where humans leave nature alone.')
hist(PP$ATNS_5, main = 'Altering nature will be our downfall as a species.')
#Cronbach's Alpha (Item 2 reverse coded)
PP$ATNS_Scale <- data.frame(PP$ATNS_1, PP$ATNS_2R, PP$ATNS_3, PP$ATNS_4, PP$ATNS_5)
psych::alpha(PP$ATNS_Scale)
## Number of categories should be increased in order to count frequencies.
## Warning in psych::alpha(PP$ATNS_Scale): Some items were negatively correlated with the total scale and probably
## should be reversed.
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( PP.ATNS_2R ) were negatively correlated with the total scale and
## probably should be reversed.
## To do this, run the function again with the 'check.keys=TRUE' option
##
## Reliability analysis
## Call: psych::alpha(x = PP$ATNS_Scale)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.62 0.65 0.65 0.27 1.8 0.019 62 17 0.39
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.58 0.62 0.66
## Duhachek 0.58 0.62 0.66
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.ATNS_1 0.56 0.59 0.58 0.26 1.4 0.023 0.0722 0.25
## PP.ATNS_2R 0.77 0.77 0.72 0.46 3.3 0.012 0.0039 0.45
## PP.ATNS_3 0.47 0.50 0.50 0.20 1.0 0.028 0.0625 0.19
## PP.ATNS_4 0.49 0.52 0.53 0.22 1.1 0.027 0.0736 0.22
## PP.ATNS_5 0.48 0.51 0.52 0.21 1.0 0.027 0.0670 0.19
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.ATNS_1 1001 0.64 0.66 0.530 0.400 64 26
## PP.ATNS_2R 999 0.34 0.29 -0.014 -0.017 49 31
## PP.ATNS_3 1000 0.76 0.77 0.722 0.568 64 27
## PP.ATNS_4 1000 0.73 0.74 0.662 0.526 68 26
## PP.ATNS_5 1002 0.74 0.76 0.695 0.551 68 26
describe(PP$ATNS_Scale)
## PP$ATNS_Scale
##
## 5 Variables 1005 Observations
## --------------------------------------------------------------------------------
## PP.ATNS_1
## n missing distinct Info Mean Gmd .05 .10
## 1001 4 98 0.998 63.65 29.45 15 26
## .25 .50 .75 .90 .95
## 50 66 83 100 100
##
## lowest : 0 1 3 5 7, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.ATNS_2R
## n missing distinct Info Mean Gmd .05 .10
## 999 6 101 0.999 48.8 35.98 0 8
## .25 .50 .75 .90 .95
## 24 47 75 99 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.ATNS_3
## n missing distinct Info Mean Gmd .05 .10
## 1000 5 101 0.998 63.75 30.8 11.95 25.00
## .25 .50 .75 .90 .95
## 46.00 68.00 85.00 100.00 100.00
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.ATNS_4
## n missing distinct Info Mean Gmd .05 .10
## 1000 5 98 0.995 67.9 29.41 17 30
## .25 .50 .75 .90 .95
## 52 72 88 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
## PP.ATNS_5
## n missing distinct Info Mean Gmd .05 .10
## 1002 3 97 0.996 68.31 29.34 17 30
## .25 .50 .75 .90 .95
## 52 73 90 100 100
##
## lowest : 0 1 2 3 5, highest: 96 97 98 99 100
## --------------------------------------------------------------------------------
PP$ATNS_Score <- rowMeans(PP [, c("ATNS_1", "ATNS_2R", "ATNS_3", "ATNS_4", "ATNS_5")], na.rm=TRUE)
describe(PP$ATNS_Score)
## PP$ATNS_Score
## n missing distinct Info Mean Gmd .05 .10
## 1002 3 313 1 62.48 19.4 34.21 42.42
## .25 .50 .75 .90 .95
## 51.20 62.00 73.40 84.38 94.79
##
## lowest : 0.0 1.0 2.4 3.6 7.2, highest: 98.8 99.2 99.6 99.8 100.0
sd(PP$ATNS_Score, na.rm = TRUE)
## [1] 17.36471
# Climate Change Belief: How much do you agree or disagree with the following statements?
## Item #1: Climate change is happening.
## Item #2: Climate change poses a risk to human health, safety, and prosperity.
## Item #3: Human activity is largely responsible for recent climate change.
## Item #4: Reducing greenhouse gas emissions will reduce global warming and climate change.
## Item Definitions
PP$CCBelief_1 <- as.numeric(as.character(PP$CCB_48))
PP$CCBelief_2 <- as.numeric(as.character(PP$CCB_49))
PP$CCBelief_3 <- as.numeric(as.character(PP$CCB_50))
PP$CCBelief_4 <- as.numeric(as.character(PP$CCB_51))
#Climate Change Belief Descriptives
describe(PP$CCBelief_1)
## PP$CCBelief_1
## n missing distinct Info Mean Gmd .05 .10
## 1001 4 94 0.98 75.62 27.18 22 38
## .25 .50 .75 .90 .95
## 63 82 100 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$CCBelief_1, na.rm=TRUE)
## [1] 0 100
describe(PP$CCBelief_2)
## PP$CCBelief_2
## n missing distinct Info Mean Gmd .05 .10
## 1001 4 94 0.985 72.26 29.56 20 33
## .25 .50 .75 .90 .95
## 55 78 99 100 100
##
## lowest : 0 1 2 4 5, highest: 96 97 98 99 100
range(PP$CCBelief_2, na.rm=TRUE)
## [1] 0 100
describe(PP$CCBelief_3)
## PP$CCBelief_3
## n missing distinct Info Mean Gmd .05 .10
## 1001 4 94 0.986 73 28.95 18 34
## .25 .50 .75 .90 .95
## 58 78 98 100 100
##
## lowest : 0 1 2 3 5, highest: 96 97 98 99 100
range(PP$CCBelief_3, na.rm=TRUE)
## [1] 0 100
describe(PP$CCBelief_4)
## PP$CCBelief_4
## n missing distinct Info Mean Gmd .05 .10
## 1001 4 97 0.994 69.18 29.37 19 32
## .25 .50 .75 .90 .95
## 52 73 93 100 100
##
## lowest : 0 1 2 4 5, highest: 96 97 98 99 100
range(PP$CCBelief_4, na.rm=TRUE)
## [1] 0 100
#Climate Change Belief Histograms
hist(PP$CCBelief_1, main = 'Climate Change Belief #1: Climate change is happening."')
hist(PP$CCBelief_2, main = 'Climate Change Belief #2:Climate change poses a risk to human health, safety, and prosperity."')
hist(PP$CCBelief_3, main = 'Climate Change Belief #3:Human activity is largely responsible for recent climate change."')
hist(PP$CCBelief_4, main = 'Climate Change Belief #4: Reducing greenhouse gas emissions will reduce global warming and climate change."')
PP$CCBelief_Score <- rowMeans(PP[, c('CCBelief_1', 'CCBelief_2', 'CCBelief_3','CCBelief_4')], na.rm=T)
describe(PP$CCBelief_Score)
## PP$CCBelief_Score
## n missing distinct Info Mean Gmd .05 .10
## 1001 4 275 0.997 72.51 25.73 31.75 44.75
## .25 .50 .75 .90 .95
## 56.00 75.25 93.25 100.00 100.00
##
## lowest : 0.00 0.50 0.75 1.00 1.25, highest: 99.00 99.25 99.50 99.75 100.00
#Cronbach's Alpha
PP$CCB_Scale <- data.frame(PP$CCB_48, PP$CCB_49, PP$CCB_50, PP$CCB_51)
psych::alpha(PP$CCB_Scale)
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = PP$CCB_Scale)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.91 0.91 0.88 0.71 9.8 0.0048 73 23 0.7
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.9 0.91 0.92
## Duhachek 0.9 0.91 0.92
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.CCB_48 0.87 0.87 0.82 0.69 6.5 0.0072 0.0011 0.70
## PP.CCB_49 0.87 0.87 0.82 0.69 6.7 0.0072 0.0035 0.66
## PP.CCB_50 0.88 0.88 0.84 0.71 7.5 0.0065 0.0037 0.70
## PP.CCB_51 0.90 0.90 0.86 0.75 9.0 0.0055 0.0013 0.76
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.CCB_48 1001 0.90 0.91 0.87 0.83 76 25
## PP.CCB_49 1001 0.90 0.90 0.86 0.82 72 27
## PP.CCB_50 1001 0.88 0.88 0.82 0.78 73 27
## PP.CCB_51 1001 0.85 0.85 0.77 0.73 69 26
PP$CCBelief_Score <- rowMeans(PP[, c('CCBelief_1', 'CCBelief_2', 'CCBelief_3','CCBelief_4')], na.rm=T)
#Correlation CCB
cor(PP$CCB_Scale, use= "complete.obs")
## PP.CCB_48 PP.CCB_49 PP.CCB_50 PP.CCB_51
## PP.CCB_48 1.0000000 0.7821006 0.7572658 0.6629838
## PP.CCB_49 0.7821006 1.0000000 0.7100200 0.6986891
## PP.CCB_50 0.7572658 0.7100200 1.0000000 0.6478465
## PP.CCB_51 0.6629838 0.6986891 0.6478465 1.0000000
# Political Identity: Which of the following describes your political orientation? (1 = Strongly Conservative, 2 = Moderately Conservative, 3 = Slightly Conservative, 4 = Neither Conservative Nor Liberal, 5 = Slightly Liberal, 6 = Moderately Liberal, 7 = Strongly Liberal)
PP$polOR <- factor(PP$PI_Orientation, levels = c(1, 2, 3, 4, 5, 6, 7),
labels = c("Strongly Conservative", "Moderately Conservative", "Slightly Conservative", "Neither Conservative Nor Liberal", "Slightly Liberal", "Moderately Liberal", "Strongly Liberal"))
table(PP$polOR)
##
## Strongly Conservative Moderately Conservative
## 126 171
## Slightly Conservative Neither Conservative Nor Liberal
## 124 301
## Slightly Liberal Moderately Liberal
## 93 93
## Strongly Liberal
## 94
# Political Orientation: Which of the following best describes your political orientation? ( 1 = Strongly Conservative to 7 = Strongly Liberal)
library(dplyr)
PP$Orientation <- as.numeric(recode(PP$PI_Orientation,
"1" = "+3",
"2" = "+2",
"3" = "+1",
"4" = "0",
"5" = "-1",
"6" = "-2",
"7" = "-3"))
describe(PP$Orientation)
## PP$Orientation
## n missing distinct Info Mean Gmd
## 1002 3 7 0.962 0.2824 2.003
##
## lowest : -3 -2 -1 0 1, highest: -1 0 1 2 3
##
## Value -3 -2 -1 0 1 2 3
## Frequency 94 93 93 301 124 171 126
## Proportion 0.094 0.093 0.093 0.300 0.124 0.171 0.126
hist(PP$Orientation, main = 'Political Orientation (Liberal to Conservative)')
# Political Party
##Generally speaking, do you usually think of yourself as a Republican, a Democrat, an Independent, or what? (1 = Republican, 2 = Democrat, 3 = Independent, 4 = Other (write-in), 5 = No Preference)
PP$Party <- PP$PP_Party
describe(PP$Party)
## PP$Party
## n missing distinct Info Mean Gmd
## 1003 2 5 0.907 2.197 1.13
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 290 370 263 15 65
## Proportion 0.289 0.369 0.262 0.015 0.065
PP$Party <- PP$Party
PP$DemStrength <- PP$DStrength
PP$RepStrength <- PP$RStrength
PP$PartyClose <- PP$Closerto
# Recode Party
PP$PartyFull <- NA
PP$PartyFull[PP$DemStrength == 1] <- -3
PP$PartyFull[PP$DemStrength == 2] <- -2
PP$PartyFull[PP$PartyClose == 1] <- -1
PP$PartyFull[PP$PartyClose == 3] <- 0
PP$PartyFull[PP$PartyClose == 2] <- 1
PP$PartyFull[PP$RepStrength == 2] <- 2
PP$PartyFull[PP$RepStrength == 1] <- 3
describe(PP$PartyFull)
## PP$PartyFull
## n missing distinct Info Mean Gmd
## 996 9 7 0.967 -0.1797 2.495
##
## lowest : -3 -2 -1 0 1, highest: -1 0 1 2 3
##
## Value -3 -2 -1 0 1 2 3
## Frequency 227 136 66 212 65 95 195
## Proportion 0.228 0.137 0.066 0.213 0.065 0.095 0.196
hist(PP$PartyFull , main = 'Party Identification')
#New Variable: Ideology
cor.test(PP$PartyFull, PP$Orientation, na.rm = TRUE)
##
## Pearson's product-moment correlation
##
## data: PP$PartyFull and PP$Orientation
## t = 15.701, df = 993, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.3947637 0.4944162
## sample estimates:
## cor
## 0.445971
PP$Ideology <- rowMeans(PP[, c('PartyFull', 'Orientation')], na.rm=T)
describe(PP$Ideology)
## PP$Ideology
## n missing distinct Info Mean Gmd .05 .10
## 1003 2 13 0.988 0.05184 1.934 -3.0 -2.5
## .25 .50 .75 .90 .95
## -1.0 0.0 1.5 2.5 3.0
##
## lowest : -3.0 -2.5 -2.0 -1.5 -1.0, highest: 1.0 1.5 2.0 2.5 3.0
##
## Value -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
## Frequency 67 43 43 93 74 87 198 61 63 87 52
## Proportion 0.067 0.043 0.043 0.093 0.074 0.087 0.197 0.061 0.063 0.087 0.052
##
## Value 2.5 3.0
## Frequency 59 76
## Proportion 0.059 0.076
hist(PP$Ideology)
# Connectedness to Nature was measured with 5 items on a 0-100 scale ( 0 = 'Strongly disagree' to 100 = 'Strongly agree'). Connected to nature score was calculated by averaging these items.
## Item 1: I often feel a sense of oneness with the natural world around me.'
## Item 2: I think of the natural world as a community to which I belong.'
## Item 3: I feel that all inhabitants of Earth, human, and nonhuman, share a common ‘life force’.
## Item 4: My personal welfare is independent of the welfare of the natural world.
## Item 5: When I think of my place on Earth, I consider myself to be a top member of a hierarchy that exists in nature.
#Connectedness to Nature Item Definitions
PP$CNS_1 <- as.numeric(as.character(PP$CNS_29))
PP$CNS_2 <- as.numeric(as.character(PP$CNS_30))
PP$CNS_3 <- as.numeric(as.character(PP$CNS_31))
PP$CNS_4 <- as.numeric(as.character(PP$CNS_32))
PP$CNS_5 <- as.numeric(as.character(PP$CNS_33))
#Descriptives
describe(PP$CNS_1)
## PP$CNS_1
## n missing distinct Info Mean Gmd .05 .10
## 1002 3 96 0.997 66.57 28.06 22.0 31.0
## .25 .50 .75 .90 .95
## 52.0 69.5 86.0 100.0 100.0
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$CNS_1, na.rm=TRUE)
## [1] 0 100
describe(PP$CNS_2)
## PP$CNS_2
## n missing distinct Info Mean Gmd .05 .10
## 1002 3 94 0.997 70.1 25.63 27.05 38.00
## .25 .50 .75 .90 .95
## 55.00 72.50 87.00 100.00 100.00
##
## lowest : 0 1 2 3 5, highest: 96 97 98 99 100
range(PP$CNS_2, na.rm=TRUE)
## [1] 0 100
describe(PP$CNS_3)
## PP$CNS_3
## n missing distinct Info Mean Gmd .05 .10
## 1002 3 98 0.995 69.48 27.62 21 36
## .25 .50 .75 .90 .95
## 53 73 90 100 100
##
## lowest : 0 1 3 5 6, highest: 96 97 98 99 100
range(PP$CNS_3, na.rm=TRUE)
## [1] 0 100
describe(PP$CNS_4)
## PP$CNS_4
## n missing distinct Info Mean Gmd .05 .10
## 1001 4 100 0.999 58.97 32.46 0 15
## .25 .50 .75 .90 .95
## 40 63 80 99 100
##
## lowest : 0 1 2 3 4, highest: 95 96 97 99 100
range(PP$CNS_4, na.rm=TRUE)
## [1] 0 100
describe(PP$CNS_5)
## PP$CNS_5
## n missing distinct Info Mean Gmd .05 .10
## 1002 3 101 0.999 59.54 31.64 2.05 19.10
## .25 .50 .75 .90 .95
## 41.00 63.00 81.00 98.00 100.00
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$CNS_5, na.rm=TRUE)
## [1] 0 100
#Histograms
hist(PP$CNS_1, main = 'I often feel a sense of oneness with the natural world around me.')
hist(PP$CNS_2, main = 'I think of the natural world as a community to which I belong.')
hist(PP$CNS_3, main = 'I feel that all inhabitants of Earth, human, and nonhuman, share a common ‘life force’.')
hist(PP$CNS_4, main = 'My personal welfare is independent of the welfare of the natural world.')
hist(PP$CNS_5, main = 'When I think of my place on Earth, I consider myself to be a top member of a hierarchy that exists in nature.')
#Recode items 4 and 5
PP$CNS_4R <- (100 - PP$CNS_4)
PP$CNS_5R <- (100 - PP$CNS_5)
PP$CNS_Scale2 <- data.frame(PP$CNS_1, PP$CNS_2, PP$CNS_3, PP$CNS_4R, PP$CNS_5R)
psych::alpha(PP$CNS_Scale2)
## Number of categories should be increased in order to count frequencies.
## Warning in psych::alpha(PP$CNS_Scale2): Some items were negatively correlated with the total scale and probably
## should be reversed.
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( PP.CNS_4R PP.CNS_5R ) were negatively correlated with the total scale and
## probably should be reversed.
## To do this, run the function again with the 'check.keys=TRUE' option
##
## Reliability analysis
## Call: psych::alpha(x = PP$CNS_Scale2)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.16 0.22 0.44 0.053 0.28 0.044 58 12 -0.2
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.07 0.16 0.24
## Duhachek 0.07 0.16 0.25
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.CNS_1 -0.0065 0.004 0.27 0.001 0.004 0.054 0.14 -0.20
## PP.CNS_2 -0.0767 -0.070 0.21 -0.017 -0.065 0.058 0.14 -0.22
## PP.CNS_3 -0.1048 -0.094 0.21 -0.022 -0.086 0.060 0.15 -0.22
## PP.CNS_4R 0.3084 0.374 0.52 0.130 0.597 0.036 0.22 0.14
## PP.CNS_5R 0.3919 0.453 0.55 0.171 0.827 0.032 0.18 0.17
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.CNS_1 1002 0.57 0.62 0.561 0.194 67 25
## PP.CNS_2 1002 0.60 0.66 0.645 0.272 70 23
## PP.CNS_3 1002 0.62 0.67 0.652 0.276 69 25
## PP.CNS_4R 1001 0.38 0.30 -0.052 -0.083 41 29
## PP.CNS_5R 1002 0.28 0.20 -0.171 -0.174 40 28
#Drop reverse coded items
PP$CNS_Scale <- data.frame(PP$CNS_1, PP$CNS_2, PP$CNS_3)
psych::alpha(PP$CNS_Scale)
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = PP$CNS_Scale)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.79 0.79 0.71 0.55 3.7 0.012 69 20 0.55
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.76 0.79 0.81
## Duhachek 0.77 0.79 0.81
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.CNS_1 0.73 0.73 0.58 0.58 2.8 0.017 NA 0.58
## PP.CNS_2 0.70 0.70 0.54 0.54 2.3 0.019 NA 0.54
## PP.CNS_3 0.71 0.71 0.55 0.55 2.4 0.018 NA 0.55
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.CNS_1 1002 0.83 0.83 0.69 0.61 67 25
## PP.CNS_2 1002 0.84 0.85 0.73 0.64 70 23
## PP.CNS_3 1002 0.84 0.84 0.71 0.63 69 25
PP$CNS_Score <- rowMeans(PP [, c("CNS_1", "CNS_2", "CNS_3", "CNS_4R", "CNS_5R")], na.rm=TRUE)
describe(PP$CNS_Score)
## PP$CNS_Score
## n missing distinct Info Mean Gmd .05 .10
## 1002 3 240 1 57.53 12.97 40.00 45.00
## .25 .50 .75 .90 .95
## 50.60 56.60 61.80 71.80 80.19
##
## lowest : 18.0 20.0 21.8 22.2 22.6, highest: 98.0 98.8 99.6 99.8 100.0
sd(PP$CNS_Score, na.rm = TRUE)
## [1] 12.4355
#Correlation CCB
cor(PP$CNS_Scale, use= "complete.obs")
## PP.CNS_1 PP.CNS_2 PP.CNS_3
## PP.CNS_1 1.0000000 0.5501475 0.5350697
## PP.CNS_2 0.5501475 1.0000000 0.5794158
## PP.CNS_3 0.5350697 0.5794158 1.0000000
# Control was measured with 1 item on a 0-100 scale ( 0 = 'Strongly disagree' to 100 = 'Strongly agree').
## Item #1: We have control over the processes in this method.
#GFFB
PP$Control_GFFB <- PP$GFFB_Risk_34
length(PP$Control_GFFB)
## [1] 1005
describe(PP$Control_GFFB)
## PP$Control_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 496 509 95 0.997 65.44 30.6 3.75 25.00
## .25 .50 .75 .90 .95
## 51.75 69.00 86.00 100.00 100.00
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Control_GFFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Control_GFFB, main = 'We have control over the processes in this method.')
#GFPRB
PP$Control_GFPRB <- PP$GFPRB_Risk_34
length(PP$Control_GFPRB)
## [1] 1005
describe(PP$Control_GFPRB)
## PP$Control_GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 512 493 90 0.996 67.08 30.19 13 26
## .25 .50 .75 .90 .95
## 51 72 88 100 100
##
## lowest : 0 1 8 9 11, highest: 96 97 98 99 100
range(PP$Control_GFPRB, na.rm=TRUE)
## [1] 0 100
hist(PP$Control_GFPRB, main = 'We have control over the processes in this method.')
#CBB
PP$Control_CBB <- PP$CBB_Risk_34
length(PP$Control_CBB)
## [1] 1005
describe(PP$Control_CBB)
## PP$Control_CBB
## n missing distinct Info Mean Gmd .05 .10
## 516 489 94 0.998 61.67 32.83 0.75 18.50
## .25 .50 .75 .90 .95
## 43.00 67.00 85.00 100.00 100.00
##
## lowest : 0 1 3 4 5, highest: 95 96 98 99 100
range(PP$Control_CBB, na.rm=TRUE)
## [1] 0 100
hist(PP$Control_CBB, main = 'We have control over the processes in this method.')
#PBPB
PP$Control_PBPB <- PP$PBPB_Risk_34
length(PP$Control_PBPB)
## [1] 1005
describe(PP$Control_PBPB)
## PP$Control_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 523 482 91 0.997 65.41 29.39 15.1 28.0
## .25 .50 .75 .90 .95
## 52.0 69.0 85.0 100.0 100.0
##
## lowest : 0 2 3 6 10, highest: 96 97 98 99 100
range(PP$Control_PBPB, na.rm=TRUE)
## [1] 0 100
hist(PP$Control_PBPB, main = 'We have control over the processes in this method.')
#PBFB
PP$Control_PBFB <- PP$PBFB_Risk_34
length(PP$Control_PBFB)
## [1] 1005
describe(PP$Control_PBFB)
## PP$Control_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 481 524 93 0.998 63.87 31.74 4 20
## .25 .50 .75 .90 .95
## 49 70 85 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Control_PBFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Control_PBFB, main = 'We have control over the processes in this method.')
#VB
PP$Control_VB <- PP$VB_Risk_34
length(PP$Control_VB)
## [1] 1005
describe(PP$Control_VB)
## PP$Control_VB
## n missing distinct Info Mean Gmd .05 .10
## 471 534 93 0.996 65.91 30.96 13 25
## .25 .50 .75 .90 .95
## 51 70 89 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Control_VB, na.rm=TRUE)
## [1] 0 100
hist(PP$Control_VB, main = 'We have control over the processes in this method.')
# Disgust was measured with 1 item on a 0-100 scale ( 0 = 'Strongly disagree' to 100 = 'Strongly agree').
## Item #1: This is disgusting.
#GFFB
PP$Disgust_GFFB <- PP$GFFB_Risk_37
length(PP$Disgust_GFFB)
## [1] 1005
describe(PP$Disgust_GFFB)
## PP$Disgust_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 496 509 98 0.997 49.5 38.87 0 0
## .25 .50 .75 .90 .95
## 20 51 79 100 100
##
## lowest : 0 1 2 3 4, highest: 95 97 98 99 100
range(PP$Disgust_GFFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Disgust_GFFB, main = 'This is disgusting.')
#GFPRB
PP$Disgust_GFPRB <- PP$GFPRB_Risk_37
length(PP$Disgust_GFPRB)
## [1] 1005
describe(PP$Disgust_GFPRB)
## PP$Disgust_GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 512 493 97 0.988 35.25 37.16 0.00 0.00
## .25 .50 .75 .90 .95
## 2.00 27.00 62.25 87.90 100.00
##
## lowest : 0 1 2 3 4, highest: 95 96 97 98 100
range(PP$Disgust_GFPRB, na.rm=TRUE)
## [1] 0 100
hist(PP$Disgust_GFPRB, main = 'This is disgusting.')
#CBB
PP$Disgust_CBB <- PP$CBB_Risk_37
length(PP$Disgust_CBB)
## [1] 1005
describe(PP$Disgust_CBB)
## PP$Disgust_CBB
## n missing distinct Info Mean Gmd .05 .10
## 512 493 97 0.996 54.62 39.24 0.00 1.00
## .25 .50 .75 .90 .95
## 23.75 58.50 85.25 100.00 100.00
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Disgust_CBB, na.rm=TRUE)
## [1] 0 100
hist(PP$Disgust_CBB, main = 'This is disgusting.')
#PBPB
PP$Disgust_PBPB <- PP$PBPB_Risk_37
length(PP$Disgust_PBPB)
## [1] 1005
describe(PP$Disgust_PBPB)
## PP$Disgust_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 525 480 98 0.998 48.87 38.39 0.0 0.0
## .25 .50 .75 .90 .95
## 20.0 50.0 77.0 99.6 100.0
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$Disgust_PBPB, na.rm=TRUE)
## [1] 0 100
hist(PP$Disgust_PBPB, main = 'This is disgusting.')
#PBFB
PP$Disgust_PBFB <- PP$PBFB_Risk_37
length(PP$Disgust_PBFB)
## [1] 1005
describe(PP$Disgust_PBFB)
## PP$Disgust_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 481 524 98 0.997 53.33 39.31 0 3
## .25 .50 .75 .90 .95
## 22 56 83 100 100
##
## lowest : 0 1 2 3 5, highest: 96 97 98 99 100
range(PP$Disgust_PBFB, na.rm=TRUE)
## [1] 0 100
hist(PP$Disgust_PBFB, main = 'This is disgusting.')
#VB
PP$Disgust_VB <- PP$VB_Risk_37
length(PP$Disgust_VB)
## [1] 1005
describe(PP$Disgust_VB)
## PP$Disgust_VB
## n missing distinct Info Mean Gmd .05 .10
## 470 535 98 0.997 44.34 37.49 0.00 0.00
## .25 .50 .75 .90 .95
## 16.00 43.50 72.75 92.00 100.00
##
## lowest : 0 1 2 3 4, highest: 95 96 98 99 100
range(PP$Disgust_VB, na.rm=TRUE)
## [1] 0 100
hist(PP$Disgust_VB, main = 'This is disgusting.')
#DS-R Disgust Scale (Olantunji et al., 2007)
##Assesses three disgust domains (core, animal reminder, contamination) on a 0-100 scale.
##Item 1: If I see someone vomit, it makes me sick to my stomach.
##Item 2: It would not upset me at all to watch a person with a glass eye take the eye out of the socket. (reverse coded)
##Item 3: I never let any part of my body touch the toilet seat in a public washroom.
#Define Variables
PP$DS_1D <- as.numeric(as.character(PP$DS_1))
PP$DS_2D <- as.numeric(as.character(PP$DS_8))
PP$DS_2R <- (100- PP$DS_2D)
PP$DS_3D <- as.numeric(as.character(PP$DS_2))
PP$DS_Score <- rowMeans(PP[, c('DS_1D', 'DS_2R', 'DS_3D')], na.rm=T)
#Descriptives
describe(PP$DS_1)
## PP$DS_1
## n missing distinct Info Mean Gmd .05 .10
## 1000 5 99 0.994 65.68 33.9 2 18
## .25 .50 .75 .90 .95
## 44 72 92 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$DS_1, na.rm=TRUE)
## [1] 0 100
describe(PP$DS_2)
## PP$DS_2
## n missing distinct Info Mean Gmd .05 .10
## 1001 4 100 0.994 58.14 38.51 0 3
## .25 .50 .75 .90 .95
## 30 63 89 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$DS_2, na.rm=TRUE)
## [1] 0 100
describe(PP$DS_3)
## PP$DS_3
## n missing distinct Info Mean Gmd .05 .10
## 1001 4 100 0.994 58.14 38.51 0 3
## .25 .50 .75 .90 .95
## 30 63 89 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
range(PP$DS_3, na.rm=TRUE)
## [1] 0 100
#Histograms
hist(PP$DS_1, main = 'If I see someone vomit, it makes me sick to my stomach.')
hist(PP$DS_2, main = 'It would not upset me at all to watch a person with a glass eye take the eye out of the socket.')
hist(PP$DS_3, main = 'I never let any part of my body touch the toilet seat in a public washroom.')
PP$DS_Scale <- data.frame(PP$DS_1D, PP$DS_2R,PP$DS_3D)
psych::alpha(PP$DS_Scale)
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = PP$DS_Scale)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.27 0.28 0.24 0.12 0.39 0.04 58 21 0.12
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.19 0.27 0.34
## Duhachek 0.19 0.27 0.35
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.DS_1D -0.10 -0.10 -0.05 -0.05 -0.094 0.070 NA -0.05
## PP.DS_2R 0.43 0.43 0.27 0.27 0.750 0.036 NA 0.27
## PP.DS_3D 0.22 0.22 0.12 0.12 0.281 0.049 NA 0.12
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.DS_1D 1000 0.70 0.73 0.52 0.29 66 30
## PP.DS_2R 1000 0.58 0.56 0.10 0.04 49 34
## PP.DS_3D 1001 0.65 0.64 0.32 0.14 58 34
PP$DS_Score <- rowMeans(PP [, c("DS_1D", "DS_2R", "DS_3D")], na.rm=TRUE)
describe(PP$DS_Score)
## PP$DS_Score
## n missing distinct Info Mean Gmd .05 .10
## 1001 4 237 1 57.55 23.21 20.67 32.67
## .25 .50 .75 .90 .95
## 45.33 58.67 67.67 86.00 96.00
##
## lowest : 0.0000000 0.6666667 1.6666667 2.6666667 3.6666667
## highest: 98.0000000 98.3333333 99.3333333 99.6666667 100.0000000
sd(PP$DS_Score, na.rm = TRUE)
## [1] 20.8253
#Correlation CCB
cor(PP$DS_Scale, use= "complete.obs")
## PP.DS_1D PP.DS_2R PP.DS_3D
## PP.DS_1D 1.0000000 0.1230523 0.2723974
## PP.DS_2R 0.1230523 1.0000000 -0.0495374
## PP.DS_3D 0.2723974 -0.0495374 1.0000000
#Individualism and Collectivism Scale (Code adapted from J.Cole Collectivism Study)
#Individualism and collectivism were each measured with 4 items (for a total of 8 items) on a 1-7 scale of agreement (0 = 'Strongly disagree' to 100 = 'Strongly agree').
##Collectivism Items
### Item #3 (C): It is important to me to think of myself as a member of my religious, national, or ethnic group.
### Item #4 (C): Learning about the traditions, values, and beliefs of my family is important to me.
### Item #7 (C): In the end, a person feels closest to members of their own religious, national, or ethnic group.
### Item #8 (C): It is important to me to respect decisions made by my family.
##Individualism Items
### Item #1 (I): It is important to me to develop my own personal style.
### Item #2 (I): It is better for me to follow my own ideas than to follow those of anyone else.
### Item #5 (I): I enjoy being unique and different from others in many respects.
###I Item #6 (I): My personal achievements and accomplishments are very important to who I am.
#Individualism (Items 1,2,5,6)
PP$Ind_1 <- as.numeric(as.character(PP$Individualism_19))
PP$Ind_2 <- as.numeric(as.character(PP$Individualism_20))
PP$Ind_5 <- as.numeric(as.character(PP$Individualism_23))
PP$Ind_6 <- as.numeric(as.character(PP$Individualism_24))
PP$Individualism_Score <- rowMeans(PP[, c('Ind_1', 'Ind_2', 'Ind_5','Ind_6')], na.rm=T)
describe(PP$Individualism_Score)
## PP$Individualism_Score
## n missing distinct Info Mean Gmd .05 .10
## 1002 3 250 0.999 73.77 20.36 45.51 51.00
## .25 .50 .75 .90 .95
## 60.56 75.00 87.94 98.75 100.00
##
## lowest : 0.00 11.50 22.75 25.00 27.75, highest: 99.00 99.25 99.50 99.75 100.00
sd(PP$Individualism_Score, na.rm = TRUE)
## [1] 17.96741
#Collectivism (Items 3,4,7,8)
PP$Ind_3 <- as.numeric(as.character(PP$Individualism_21))
PP$Ind_4 <- as.numeric(as.character(PP$Individualism_22))
PP$Ind_7 <- as.numeric(as.character(PP$Individualism_25))
PP$Ind_8 <- as.numeric(as.character(PP$Individualism_34))
PP$Collectivism_Score <- rowMeans(PP[, c('Ind_3', 'Ind_4', 'Ind_7','Ind_8')], na.rm=T)
describe(PP$Collectivism_Score)
## PP$Collectivism_Score
## n missing distinct Info Mean Gmd .05 .10
## 1003 2 292 1 66.53 23.15 30.25 40.05
## .25 .50 .75 .90 .95
## 52.25 66.75 81.75 94.00 100.00
##
## lowest : 0.00 1.25 7.00 9.50 10.50, highest: 99.00 99.25 99.50 99.75 100.00
sd(PP$Collectivism_Score, na.rm = TRUE)
## [1] 20.44642
#Individualism Alpha and Histogram (4 items)
psych::alpha(data.frame(PP$Ind_1, PP$Ind_2, PP$Ind_5,PP$Ind_6))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$Ind_1, PP$Ind_2, PP$Ind_5, PP$Ind_6))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.8 0.8 0.75 0.5 3.9 0.01 74 18 0.49
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.78 0.8 0.82
## Duhachek 0.78 0.8 0.82
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Ind_1 0.72 0.72 0.63 0.46 2.5 0.015 0.00254 0.43
## PP.Ind_2 0.74 0.74 0.67 0.49 2.9 0.014 0.00574 0.47
## PP.Ind_5 0.74 0.74 0.66 0.49 2.8 0.014 0.00397 0.47
## PP.Ind_6 0.79 0.79 0.71 0.55 3.7 0.012 0.00089 0.55
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Ind_1 1000 0.82 0.82 0.75 0.67 75 23
## PP.Ind_2 1000 0.79 0.79 0.69 0.62 74 23
## PP.Ind_5 1000 0.80 0.80 0.70 0.63 74 23
## PP.Ind_6 1000 0.74 0.74 0.59 0.53 72 23
hist(PP$Individualism_Score , main = 'Individualism Score')
#Collectivism Alpha and Histogram (4 items)
psych::alpha(data.frame(PP$Ind_3, PP$Ind_4, PP$Ind_7, PP$Ind_8))
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = data.frame(PP$Ind_3, PP$Ind_4, PP$Ind_7, PP$Ind_8))
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.76 0.77 0.73 0.45 3.3 0.012 67 20 0.42
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.74 0.76 0.79
## Duhachek 0.74 0.76 0.79
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Ind_3 0.69 0.69 0.61 0.43 2.2 0.017 0.0090 0.38
## PP.Ind_4 0.71 0.70 0.63 0.44 2.4 0.016 0.0138 0.38
## PP.Ind_7 0.70 0.72 0.64 0.46 2.5 0.016 0.0059 0.45
## PP.Ind_8 0.73 0.73 0.65 0.47 2.7 0.014 0.0102 0.45
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Ind_3 998 0.82 0.79 0.69 0.61 60 31
## PP.Ind_4 1000 0.75 0.77 0.66 0.57 72 24
## PP.Ind_7 1000 0.77 0.76 0.64 0.57 64 27
## PP.Ind_8 1001 0.72 0.75 0.62 0.52 70 24
hist(PP$Collectivism_Score , main = 'Collectivism Score')
#Cronbachs Alpha for Individualism and Collectivism scales
PP$IndScale <- data.frame(PP$Ind_1, PP$Ind_2, PP$Ind_5,PP$Ind_6)
psych::alpha(PP$IndScale)
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = PP$IndScale)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.8 0.8 0.75 0.5 3.9 0.01 74 18 0.49
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.78 0.8 0.82
## Duhachek 0.78 0.8 0.82
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Ind_1 0.72 0.72 0.63 0.46 2.5 0.015 0.00254 0.43
## PP.Ind_2 0.74 0.74 0.67 0.49 2.9 0.014 0.00574 0.47
## PP.Ind_5 0.74 0.74 0.66 0.49 2.8 0.014 0.00397 0.47
## PP.Ind_6 0.79 0.79 0.71 0.55 3.7 0.012 0.00089 0.55
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Ind_1 1000 0.82 0.82 0.75 0.67 75 23
## PP.Ind_2 1000 0.79 0.79 0.69 0.62 74 23
## PP.Ind_5 1000 0.80 0.80 0.70 0.63 74 23
## PP.Ind_6 1000 0.74 0.74 0.59 0.53 72 23
PP$CollScale <- data.frame(PP$Ind_3, PP$Ind_4, PP$Ind_7, PP$Ind_8)
psych::alpha(PP$CollScale)
## Number of categories should be increased in order to count frequencies.
##
## Reliability analysis
## Call: psych::alpha(x = PP$CollScale)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.76 0.77 0.73 0.45 3.3 0.012 67 20 0.42
##
## 95% confidence boundaries
## lower alpha upper
## Feldt 0.74 0.76 0.79
## Duhachek 0.74 0.76 0.79
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PP.Ind_3 0.69 0.69 0.61 0.43 2.2 0.017 0.0090 0.38
## PP.Ind_4 0.71 0.70 0.63 0.44 2.4 0.016 0.0138 0.38
## PP.Ind_7 0.70 0.72 0.64 0.46 2.5 0.016 0.0059 0.45
## PP.Ind_8 0.73 0.73 0.65 0.47 2.7 0.014 0.0102 0.45
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## PP.Ind_3 998 0.82 0.79 0.69 0.61 60 31
## PP.Ind_4 1000 0.75 0.77 0.66 0.57 72 24
## PP.Ind_7 1000 0.77 0.76 0.64 0.57 64 27
## PP.Ind_8 1001 0.72 0.75 0.62 0.52 70 24
# Beef Consumption Frequency measured with the question, "In the average week, how often do you eat beef?" (1 = Never, 2 = Less than once a week, 3 = 1-2 times a week, 4 = 3-4 times a week, 5 = 5+ times a week)
describe(PP$Beef_Frequency)
## PP$Beef_Frequency
## n missing distinct Info Mean Gmd
## 1005 0 5 0.902 3.046 1.091
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 60 219 430 207 89
## Proportion 0.060 0.218 0.428 0.206 0.089
sd(PP$Beef_Frequency, na.rm = TRUE)
## [1] 1.007885
histogram(PP$Beef_Frequency)
# Non-Beef Consumption Frequency measured with the question, "In the average week, how often do you eat meat, not including beef? (i.e. poultry, fish, etc.)" (1 = Never, 2 = Less than once a week, 3 = 1-2 times a week, 4 = 3-4 times a week, 5 = 5+ times a week)
describe(PP$NonBeef_Frequency)
## PP$NonBeef_Frequency
## n missing distinct Info Mean Gmd
## 1005 0 5 0.924 3.369 1.161
##
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##
## Value 1 2 3 4 5
## Frequency 43 156 351 297 158
## Proportion 0.043 0.155 0.349 0.296 0.157
sd(PP$NonBeef_Frequency, na.rm = TRUE)
## [1] 1.056211
histogram(PP$NonBeef_Frequency)
# Correlations between key constructs across all six technology types (grain-fed beef, grass-fed beef, cultured beef, plant-based, plant-based fermentation, veggie)
#Naturalness Perceptions of Technologies
PP$corNScales <- data.frame(PP$Naturalness.GFFB, PP$Naturalness_Scale_GFPRB_Tot, PP$Naturalness_Scale_CBB_Tot, PP$Naturalness_Scale_PBPB_Tot, PP$Naturalness_Scale_PBFB_Tot, PP$Naturalness_Scale_VB_Tot)
mydata.cor5 = cor(PP$corNScales, use = "pairwise.complete.obs")
head(round(mydata.cor5,2))
## PP.Naturalness.GFFB PP.Nat_1_GFPRB PP.Nat_4R_GFPRB
## PP.Naturalness.GFFB 1.00 0.25 0.40
## PP.Nat_1_GFPRB 0.25 1.00 0.38
## PP.Nat_4R_GFPRB 0.40 0.38 1.00
## PP.Nat_2R_GFPRB 0.41 0.25 0.68
## PP.Nat_3R_GFPRB 0.37 0.14 0.52
## PP.Nat_1_CBB -0.26 -0.10 -0.34
## PP.Nat_2R_GFPRB PP.Nat_3R_GFPRB PP.Nat_1_CBB PP.Nat_4R_CBB
## PP.Naturalness.GFFB 0.41 0.37 -0.26 0.15
## PP.Nat_1_GFPRB 0.25 0.14 -0.10 -0.05
## PP.Nat_4R_GFPRB 0.68 0.52 -0.34 0.11
## PP.Nat_2R_GFPRB 1.00 0.51 -0.34 0.00
## PP.Nat_3R_GFPRB 0.51 1.00 -0.39 -0.03
## PP.Nat_1_CBB -0.34 -0.39 1.00 0.26
## PP.Nat_2R_CBB PP.Nat_3R_CBB PP.Nat_1_PBPB PP.Nat_4R_PBPB
## PP.Naturalness.GFFB 0.17 0.10 -0.26 0.04
## PP.Nat_1_GFPRB -0.13 -0.13 -0.04 0.03
## PP.Nat_4R_GFPRB -0.06 -0.06 -0.23 0.20
## PP.Nat_2R_GFPRB -0.07 -0.07 -0.27 0.04
## PP.Nat_3R_GFPRB -0.06 0.03 -0.28 -0.04
## PP.Nat_1_CBB 0.21 0.10 0.39 -0.07
## PP.Nat_2R_PBPB PP.Nat_3R_PBPB PP.Nat_1_PBFB PP.Nat_4R_PBFB
## PP.Naturalness.GFFB -0.02 -0.01 -0.31 0.04
## PP.Nat_1_GFPRB 0.05 -0.33 -0.06 0.23
## PP.Nat_4R_GFPRB 0.11 -0.12 -0.35 -0.01
## PP.Nat_2R_GFPRB 0.02 -0.21 -0.38 0.05
## PP.Nat_3R_GFPRB -0.03 0.02 -0.31 0.02
## PP.Nat_1_CBB -0.14 -0.10 0.50 -0.14
## PP.Nat_2R_PBFB PP.Nat_3R_PBFB PP.Nat_1_VB PP.Nat_4R_VB
## PP.Naturalness.GFFB 0.03 0.05 -0.07 0.18
## PP.Nat_1_GFPRB 0.20 0.28 0.09 0.02
## PP.Nat_4R_GFPRB -0.04 0.05 -0.11 0.32
## PP.Nat_2R_GFPRB 0.07 0.09 -0.16 0.24
## PP.Nat_3R_GFPRB -0.01 -0.03 -0.18 0.23
## PP.Nat_1_CBB 0.02 -0.02 0.14 -0.28
## PP.Nat_2R_VB PP.Nat_3R_VB
## PP.Naturalness.GFFB 0.10 0.06
## PP.Nat_1_GFPRB 0.07 0.06
## PP.Nat_4R_GFPRB 0.39 0.25
## PP.Nat_2R_GFPRB 0.35 0.28
## PP.Nat_3R_GFPRB 0.28 0.24
## PP.Nat_1_CBB -0.38 -0.25
library("Hmisc")
mydata.rcorr5 = rcorr(as.matrix(mydata.cor5))
mydata.rcorr5
## PP.Naturalness.GFFB PP.Nat_1_GFPRB PP.Nat_4R_GFPRB
## PP.Naturalness.GFFB 1.00 0.40 0.73
## PP.Nat_1_GFPRB 0.40 1.00 0.53
## PP.Nat_4R_GFPRB 0.73 0.53 1.00
## PP.Nat_2R_GFPRB 0.74 0.50 0.94
## PP.Nat_3R_GFPRB 0.72 0.34 0.85
## PP.Nat_1_CBB -0.64 -0.36 -0.78
## PP.Nat_4R_CBB 0.04 -0.40 -0.11
## PP.Nat_2R_CBB 0.03 -0.49 -0.24
## PP.Nat_3R_CBB 0.02 -0.48 -0.22
## PP.Nat_1_PBPB -0.71 -0.32 -0.66
## PP.Nat_4R_PBPB -0.09 -0.28 0.11
## PP.Nat_2R_PBPB -0.10 -0.33 0.03
## PP.Nat_3R_PBPB -0.10 -0.61 -0.10
## PP.Nat_1_PBFB -0.75 -0.38 -0.76
## PP.Nat_4R_PBFB 0.15 0.50 0.08
## PP.Nat_2R_PBFB 0.01 0.48 -0.05
## PP.Nat_3R_PBFB 0.04 0.55 0.01
## PP.Nat_1_VB -0.47 -0.06 -0.36
## PP.Nat_4R_VB 0.20 -0.07 0.47
## PP.Nat_2R_VB 0.28 0.04 0.61
## PP.Nat_3R_VB 0.24 -0.03 0.50
## PP.Nat_2R_GFPRB PP.Nat_3R_GFPRB PP.Nat_1_CBB PP.Nat_4R_CBB
## PP.Naturalness.GFFB 0.74 0.72 -0.64 0.04
## PP.Nat_1_GFPRB 0.50 0.34 -0.36 -0.40
## PP.Nat_4R_GFPRB 0.94 0.85 -0.78 -0.11
## PP.Nat_2R_GFPRB 1.00 0.86 -0.77 -0.21
## PP.Nat_3R_GFPRB 0.86 1.00 -0.80 -0.18
## PP.Nat_1_CBB -0.77 -0.80 1.00 0.34
## PP.Nat_4R_CBB -0.21 -0.18 0.34 1.00
## PP.Nat_2R_CBB -0.29 -0.21 0.33 0.89
## PP.Nat_3R_CBB -0.27 -0.14 0.26 0.82
## PP.Nat_1_PBPB -0.71 -0.73 0.69 0.09
## PP.Nat_4R_PBPB -0.07 -0.08 -0.15 0.29
## PP.Nat_2R_PBPB -0.11 -0.06 -0.16 0.38
## PP.Nat_3R_PBPB -0.21 -0.01 -0.14 0.29
## PP.Nat_1_PBFB -0.80 -0.78 0.81 0.22
## PP.Nat_4R_PBFB 0.20 0.12 -0.21 -0.58
## PP.Nat_2R_PBFB 0.09 -0.03 0.02 -0.64
## PP.Nat_3R_PBFB 0.11 -0.05 0.02 -0.49
## PP.Nat_1_VB -0.41 -0.46 0.31 -0.24
## PP.Nat_4R_VB 0.35 0.37 -0.52 0.01
## PP.Nat_2R_VB 0.53 0.53 -0.69 -0.07
## PP.Nat_3R_VB 0.46 0.51 -0.61 -0.10
## PP.Nat_2R_CBB PP.Nat_3R_CBB PP.Nat_1_PBPB PP.Nat_4R_PBPB
## PP.Naturalness.GFFB 0.03 0.02 -0.71 -0.09
## PP.Nat_1_GFPRB -0.49 -0.48 -0.32 -0.28
## PP.Nat_4R_GFPRB -0.24 -0.22 -0.66 0.11
## PP.Nat_2R_GFPRB -0.29 -0.27 -0.71 -0.07
## PP.Nat_3R_GFPRB -0.21 -0.14 -0.73 -0.08
## PP.Nat_1_CBB 0.33 0.26 0.69 -0.15
## PP.Nat_4R_CBB 0.89 0.82 0.09 0.29
## PP.Nat_2R_CBB 1.00 0.92 0.04 0.20
## PP.Nat_3R_CBB 0.92 1.00 -0.02 0.13
## PP.Nat_1_PBPB 0.04 -0.02 1.00 0.29
## PP.Nat_4R_PBPB 0.20 0.13 0.29 1.00
## PP.Nat_2R_PBPB 0.46 0.42 0.17 0.78
## PP.Nat_3R_PBPB 0.41 0.40 0.00 0.66
## PP.Nat_1_PBFB 0.18 0.16 0.90 0.09
## PP.Nat_4R_PBFB -0.50 -0.45 -0.43 -0.67
## PP.Nat_2R_PBFB -0.66 -0.63 -0.09 -0.62
## PP.Nat_3R_PBFB -0.57 -0.54 -0.06 -0.58
## PP.Nat_1_VB -0.31 -0.35 0.74 0.22
## PP.Nat_4R_VB -0.12 -0.14 0.00 0.69
## PP.Nat_2R_VB -0.14 -0.15 -0.28 0.45
## PP.Nat_3R_VB -0.13 -0.15 -0.39 0.41
## PP.Nat_2R_PBPB PP.Nat_3R_PBPB PP.Nat_1_PBFB PP.Nat_4R_PBFB
## PP.Naturalness.GFFB -0.10 -0.10 -0.75 0.15
## PP.Nat_1_GFPRB -0.33 -0.61 -0.38 0.50
## PP.Nat_4R_GFPRB 0.03 -0.10 -0.76 0.08
## PP.Nat_2R_GFPRB -0.11 -0.21 -0.80 0.20
## PP.Nat_3R_GFPRB -0.06 -0.01 -0.78 0.12
## PP.Nat_1_CBB -0.16 -0.14 0.81 -0.21
## PP.Nat_4R_CBB 0.38 0.29 0.22 -0.58
## PP.Nat_2R_CBB 0.46 0.41 0.18 -0.50
## PP.Nat_3R_CBB 0.42 0.40 0.16 -0.45
## PP.Nat_1_PBPB 0.17 0.00 0.90 -0.43
## PP.Nat_4R_PBPB 0.78 0.66 0.09 -0.67
## PP.Nat_2R_PBPB 1.00 0.77 0.07 -0.62
## PP.Nat_3R_PBPB 0.77 1.00 -0.02 -0.57
## PP.Nat_1_PBFB 0.07 -0.02 1.00 -0.42
## PP.Nat_4R_PBFB -0.62 -0.57 -0.42 1.00
## PP.Nat_2R_PBFB -0.80 -0.75 -0.14 0.81
## PP.Nat_3R_PBFB -0.74 -0.86 -0.10 0.77
## PP.Nat_1_VB 0.02 -0.12 0.66 -0.33
## PP.Nat_4R_VB 0.53 0.44 -0.16 -0.56
## PP.Nat_2R_VB 0.46 0.38 -0.35 -0.36
## PP.Nat_3R_VB 0.39 0.55 -0.41 -0.33
## PP.Nat_2R_PBFB PP.Nat_3R_PBFB PP.Nat_1_VB PP.Nat_4R_VB
## PP.Naturalness.GFFB 0.01 0.04 -0.47 0.20
## PP.Nat_1_GFPRB 0.48 0.55 -0.06 -0.07
## PP.Nat_4R_GFPRB -0.05 0.01 -0.36 0.47
## PP.Nat_2R_GFPRB 0.09 0.11 -0.41 0.35
## PP.Nat_3R_GFPRB -0.03 -0.05 -0.46 0.37
## PP.Nat_1_CBB 0.02 0.02 0.31 -0.52
## PP.Nat_4R_CBB -0.64 -0.49 -0.24 0.01
## PP.Nat_2R_CBB -0.66 -0.57 -0.31 -0.12
## PP.Nat_3R_CBB -0.63 -0.54 -0.35 -0.14
## PP.Nat_1_PBPB -0.09 -0.06 0.74 0.00
## PP.Nat_4R_PBPB -0.62 -0.58 0.22 0.69
## PP.Nat_2R_PBPB -0.80 -0.74 0.02 0.53
## PP.Nat_3R_PBPB -0.75 -0.86 -0.12 0.44
## PP.Nat_1_PBFB -0.14 -0.10 0.66 -0.16
## PP.Nat_4R_PBFB 0.81 0.77 -0.33 -0.56
## PP.Nat_2R_PBFB 1.00 0.88 0.01 -0.56
## PP.Nat_3R_PBFB 0.88 1.00 0.01 -0.50
## PP.Nat_1_VB 0.01 0.01 1.00 0.31
## PP.Nat_4R_VB -0.56 -0.50 0.31 1.00
## PP.Nat_2R_VB -0.49 -0.45 0.12 0.87
## PP.Nat_3R_VB -0.47 -0.57 -0.01 0.73
## PP.Nat_2R_VB PP.Nat_3R_VB
## PP.Naturalness.GFFB 0.28 0.24
## PP.Nat_1_GFPRB 0.04 -0.03
## PP.Nat_4R_GFPRB 0.61 0.50
## PP.Nat_2R_GFPRB 0.53 0.46
## PP.Nat_3R_GFPRB 0.53 0.51
## PP.Nat_1_CBB -0.69 -0.61
## PP.Nat_4R_CBB -0.07 -0.10
## PP.Nat_2R_CBB -0.14 -0.13
## PP.Nat_3R_CBB -0.15 -0.15
## PP.Nat_1_PBPB -0.28 -0.39
## PP.Nat_4R_PBPB 0.45 0.41
## PP.Nat_2R_PBPB 0.46 0.39
## PP.Nat_3R_PBPB 0.38 0.55
## PP.Nat_1_PBFB -0.35 -0.41
## PP.Nat_4R_PBFB -0.36 -0.33
## PP.Nat_2R_PBFB -0.49 -0.47
## PP.Nat_3R_PBFB -0.45 -0.57
## PP.Nat_1_VB 0.12 -0.01
## PP.Nat_4R_VB 0.87 0.73
## PP.Nat_2R_VB 1.00 0.82
## PP.Nat_3R_VB 0.82 1.00
##
## n= 21
##
##
## P
## PP.Naturalness.GFFB PP.Nat_1_GFPRB PP.Nat_4R_GFPRB
## PP.Naturalness.GFFB 0.0720 0.0002
## PP.Nat_1_GFPRB 0.0720 0.0133
## PP.Nat_4R_GFPRB 0.0002 0.0133
## PP.Nat_2R_GFPRB 0.0001 0.0197 0.0000
## PP.Nat_3R_GFPRB 0.0002 0.1334 0.0000
## PP.Nat_1_CBB 0.0018 0.1058 0.0000
## PP.Nat_4R_CBB 0.8743 0.0709 0.6270
## PP.Nat_2R_CBB 0.9045 0.0243 0.3048
## PP.Nat_3R_CBB 0.9269 0.0270 0.3362
## PP.Nat_1_PBPB 0.0003 0.1550 0.0012
## PP.Nat_4R_PBPB 0.7112 0.2245 0.6473
## PP.Nat_2R_PBPB 0.6608 0.1462 0.8822
## PP.Nat_3R_PBPB 0.6817 0.0032 0.6601
## PP.Nat_1_PBFB 0.0000 0.0894 0.0000
## PP.Nat_4R_PBFB 0.5246 0.0206 0.7396
## PP.Nat_2R_PBFB 0.9778 0.0284 0.8256
## PP.Nat_3R_PBFB 0.8772 0.0099 0.9767
## PP.Nat_1_VB 0.0316 0.7965 0.1063
## PP.Nat_4R_VB 0.3817 0.7676 0.0331
## PP.Nat_2R_VB 0.2142 0.8583 0.0036
## PP.Nat_3R_VB 0.2859 0.9089 0.0197
## PP.Nat_2R_GFPRB PP.Nat_3R_GFPRB PP.Nat_1_CBB PP.Nat_4R_CBB
## PP.Naturalness.GFFB 0.0001 0.0002 0.0018 0.8743
## PP.Nat_1_GFPRB 0.0197 0.1334 0.1058 0.0709
## PP.Nat_4R_GFPRB 0.0000 0.0000 0.0000 0.6270
## PP.Nat_2R_GFPRB 0.0000 0.0000 0.3675
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.4250
## PP.Nat_1_CBB 0.0000 0.0000 0.1262
## PP.Nat_4R_CBB 0.3675 0.4250 0.1262
## PP.Nat_2R_CBB 0.2019 0.3505 0.1459 0.0000
## PP.Nat_3R_CBB 0.2376 0.5435 0.2553 0.0000
## PP.Nat_1_PBPB 0.0003 0.0002 0.0006 0.6996
## PP.Nat_4R_PBPB 0.7608 0.7316 0.5280 0.2081
## PP.Nat_2R_PBPB 0.6262 0.7821 0.4762 0.0851
## PP.Nat_3R_PBPB 0.3708 0.9806 0.5308 0.2018
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000 0.3451
## PP.Nat_4R_PBFB 0.3828 0.5970 0.3568 0.0060
## PP.Nat_2R_PBFB 0.7052 0.8916 0.9209 0.0018
## PP.Nat_3R_PBFB 0.6357 0.8426 0.9249 0.0234
## PP.Nat_1_VB 0.0671 0.0363 0.1731 0.2986
## PP.Nat_4R_VB 0.1149 0.0980 0.0153 0.9822
## PP.Nat_2R_VB 0.0133 0.0127 0.0006 0.7679
## PP.Nat_3R_VB 0.0357 0.0193 0.0032 0.6614
## PP.Nat_2R_CBB PP.Nat_3R_CBB PP.Nat_1_PBPB PP.Nat_4R_PBPB
## PP.Naturalness.GFFB 0.9045 0.9269 0.0003 0.7112
## PP.Nat_1_GFPRB 0.0243 0.0270 0.1550 0.2245
## PP.Nat_4R_GFPRB 0.3048 0.3362 0.0012 0.6473
## PP.Nat_2R_GFPRB 0.2019 0.2376 0.0003 0.7608
## PP.Nat_3R_GFPRB 0.3505 0.5435 0.0002 0.7316
## PP.Nat_1_CBB 0.1459 0.2553 0.0006 0.5280
## PP.Nat_4R_CBB 0.0000 0.0000 0.6996 0.2081
## PP.Nat_2R_CBB 0.0000 0.8603 0.3821
## PP.Nat_3R_CBB 0.0000 0.9431 0.5881
## PP.Nat_1_PBPB 0.8603 0.9431 0.2049
## PP.Nat_4R_PBPB 0.3821 0.5881 0.2049
## PP.Nat_2R_PBPB 0.0352 0.0562 0.4701 0.0000
## PP.Nat_3R_PBPB 0.0645 0.0688 0.9992 0.0012
## PP.Nat_1_PBFB 0.4269 0.4808 0.0000 0.7107
## PP.Nat_4R_PBFB 0.0196 0.0384 0.0490 0.0010
## PP.Nat_2R_PBFB 0.0012 0.0021 0.7135 0.0026
## PP.Nat_3R_PBFB 0.0075 0.0119 0.7949 0.0060
## PP.Nat_1_VB 0.1774 0.1251 0.0001 0.3437
## PP.Nat_4R_VB 0.6009 0.5437 0.9989 0.0005
## PP.Nat_2R_VB 0.5557 0.5255 0.2141 0.0394
## PP.Nat_3R_VB 0.5688 0.5272 0.0832 0.0671
## PP.Nat_2R_PBPB PP.Nat_3R_PBPB PP.Nat_1_PBFB PP.Nat_4R_PBFB
## PP.Naturalness.GFFB 0.6608 0.6817 0.0000 0.5246
## PP.Nat_1_GFPRB 0.1462 0.0032 0.0894 0.0206
## PP.Nat_4R_GFPRB 0.8822 0.6601 0.0000 0.7396
## PP.Nat_2R_GFPRB 0.6262 0.3708 0.0000 0.3828
## PP.Nat_3R_GFPRB 0.7821 0.9806 0.0000 0.5970
## PP.Nat_1_CBB 0.4762 0.5308 0.0000 0.3568
## PP.Nat_4R_CBB 0.0851 0.2018 0.3451 0.0060
## PP.Nat_2R_CBB 0.0352 0.0645 0.4269 0.0196
## PP.Nat_3R_CBB 0.0562 0.0688 0.4808 0.0384
## PP.Nat_1_PBPB 0.4701 0.9992 0.0000 0.0490
## PP.Nat_4R_PBPB 0.0000 0.0012 0.7107 0.0010
## PP.Nat_2R_PBPB 0.0000 0.7544 0.0029
## PP.Nat_3R_PBPB 0.0000 0.9156 0.0071
## PP.Nat_1_PBFB 0.7544 0.9156 0.0556
## PP.Nat_4R_PBFB 0.0029 0.0071 0.0556
## PP.Nat_2R_PBFB 0.0000 0.0000 0.5312 0.0000
## PP.Nat_3R_PBFB 0.0001 0.0000 0.6776 0.0000
## PP.Nat_1_VB 0.9179 0.6096 0.0012 0.1474
## PP.Nat_4R_VB 0.0126 0.0441 0.4803 0.0077
## PP.Nat_2R_VB 0.0365 0.0924 0.1195 0.1073
## PP.Nat_3R_VB 0.0806 0.0105 0.0632 0.1406
## PP.Nat_2R_PBFB PP.Nat_3R_PBFB PP.Nat_1_VB PP.Nat_4R_VB
## PP.Naturalness.GFFB 0.9778 0.8772 0.0316 0.3817
## PP.Nat_1_GFPRB 0.0284 0.0099 0.7965 0.7676
## PP.Nat_4R_GFPRB 0.8256 0.9767 0.1063 0.0331
## PP.Nat_2R_GFPRB 0.7052 0.6357 0.0671 0.1149
## PP.Nat_3R_GFPRB 0.8916 0.8426 0.0363 0.0980
## PP.Nat_1_CBB 0.9209 0.9249 0.1731 0.0153
## PP.Nat_4R_CBB 0.0018 0.0234 0.2986 0.9822
## PP.Nat_2R_CBB 0.0012 0.0075 0.1774 0.6009
## PP.Nat_3R_CBB 0.0021 0.0119 0.1251 0.5437
## PP.Nat_1_PBPB 0.7135 0.7949 0.0001 0.9989
## PP.Nat_4R_PBPB 0.0026 0.0060 0.3437 0.0005
## PP.Nat_2R_PBPB 0.0000 0.0001 0.9179 0.0126
## PP.Nat_3R_PBPB 0.0000 0.0000 0.6096 0.0441
## PP.Nat_1_PBFB 0.5312 0.6776 0.0012 0.4803
## PP.Nat_4R_PBFB 0.0000 0.0000 0.1474 0.0077
## PP.Nat_2R_PBFB 0.0000 0.9648 0.0090
## PP.Nat_3R_PBFB 0.0000 0.9745 0.0215
## PP.Nat_1_VB 0.9648 0.9745 0.1759
## PP.Nat_4R_VB 0.0090 0.0215 0.1759
## PP.Nat_2R_VB 0.0256 0.0397 0.5996 0.0000
## PP.Nat_3R_VB 0.0307 0.0069 0.9577 0.0002
## PP.Nat_2R_VB PP.Nat_3R_VB
## PP.Naturalness.GFFB 0.2142 0.2859
## PP.Nat_1_GFPRB 0.8583 0.9089
## PP.Nat_4R_GFPRB 0.0036 0.0197
## PP.Nat_2R_GFPRB 0.0133 0.0357
## PP.Nat_3R_GFPRB 0.0127 0.0193
## PP.Nat_1_CBB 0.0006 0.0032
## PP.Nat_4R_CBB 0.7679 0.6614
## PP.Nat_2R_CBB 0.5557 0.5688
## PP.Nat_3R_CBB 0.5255 0.5272
## PP.Nat_1_PBPB 0.2141 0.0832
## PP.Nat_4R_PBPB 0.0394 0.0671
## PP.Nat_2R_PBPB 0.0365 0.0806
## PP.Nat_3R_PBPB 0.0924 0.0105
## PP.Nat_1_PBFB 0.1195 0.0632
## PP.Nat_4R_PBFB 0.1073 0.1406
## PP.Nat_2R_PBFB 0.0256 0.0307
## PP.Nat_3R_PBFB 0.0397 0.0069
## PP.Nat_1_VB 0.5996 0.9577
## PP.Nat_4R_VB 0.0000 0.0002
## PP.Nat_2R_VB 0.0000
## PP.Nat_3R_VB 0.0000
library(corrplot)
## corrplot 0.92 loaded
corrplot(mydata.cor5, method="color")
corrplot(mydata.cor5, addCoef.col = 1, number.cex = 0.3, method = 'number')
#Naturalness and Support of Technology
PP$corNSScales <- data.frame(PP$Naturalness_Scale_GFFB_Tot, PP$Naturalness_Scale_GFPRB_Tot, PP$Naturalness_Scale_CBB_Tot, PP$Naturalness_Scale_PBPB_Tot, PP$Naturalness_Scale_PBFB_Tot, PP$Naturalness_Scale_VB_Tot, PP$Behav_Scale_GFFB, PP$Behav_Scale_GFPRB, PP$Behav_Scale_CBB, PP$Behav_Scale_PBPB, PP$Behav_Scale_PBFB, PP$Behav_Scale_VB)
mydata.cor4 = cor(PP$corNSScales, use = "pairwise.complete.obs")
head(round(mydata.cor4,2))
## PP.Nat_1_GFFB PP.Nat_4R_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB
## PP.Nat_1_GFFB 1.00 0.18 0.18 -0.15
## PP.Nat_4R_GFFB 0.18 1.00 0.61 0.50
## PP.Nat_2R_GFFB 0.18 0.61 1.00 0.44
## PP.Nat_3R_GFFB -0.15 0.50 0.44 1.00
## PP.Nat_1_GFPRB 0.42 0.15 0.07 0.01
## PP.Nat_4R_GFPRB 0.04 0.47 0.21 0.33
## PP.Nat_1_GFPRB PP.Nat_4R_GFPRB PP.Nat_2R_GFPRB PP.Nat_3R_GFPRB
## PP.Nat_1_GFFB 0.42 0.04 -0.03 -0.04
## PP.Nat_4R_GFFB 0.15 0.47 0.49 0.38
## PP.Nat_2R_GFFB 0.07 0.21 0.29 0.17
## PP.Nat_3R_GFFB 0.01 0.33 0.34 0.49
## PP.Nat_1_GFPRB 1.00 0.38 0.25 0.14
## PP.Nat_4R_GFPRB 0.38 1.00 0.68 0.52
## PP.Nat_1_CBB PP.Nat_4R_CBB PP.Nat_2R_CBB PP.Nat_3R_CBB
## PP.Nat_1_GFFB 0.35 -0.01 0.04 0.00
## PP.Nat_4R_GFFB -0.36 0.20 0.14 0.05
## PP.Nat_2R_GFFB -0.32 0.13 0.22 0.21
## PP.Nat_3R_GFFB -0.41 0.08 0.07 0.01
## PP.Nat_1_GFPRB -0.10 -0.05 -0.13 -0.13
## PP.Nat_4R_GFPRB -0.34 0.11 -0.06 -0.06
## PP.Nat_1_PBPB PP.Nat_4R_PBPB PP.Nat_2R_PBPB PP.Nat_3R_PBPB
## PP.Nat_1_GFFB 0.14 -0.21 -0.26 -0.17
## PP.Nat_4R_GFFB -0.23 0.08 0.00 -0.04
## PP.Nat_2R_GFFB -0.27 0.15 0.04 0.06
## PP.Nat_3R_GFFB -0.36 0.09 0.14 0.10
## PP.Nat_1_GFPRB -0.04 0.03 0.05 -0.33
## PP.Nat_4R_GFPRB -0.23 0.20 0.11 -0.12
## PP.Nat_1_PBFB PP.Nat_4R_PBFB PP.Nat_2R_PBFB PP.Nat_3R_PBFB
## PP.Nat_1_GFFB 0.17 0.24 0.28 0.29
## PP.Nat_4R_GFFB -0.35 -0.07 0.03 0.05
## PP.Nat_2R_GFFB -0.33 0.05 -0.11 -0.07
## PP.Nat_3R_GFFB -0.37 -0.11 -0.11 -0.15
## PP.Nat_1_GFPRB -0.06 0.23 0.20 0.28
## PP.Nat_4R_GFPRB -0.35 -0.01 -0.04 0.05
## PP.Nat_1_VB PP.Nat_4R_VB PP.Nat_2R_VB PP.Nat_3R_VB
## PP.Nat_1_GFFB 0.09 -0.21 -0.22 -0.24
## PP.Nat_4R_GFFB -0.13 0.25 0.13 0.05
## PP.Nat_2R_GFFB -0.09 0.15 0.12 0.12
## PP.Nat_3R_GFFB -0.04 0.27 0.22 0.20
## PP.Nat_1_GFPRB 0.09 0.02 0.07 0.06
## PP.Nat_4R_GFPRB -0.11 0.32 0.39 0.25
## PP.BehavInt1_GFFB PP.BehavInt2_GFFB PP.BehavInt3_GFFB
## PP.Nat_1_GFFB 0.59 0.52 0.58
## PP.Nat_4R_GFFB 0.13 0.18 0.10
## PP.Nat_2R_GFFB 0.16 0.16 0.12
## PP.Nat_3R_GFFB -0.19 -0.09 -0.21
## PP.Nat_1_GFPRB 0.27 0.31 0.24
## PP.Nat_4R_GFPRB -0.04 0.05 -0.03
## PP.BehavInt4_GFFB PP.BehavInt1_GFPRB PP.BehavInt2_GFPRB
## PP.Nat_1_GFFB 0.59 0.08 0.03
## PP.Nat_4R_GFFB 0.15 -0.19 -0.24
## PP.Nat_2R_GFFB 0.14 -0.29 -0.31
## PP.Nat_3R_GFFB -0.17 -0.20 -0.23
## PP.Nat_1_GFPRB 0.26 0.15 0.04
## PP.Nat_4R_GFPRB -0.05 -0.04 -0.13
## PP.BehavInt3_GFPRB PP.BehavInt4_GFPRB PP.BehavInt1_CBB
## PP.Nat_1_GFFB 0.02 0.02 0.26
## PP.Nat_4R_GFFB -0.22 -0.29 -0.26
## PP.Nat_2R_GFFB -0.34 -0.33 -0.27
## PP.Nat_3R_GFFB -0.22 -0.22 -0.29
## PP.Nat_1_GFPRB 0.08 0.07 -0.02
## PP.Nat_4R_GFPRB -0.10 -0.05 -0.27
## PP.BehavInt2_CBB PP.BehavInt3_CBB PP.BehavInt4_CBB
## PP.Nat_1_GFFB 0.35 0.29 0.31
## PP.Nat_4R_GFFB -0.29 -0.29 -0.26
## PP.Nat_2R_GFFB -0.25 -0.28 -0.28
## PP.Nat_3R_GFFB -0.29 -0.32 -0.33
## PP.Nat_1_GFPRB -0.03 -0.06 -0.03
## PP.Nat_4R_GFPRB -0.34 -0.33 -0.30
## PP.BehavInt1_PBPB PP.BehavInt2_PBPB PP.BehavInt3_PBPB
## PP.Nat_1_GFFB 0.08 0.03 0.02
## PP.Nat_4R_GFFB -0.19 -0.24 -0.22
## PP.Nat_2R_GFFB -0.29 -0.31 -0.34
## PP.Nat_3R_GFFB -0.20 -0.23 -0.22
## PP.Nat_1_GFPRB 0.15 0.04 0.08
## PP.Nat_4R_GFPRB -0.04 -0.13 -0.10
## PP.BehavInt4_PBPB PP.BehavInt1_PBFB PP.BehavInt2_PBFB
## PP.Nat_1_GFFB 0.02 0.03 0.16
## PP.Nat_4R_GFFB -0.29 -0.38 -0.38
## PP.Nat_2R_GFFB -0.33 -0.37 -0.29
## PP.Nat_3R_GFFB -0.22 -0.34 -0.39
## PP.Nat_1_GFPRB 0.07 -0.10 -0.04
## PP.Nat_4R_GFPRB -0.05 -0.27 -0.28
## PP.BehavInt3_PBFB PP.BehavInt4_PBFB PP.BehavInt1_VB
## PP.Nat_1_GFFB 0.08 0.12 0.05
## PP.Nat_4R_GFFB -0.37 -0.35 -0.14
## PP.Nat_2R_GFFB -0.36 -0.31 -0.17
## PP.Nat_3R_GFFB -0.38 -0.41 -0.11
## PP.Nat_1_GFPRB -0.01 0.05 0.10
## PP.Nat_4R_GFPRB -0.22 -0.20 -0.08
## PP.BehavInt2_VB PP.BehavInt3_VB PP.BehavInt4_VB
## PP.Nat_1_GFFB 0.04 0.05 0.05
## PP.Nat_4R_GFFB -0.17 -0.17 -0.15
## PP.Nat_2R_GFFB -0.12 -0.18 -0.18
## PP.Nat_3R_GFFB -0.09 -0.10 -0.09
## PP.Nat_1_GFPRB 0.03 0.17 0.13
## PP.Nat_4R_GFPRB -0.21 -0.03 -0.12
library("Hmisc")
mydata.rcorr4 = rcorr(as.matrix(mydata.cor4))
mydata.rcorr4
## PP.Nat_1_GFFB PP.Nat_4R_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB
## PP.Nat_1_GFFB 1.00 0.00 0.02 -0.39
## PP.Nat_4R_GFFB 0.00 1.00 0.92 0.85
## PP.Nat_2R_GFFB 0.02 0.92 1.00 0.81
## PP.Nat_3R_GFFB -0.39 0.85 0.81 1.00
## PP.Nat_1_GFPRB 0.46 0.34 0.22 0.12
## PP.Nat_4R_GFPRB -0.25 0.82 0.67 0.80
## PP.Nat_2R_GFPRB -0.20 0.83 0.68 0.78
## PP.Nat_3R_GFPRB -0.29 0.81 0.69 0.87
## PP.Nat_1_CBB 0.48 -0.74 -0.69 -0.86
## PP.Nat_4R_CBB -0.26 0.04 0.07 0.07
## PP.Nat_2R_CBB -0.11 0.12 0.24 0.10
## PP.Nat_3R_CBB -0.14 0.17 0.31 0.16
## PP.Nat_1_PBPB 0.00 -0.82 -0.83 -0.76
## PP.Nat_4R_PBPB -0.72 -0.02 -0.01 0.22
## PP.Nat_2R_PBPB -0.79 -0.03 0.01 0.27
## PP.Nat_3R_PBPB -0.59 0.19 0.32 0.42
## PP.Nat_1_PBFB 0.12 -0.88 -0.85 -0.84
## PP.Nat_4R_PBFB 0.55 0.26 0.27 0.03
## PP.Nat_2R_PBFB 0.61 -0.02 -0.11 -0.26
## PP.Nat_3R_PBFB 0.57 -0.07 -0.18 -0.32
## PP.Nat_1_VB -0.12 -0.63 -0.66 -0.50
## PP.Nat_4R_VB -0.73 0.26 0.19 0.50
## PP.Nat_2R_VB -0.71 0.39 0.33 0.62
## PP.Nat_3R_VB -0.67 0.39 0.39 0.64
## PP.BehavInt1_GFFB 0.92 -0.03 0.00 -0.41
## PP.BehavInt2_GFFB 0.89 0.05 0.06 -0.32
## PP.BehavInt3_GFFB 0.91 -0.08 -0.04 -0.45
## PP.BehavInt4_GFFB 0.91 0.00 0.03 -0.38
## PP.BehavInt1_GFPRB -0.12 -0.76 -0.84 -0.65
## PP.BehavInt2_GFPRB -0.12 -0.81 -0.86 -0.69
## PP.BehavInt3_GFPRB -0.10 -0.79 -0.86 -0.68
## PP.BehavInt4_GFPRB -0.11 -0.79 -0.86 -0.67
## PP.BehavInt1_CBB 0.37 -0.77 -0.75 -0.83
## PP.BehavInt2_CBB 0.43 -0.75 -0.72 -0.84
## PP.BehavInt3_CBB 0.39 -0.77 -0.74 -0.84
## PP.BehavInt4_CBB 0.40 -0.75 -0.74 -0.84
## PP.BehavInt1_PBPB -0.12 -0.76 -0.84 -0.65
## PP.BehavInt2_PBPB -0.12 -0.81 -0.86 -0.69
## PP.BehavInt3_PBPB -0.10 -0.79 -0.86 -0.68
## PP.BehavInt4_PBPB -0.11 -0.79 -0.86 -0.67
## PP.BehavInt1_PBFB -0.01 -0.87 -0.88 -0.79
## PP.BehavInt2_PBFB 0.06 -0.88 -0.86 -0.82
## PP.BehavInt3_PBFB 0.04 -0.87 -0.88 -0.80
## PP.BehavInt4_PBFB 0.05 -0.87 -0.87 -0.81
## PP.BehavInt1_VB -0.14 -0.67 -0.72 -0.54
## PP.BehavInt2_VB -0.17 -0.71 -0.72 -0.56
## PP.BehavInt3_VB -0.15 -0.66 -0.73 -0.52
## PP.BehavInt4_VB -0.15 -0.68 -0.73 -0.53
## PP.Nat_1_GFPRB PP.Nat_4R_GFPRB PP.Nat_2R_GFPRB
## PP.Nat_1_GFFB 0.46 -0.25 -0.20
## PP.Nat_4R_GFFB 0.34 0.82 0.83
## PP.Nat_2R_GFFB 0.22 0.67 0.68
## PP.Nat_3R_GFFB 0.12 0.80 0.78
## PP.Nat_1_GFPRB 1.00 0.48 0.44
## PP.Nat_4R_GFPRB 0.48 1.00 0.95
## PP.Nat_2R_GFPRB 0.44 0.95 1.00
## PP.Nat_3R_GFPRB 0.31 0.90 0.90
## PP.Nat_1_CBB -0.26 -0.82 -0.78
## PP.Nat_4R_CBB -0.45 -0.05 -0.08
## PP.Nat_2R_CBB -0.46 -0.09 -0.10
## PP.Nat_3R_CBB -0.43 -0.03 -0.04
## PP.Nat_1_PBPB -0.28 -0.71 -0.75
## PP.Nat_4R_PBPB -0.29 0.16 0.03
## PP.Nat_2R_PBPB -0.35 0.15 0.05
## PP.Nat_3R_PBPB -0.48 0.16 0.07
## PP.Nat_1_PBFB -0.33 -0.82 -0.83
## PP.Nat_4R_PBFB 0.55 0.16 0.24
## PP.Nat_2R_PBFB 0.51 -0.08 0.02
## PP.Nat_3R_PBFB 0.56 -0.07 -0.01
## PP.Nat_1_VB -0.09 -0.46 -0.52
## PP.Nat_4R_VB -0.07 0.50 0.39
## PP.Nat_2R_VB 0.02 0.65 0.57
## PP.Nat_3R_VB -0.03 0.60 0.54
## PP.BehavInt1_GFFB 0.37 -0.28 -0.22
## PP.BehavInt2_GFFB 0.45 -0.17 -0.11
## PP.BehavInt3_GFFB 0.34 -0.31 -0.26
## PP.BehavInt4_GFFB 0.37 -0.25 -0.20
## PP.BehavInt1_GFPRB -0.17 -0.54 -0.56
## PP.BehavInt2_GFPRB -0.25 -0.62 -0.63
## PP.BehavInt3_GFPRB -0.19 -0.59 -0.61
## PP.BehavInt4_GFPRB -0.17 -0.57 -0.59
## PP.BehavInt1_CBB -0.24 -0.79 -0.73
## PP.BehavInt2_CBB -0.23 -0.81 -0.76
## PP.BehavInt3_CBB -0.24 -0.80 -0.74
## PP.BehavInt4_CBB -0.23 -0.79 -0.74
## PP.BehavInt1_PBPB -0.17 -0.54 -0.56
## PP.BehavInt2_PBPB -0.25 -0.62 -0.63
## PP.BehavInt3_PBPB -0.19 -0.59 -0.61
## PP.BehavInt4_PBPB -0.17 -0.57 -0.59
## PP.BehavInt1_PBFB -0.29 -0.73 -0.74
## PP.BehavInt2_PBFB -0.29 -0.77 -0.78
## PP.BehavInt3_PBFB -0.24 -0.72 -0.75
## PP.BehavInt4_PBFB -0.24 -0.73 -0.76
## PP.BehavInt1_VB -0.08 -0.47 -0.53
## PP.BehavInt2_VB -0.18 -0.55 -0.62
## PP.BehavInt3_VB -0.05 -0.44 -0.50
## PP.BehavInt4_VB -0.08 -0.48 -0.53
## PP.Nat_3R_GFPRB PP.Nat_1_CBB PP.Nat_4R_CBB PP.Nat_2R_CBB
## PP.Nat_1_GFFB -0.29 0.48 -0.26 -0.11
## PP.Nat_4R_GFFB 0.81 -0.74 0.04 0.12
## PP.Nat_2R_GFFB 0.69 -0.69 0.07 0.24
## PP.Nat_3R_GFFB 0.87 -0.86 0.07 0.10
## PP.Nat_1_GFPRB 0.31 -0.26 -0.45 -0.46
## PP.Nat_4R_GFPRB 0.90 -0.82 -0.05 -0.09
## PP.Nat_2R_GFPRB 0.90 -0.78 -0.08 -0.10
## PP.Nat_3R_GFPRB 1.00 -0.85 -0.09 -0.06
## PP.Nat_1_CBB -0.85 1.00 0.19 0.16
## PP.Nat_4R_CBB -0.09 0.19 1.00 0.87
## PP.Nat_2R_CBB -0.06 0.16 0.87 1.00
## PP.Nat_3R_CBB 0.05 0.04 0.79 0.92
## PP.Nat_1_PBPB -0.77 0.69 -0.01 -0.17
## PP.Nat_4R_PBPB 0.06 -0.28 0.27 0.10
## PP.Nat_2R_PBPB 0.12 -0.32 0.40 0.34
## PP.Nat_3R_PBPB 0.26 -0.39 0.28 0.39
## PP.Nat_1_PBFB -0.84 0.82 0.10 -0.03
## PP.Nat_4R_PBFB 0.19 -0.16 -0.53 -0.35
## PP.Nat_2R_PBFB -0.08 0.13 -0.63 -0.60
## PP.Nat_3R_PBFB -0.13 0.15 -0.52 -0.56
## PP.Nat_1_VB -0.52 0.37 -0.27 -0.44
## PP.Nat_4R_VB 0.45 -0.61 0.01 -0.16
## PP.Nat_2R_VB 0.61 -0.75 -0.01 -0.10
## PP.Nat_3R_VB 0.61 -0.73 -0.02 -0.05
## PP.BehavInt1_GFFB -0.31 0.49 -0.36 -0.18
## PP.BehavInt2_GFFB -0.23 0.39 -0.40 -0.23
## PP.BehavInt3_GFFB -0.35 0.53 -0.35 -0.17
## PP.BehavInt4_GFFB -0.27 0.47 -0.36 -0.17
## PP.BehavInt1_GFPRB -0.62 0.55 -0.04 -0.27
## PP.BehavInt2_GFPRB -0.67 0.60 -0.01 -0.22
## PP.BehavInt3_GFPRB -0.65 0.58 -0.04 -0.26
## PP.BehavInt4_GFPRB -0.63 0.56 -0.09 -0.32
## PP.BehavInt1_CBB -0.83 0.93 0.17 0.08
## PP.BehavInt2_CBB -0.85 0.96 0.17 0.11
## PP.BehavInt3_CBB -0.85 0.94 0.16 0.09
## PP.BehavInt4_CBB -0.84 0.94 0.18 0.09
## PP.BehavInt1_PBPB -0.62 0.55 -0.04 -0.27
## PP.BehavInt2_PBPB -0.67 0.60 -0.01 -0.22
## PP.BehavInt3_PBPB -0.65 0.58 -0.04 -0.26
## PP.BehavInt4_PBPB -0.63 0.56 -0.09 -0.32
## PP.BehavInt1_PBFB -0.77 0.70 0.01 -0.16
## PP.BehavInt2_PBFB -0.82 0.75 0.04 -0.11
## PP.BehavInt3_PBFB -0.78 0.70 -0.02 -0.18
## PP.BehavInt4_PBFB -0.80 0.72 0.00 -0.15
## PP.BehavInt1_VB -0.54 0.37 -0.25 -0.46
## PP.BehavInt2_VB -0.60 0.40 -0.21 -0.39
## PP.BehavInt3_VB -0.50 0.34 -0.28 -0.50
## PP.BehavInt4_VB -0.53 0.36 -0.26 -0.46
## PP.Nat_3R_CBB PP.Nat_1_PBPB PP.Nat_4R_PBPB PP.Nat_2R_PBPB
## PP.Nat_1_GFFB -0.14 0.00 -0.72 -0.79
## PP.Nat_4R_GFFB 0.17 -0.82 -0.02 -0.03
## PP.Nat_2R_GFFB 0.31 -0.83 -0.01 0.01
## PP.Nat_3R_GFFB 0.16 -0.76 0.22 0.27
## PP.Nat_1_GFPRB -0.43 -0.28 -0.29 -0.35
## PP.Nat_4R_GFPRB -0.03 -0.71 0.16 0.15
## PP.Nat_2R_GFPRB -0.04 -0.75 0.03 0.05
## PP.Nat_3R_GFPRB 0.05 -0.77 0.06 0.12
## PP.Nat_1_CBB 0.04 0.69 -0.28 -0.32
## PP.Nat_4R_CBB 0.79 -0.01 0.27 0.40
## PP.Nat_2R_CBB 0.92 -0.17 0.10 0.34
## PP.Nat_3R_CBB 1.00 -0.25 0.07 0.34
## PP.Nat_1_PBPB -0.25 1.00 0.24 0.12
## PP.Nat_4R_PBPB 0.07 0.24 1.00 0.83
## PP.Nat_2R_PBPB 0.34 0.12 0.83 1.00
## PP.Nat_3R_PBPB 0.43 -0.23 0.62 0.72
## PP.Nat_1_PBFB -0.10 0.93 0.03 -0.02
## PP.Nat_4R_PBFB -0.29 -0.48 -0.66 -0.62
## PP.Nat_2R_PBFB -0.58 -0.04 -0.62 -0.77
## PP.Nat_3R_PBFB -0.54 0.07 -0.54 -0.68
## PP.Nat_1_VB -0.48 0.84 0.28 0.10
## PP.Nat_4R_VB -0.12 -0.02 0.75 0.65
## PP.Nat_2R_VB -0.05 -0.30 0.56 0.58
## PP.Nat_3R_VB -0.01 -0.43 0.49 0.51
## PP.BehavInt1_GFFB -0.21 0.02 -0.70 -0.82
## PP.BehavInt2_GFFB -0.26 -0.06 -0.68 -0.83
## PP.BehavInt3_GFFB -0.20 0.06 -0.68 -0.80
## PP.BehavInt4_GFFB -0.19 0.00 -0.68 -0.80
## PP.BehavInt1_GFPRB -0.36 0.92 0.27 0.15
## PP.BehavInt2_GFPRB -0.30 0.93 0.25 0.14
## PP.BehavInt3_GFPRB -0.33 0.93 0.23 0.12
## PP.BehavInt4_GFPRB -0.39 0.92 0.22 0.10
## PP.BehavInt1_CBB -0.06 0.74 -0.24 -0.28
## PP.BehavInt2_CBB -0.03 0.72 -0.26 -0.30
## PP.BehavInt3_CBB -0.04 0.73 -0.24 -0.28
## PP.BehavInt4_CBB -0.04 0.74 -0.23 -0.28
## PP.BehavInt1_PBPB -0.36 0.92 0.27 0.15
## PP.BehavInt2_PBPB -0.30 0.93 0.25 0.14
## PP.BehavInt3_PBPB -0.33 0.93 0.23 0.12
## PP.BehavInt4_PBPB -0.39 0.92 0.22 0.10
## PP.BehavInt1_PBFB -0.25 0.92 0.10 0.02
## PP.BehavInt2_PBFB -0.19 0.93 0.08 0.00
## PP.BehavInt3_PBFB -0.27 0.92 0.06 -0.02
## PP.BehavInt4_PBFB -0.24 0.93 0.07 0.00
## PP.BehavInt1_VB -0.49 0.86 0.28 0.10
## PP.BehavInt2_VB -0.43 0.88 0.35 0.19
## PP.BehavInt3_VB -0.53 0.85 0.28 0.11
## PP.BehavInt4_VB -0.50 0.86 0.29 0.13
## PP.Nat_3R_PBPB PP.Nat_1_PBFB PP.Nat_4R_PBFB PP.Nat_2R_PBFB
## PP.Nat_1_GFFB -0.59 0.12 0.55 0.61
## PP.Nat_4R_GFFB 0.19 -0.88 0.26 -0.02
## PP.Nat_2R_GFFB 0.32 -0.85 0.27 -0.11
## PP.Nat_3R_GFFB 0.42 -0.84 0.03 -0.26
## PP.Nat_1_GFPRB -0.48 -0.33 0.55 0.51
## PP.Nat_4R_GFPRB 0.16 -0.82 0.16 -0.08
## PP.Nat_2R_GFPRB 0.07 -0.83 0.24 0.02
## PP.Nat_3R_GFPRB 0.26 -0.84 0.19 -0.08
## PP.Nat_1_CBB -0.39 0.82 -0.16 0.13
## PP.Nat_4R_CBB 0.28 0.10 -0.53 -0.63
## PP.Nat_2R_CBB 0.39 -0.03 -0.35 -0.60
## PP.Nat_3R_CBB 0.43 -0.10 -0.29 -0.58
## PP.Nat_1_PBPB -0.23 0.93 -0.48 -0.04
## PP.Nat_4R_PBPB 0.62 0.03 -0.66 -0.62
## PP.Nat_2R_PBPB 0.72 -0.02 -0.62 -0.77
## PP.Nat_3R_PBPB 1.00 -0.29 -0.41 -0.71
## PP.Nat_1_PBFB -0.29 1.00 -0.44 -0.06
## PP.Nat_4R_PBFB -0.41 -0.44 1.00 0.78
## PP.Nat_2R_PBFB -0.71 -0.06 0.78 1.00
## PP.Nat_3R_PBFB -0.81 0.05 0.69 0.88
## PP.Nat_1_VB -0.23 0.73 -0.43 0.01
## PP.Nat_4R_VB 0.50 -0.22 -0.52 -0.53
## PP.Nat_2R_VB 0.50 -0.42 -0.32 -0.49
## PP.Nat_3R_VB 0.64 -0.50 -0.27 -0.49
## PP.BehavInt1_GFFB -0.56 0.14 0.53 0.59
## PP.BehavInt2_GFFB -0.57 0.06 0.57 0.62
## PP.BehavInt3_GFFB -0.54 0.18 0.52 0.58
## PP.BehavInt4_GFFB -0.52 0.11 0.53 0.57
## PP.BehavInt1_GFPRB -0.29 0.86 -0.49 -0.06
## PP.BehavInt2_GFPRB -0.27 0.88 -0.48 -0.05
## PP.BehavInt3_GFPRB -0.32 0.87 -0.46 -0.02
## PP.BehavInt4_GFPRB -0.33 0.86 -0.43 0.00
## PP.BehavInt1_CBB -0.49 0.88 -0.22 0.12
## PP.BehavInt2_CBB -0.47 0.86 -0.19 0.13
## PP.BehavInt3_CBB -0.48 0.87 -0.20 0.12
## PP.BehavInt4_CBB -0.47 0.86 -0.21 0.12
## PP.BehavInt1_PBPB -0.29 0.86 -0.49 -0.06
## PP.BehavInt2_PBPB -0.27 0.88 -0.48 -0.05
## PP.BehavInt3_PBPB -0.32 0.87 -0.46 -0.02
## PP.BehavInt4_PBPB -0.33 0.86 -0.43 0.00
## PP.BehavInt1_PBFB -0.32 0.94 -0.43 -0.03
## PP.BehavInt2_PBFB -0.31 0.95 -0.42 -0.03
## PP.BehavInt3_PBFB -0.36 0.95 -0.40 0.00
## PP.BehavInt4_PBFB -0.35 0.95 -0.41 -0.02
## PP.BehavInt1_VB -0.28 0.74 -0.42 0.03
## PP.BehavInt2_VB -0.14 0.77 -0.43 -0.04
## PP.BehavInt3_VB -0.27 0.73 -0.40 0.03
## PP.BehavInt4_VB -0.26 0.73 -0.40 0.04
## PP.Nat_3R_PBFB PP.Nat_1_VB PP.Nat_4R_VB PP.Nat_2R_VB
## PP.Nat_1_GFFB 0.57 -0.12 -0.73 -0.71
## PP.Nat_4R_GFFB -0.07 -0.63 0.26 0.39
## PP.Nat_2R_GFFB -0.18 -0.66 0.19 0.33
## PP.Nat_3R_GFFB -0.32 -0.50 0.50 0.62
## PP.Nat_1_GFPRB 0.56 -0.09 -0.07 0.02
## PP.Nat_4R_GFPRB -0.07 -0.46 0.50 0.65
## PP.Nat_2R_GFPRB -0.01 -0.52 0.39 0.57
## PP.Nat_3R_GFPRB -0.13 -0.52 0.45 0.61
## PP.Nat_1_CBB 0.15 0.37 -0.61 -0.75
## PP.Nat_4R_CBB -0.52 -0.27 0.01 -0.01
## PP.Nat_2R_CBB -0.56 -0.44 -0.16 -0.10
## PP.Nat_3R_CBB -0.54 -0.48 -0.12 -0.05
## PP.Nat_1_PBPB 0.07 0.84 -0.02 -0.30
## PP.Nat_4R_PBPB -0.54 0.28 0.75 0.56
## PP.Nat_2R_PBPB -0.68 0.10 0.65 0.58
## PP.Nat_3R_PBPB -0.81 -0.23 0.50 0.50
## PP.Nat_1_PBFB 0.05 0.73 -0.22 -0.42
## PP.Nat_4R_PBFB 0.69 -0.43 -0.52 -0.32
## PP.Nat_2R_PBFB 0.88 0.01 -0.53 -0.49
## PP.Nat_3R_PBFB 1.00 0.10 -0.44 -0.45
## PP.Nat_1_VB 0.10 1.00 0.27 0.04
## PP.Nat_4R_VB -0.44 0.27 1.00 0.89
## PP.Nat_2R_VB -0.45 0.04 0.89 1.00
## PP.Nat_3R_VB -0.56 -0.11 0.77 0.87
## PP.BehavInt1_GFFB 0.54 -0.07 -0.68 -0.67
## PP.BehavInt2_GFFB 0.56 -0.10 -0.64 -0.59
## PP.BehavInt3_GFFB 0.52 -0.05 -0.70 -0.69
## PP.BehavInt4_GFFB 0.51 -0.10 -0.67 -0.66
## PP.BehavInt1_GFPRB 0.09 0.84 0.10 -0.15
## PP.BehavInt2_GFPRB 0.07 0.83 0.05 -0.20
## PP.BehavInt3_GFPRB 0.13 0.85 0.04 -0.21
## PP.BehavInt4_GFPRB 0.16 0.86 0.07 -0.18
## PP.BehavInt1_CBB 0.17 0.45 -0.54 -0.67
## PP.BehavInt2_CBB 0.18 0.42 -0.58 -0.71
## PP.BehavInt3_CBB 0.17 0.43 -0.57 -0.69
## PP.BehavInt4_CBB 0.17 0.42 -0.55 -0.70
## PP.BehavInt1_PBPB 0.09 0.84 0.10 -0.15
## PP.BehavInt2_PBPB 0.07 0.83 0.05 -0.20
## PP.BehavInt3_PBPB 0.13 0.85 0.04 -0.21
## PP.BehavInt4_PBPB 0.16 0.86 0.07 -0.18
## PP.BehavInt1_PBFB 0.10 0.78 -0.11 -0.32
## PP.BehavInt2_PBFB 0.09 0.75 -0.16 -0.37
## PP.BehavInt3_PBFB 0.14 0.78 -0.13 -0.34
## PP.BehavInt4_PBFB 0.13 0.78 -0.13 -0.34
## PP.BehavInt1_VB 0.16 0.92 0.21 -0.04
## PP.BehavInt2_VB 0.09 0.89 0.20 -0.06
## PP.BehavInt3_VB 0.16 0.91 0.24 -0.01
## PP.BehavInt4_VB 0.15 0.91 0.21 -0.04
## PP.Nat_3R_VB PP.BehavInt1_GFFB PP.BehavInt2_GFFB
## PP.Nat_1_GFFB -0.67 0.92 0.89
## PP.Nat_4R_GFFB 0.39 -0.03 0.05
## PP.Nat_2R_GFFB 0.39 0.00 0.06
## PP.Nat_3R_GFFB 0.64 -0.41 -0.32
## PP.Nat_1_GFPRB -0.03 0.37 0.45
## PP.Nat_4R_GFPRB 0.60 -0.28 -0.17
## PP.Nat_2R_GFPRB 0.54 -0.22 -0.11
## PP.Nat_3R_GFPRB 0.61 -0.31 -0.23
## PP.Nat_1_CBB -0.73 0.49 0.39
## PP.Nat_4R_CBB -0.02 -0.36 -0.40
## PP.Nat_2R_CBB -0.05 -0.18 -0.23
## PP.Nat_3R_CBB -0.01 -0.21 -0.26
## PP.Nat_1_PBPB -0.43 0.02 -0.06
## PP.Nat_4R_PBPB 0.49 -0.70 -0.68
## PP.Nat_2R_PBPB 0.51 -0.82 -0.83
## PP.Nat_3R_PBPB 0.64 -0.56 -0.57
## PP.Nat_1_PBFB -0.50 0.14 0.06
## PP.Nat_4R_PBFB -0.27 0.53 0.57
## PP.Nat_2R_PBFB -0.49 0.59 0.62
## PP.Nat_3R_PBFB -0.56 0.54 0.56
## PP.Nat_1_VB -0.11 -0.07 -0.10
## PP.Nat_4R_VB 0.77 -0.68 -0.64
## PP.Nat_2R_VB 0.87 -0.67 -0.59
## PP.Nat_3R_VB 1.00 -0.63 -0.57
## PP.BehavInt1_GFFB -0.63 1.00 0.98
## PP.BehavInt2_GFFB -0.57 0.98 1.00
## PP.BehavInt3_GFFB -0.65 0.99 0.97
## PP.BehavInt4_GFFB -0.61 0.99 0.97
## PP.BehavInt1_GFPRB -0.28 -0.11 -0.15
## PP.BehavInt2_GFPRB -0.32 -0.10 -0.16
## PP.BehavInt3_GFPRB -0.35 -0.08 -0.13
## PP.BehavInt4_GFPRB -0.32 -0.08 -0.13
## PP.BehavInt1_CBB -0.71 0.39 0.31
## PP.BehavInt2_CBB -0.73 0.44 0.36
## PP.BehavInt3_CBB -0.72 0.40 0.33
## PP.BehavInt4_CBB -0.73 0.40 0.32
## PP.BehavInt1_PBPB -0.28 -0.11 -0.15
## PP.BehavInt2_PBPB -0.32 -0.10 -0.16
## PP.BehavInt3_PBPB -0.35 -0.08 -0.13
## PP.BehavInt4_PBPB -0.32 -0.08 -0.13
## PP.BehavInt1_PBFB -0.40 0.02 -0.05
## PP.BehavInt2_PBFB -0.45 0.08 0.00
## PP.BehavInt3_PBFB -0.43 0.07 0.00
## PP.BehavInt4_PBFB -0.44 0.07 0.01
## PP.BehavInt1_VB -0.18 -0.11 -0.14
## PP.BehavInt2_VB -0.18 -0.14 -0.18
## PP.BehavInt3_VB -0.15 -0.11 -0.13
## PP.BehavInt4_VB -0.18 -0.13 -0.16
## PP.BehavInt3_GFFB PP.BehavInt4_GFFB PP.BehavInt1_GFPRB
## PP.Nat_1_GFFB 0.91 0.91 -0.12
## PP.Nat_4R_GFFB -0.08 0.00 -0.76
## PP.Nat_2R_GFFB -0.04 0.03 -0.84
## PP.Nat_3R_GFFB -0.45 -0.38 -0.65
## PP.Nat_1_GFPRB 0.34 0.37 -0.17
## PP.Nat_4R_GFPRB -0.31 -0.25 -0.54
## PP.Nat_2R_GFPRB -0.26 -0.20 -0.56
## PP.Nat_3R_GFPRB -0.35 -0.27 -0.62
## PP.Nat_1_CBB 0.53 0.47 0.55
## PP.Nat_4R_CBB -0.35 -0.36 -0.04
## PP.Nat_2R_CBB -0.17 -0.17 -0.27
## PP.Nat_3R_CBB -0.20 -0.19 -0.36
## PP.Nat_1_PBPB 0.06 0.00 0.92
## PP.Nat_4R_PBPB -0.68 -0.68 0.27
## PP.Nat_2R_PBPB -0.80 -0.80 0.15
## PP.Nat_3R_PBPB -0.54 -0.52 -0.29
## PP.Nat_1_PBFB 0.18 0.11 0.86
## PP.Nat_4R_PBFB 0.52 0.53 -0.49
## PP.Nat_2R_PBFB 0.58 0.57 -0.06
## PP.Nat_3R_PBFB 0.52 0.51 0.09
## PP.Nat_1_VB -0.05 -0.10 0.84
## PP.Nat_4R_VB -0.70 -0.67 0.10
## PP.Nat_2R_VB -0.69 -0.66 -0.15
## PP.Nat_3R_VB -0.65 -0.61 -0.28
## PP.BehavInt1_GFFB 0.99 0.99 -0.11
## PP.BehavInt2_GFFB 0.97 0.97 -0.15
## PP.BehavInt3_GFFB 1.00 0.99 -0.08
## PP.BehavInt4_GFFB 0.99 1.00 -0.14
## PP.BehavInt1_GFPRB -0.08 -0.14 1.00
## PP.BehavInt2_GFPRB -0.07 -0.14 0.98
## PP.BehavInt3_GFPRB -0.04 -0.11 0.99
## PP.BehavInt4_GFPRB -0.04 -0.11 0.99
## PP.BehavInt1_CBB 0.42 0.36 0.69
## PP.BehavInt2_CBB 0.48 0.41 0.64
## PP.BehavInt3_CBB 0.44 0.37 0.67
## PP.BehavInt4_CBB 0.44 0.38 0.66
## PP.BehavInt1_PBPB -0.08 -0.14 1.00
## PP.BehavInt2_PBPB -0.07 -0.14 0.98
## PP.BehavInt3_PBPB -0.04 -0.11 0.99
## PP.BehavInt4_PBPB -0.04 -0.11 0.99
## PP.BehavInt1_PBFB 0.05 -0.01 0.95
## PP.BehavInt2_PBFB 0.11 0.04 0.92
## PP.BehavInt3_PBFB 0.10 0.03 0.94
## PP.BehavInt4_PBFB 0.10 0.04 0.93
## PP.BehavInt1_VB -0.09 -0.14 0.92
## PP.BehavInt2_VB -0.11 -0.16 0.91
## PP.BehavInt3_VB -0.09 -0.14 0.92
## PP.BehavInt4_VB -0.10 -0.16 0.92
## PP.BehavInt2_GFPRB PP.BehavInt3_GFPRB PP.BehavInt4_GFPRB
## PP.Nat_1_GFFB -0.12 -0.10 -0.11
## PP.Nat_4R_GFFB -0.81 -0.79 -0.79
## PP.Nat_2R_GFFB -0.86 -0.86 -0.86
## PP.Nat_3R_GFFB -0.69 -0.68 -0.67
## PP.Nat_1_GFPRB -0.25 -0.19 -0.17
## PP.Nat_4R_GFPRB -0.62 -0.59 -0.57
## PP.Nat_2R_GFPRB -0.63 -0.61 -0.59
## PP.Nat_3R_GFPRB -0.67 -0.65 -0.63
## PP.Nat_1_CBB 0.60 0.58 0.56
## PP.Nat_4R_CBB -0.01 -0.04 -0.09
## PP.Nat_2R_CBB -0.22 -0.26 -0.32
## PP.Nat_3R_CBB -0.30 -0.33 -0.39
## PP.Nat_1_PBPB 0.93 0.93 0.92
## PP.Nat_4R_PBPB 0.25 0.23 0.22
## PP.Nat_2R_PBPB 0.14 0.12 0.10
## PP.Nat_3R_PBPB -0.27 -0.32 -0.33
## PP.Nat_1_PBFB 0.88 0.87 0.86
## PP.Nat_4R_PBFB -0.48 -0.46 -0.43
## PP.Nat_2R_PBFB -0.05 -0.02 0.00
## PP.Nat_3R_PBFB 0.07 0.13 0.16
## PP.Nat_1_VB 0.83 0.85 0.86
## PP.Nat_4R_VB 0.05 0.04 0.07
## PP.Nat_2R_VB -0.20 -0.21 -0.18
## PP.Nat_3R_VB -0.32 -0.35 -0.32
## PP.BehavInt1_GFFB -0.10 -0.08 -0.08
## PP.BehavInt2_GFFB -0.16 -0.13 -0.13
## PP.BehavInt3_GFFB -0.07 -0.04 -0.04
## PP.BehavInt4_GFFB -0.14 -0.11 -0.11
## PP.BehavInt1_GFPRB 0.98 0.99 0.99
## PP.BehavInt2_GFPRB 1.00 0.98 0.98
## PP.BehavInt3_GFPRB 0.98 1.00 0.99
## PP.BehavInt4_GFPRB 0.98 0.99 1.00
## PP.BehavInt1_CBB 0.72 0.71 0.69
## PP.BehavInt2_CBB 0.69 0.67 0.65
## PP.BehavInt3_CBB 0.70 0.70 0.67
## PP.BehavInt4_CBB 0.70 0.70 0.66
## PP.BehavInt1_PBPB 0.98 0.99 0.99
## PP.BehavInt2_PBPB 1.00 0.98 0.98
## PP.BehavInt3_PBPB 0.98 1.00 0.99
## PP.BehavInt4_PBPB 0.98 0.99 1.00
## PP.BehavInt1_PBFB 0.96 0.95 0.95
## PP.BehavInt2_PBFB 0.95 0.92 0.91
## PP.BehavInt3_PBFB 0.94 0.95 0.94
## PP.BehavInt4_PBFB 0.94 0.95 0.94
## PP.BehavInt1_VB 0.91 0.92 0.93
## PP.BehavInt2_VB 0.91 0.92 0.92
## PP.BehavInt3_VB 0.89 0.92 0.93
## PP.BehavInt4_VB 0.91 0.92 0.93
## PP.BehavInt1_CBB PP.BehavInt2_CBB PP.BehavInt3_CBB
## PP.Nat_1_GFFB 0.37 0.43 0.39
## PP.Nat_4R_GFFB -0.77 -0.75 -0.77
## PP.Nat_2R_GFFB -0.75 -0.72 -0.74
## PP.Nat_3R_GFFB -0.83 -0.84 -0.84
## PP.Nat_1_GFPRB -0.24 -0.23 -0.24
## PP.Nat_4R_GFPRB -0.79 -0.81 -0.80
## PP.Nat_2R_GFPRB -0.73 -0.76 -0.74
## PP.Nat_3R_GFPRB -0.83 -0.85 -0.85
## PP.Nat_1_CBB 0.93 0.96 0.94
## PP.Nat_4R_CBB 0.17 0.17 0.16
## PP.Nat_2R_CBB 0.08 0.11 0.09
## PP.Nat_3R_CBB -0.06 -0.03 -0.04
## PP.Nat_1_PBPB 0.74 0.72 0.73
## PP.Nat_4R_PBPB -0.24 -0.26 -0.24
## PP.Nat_2R_PBPB -0.28 -0.30 -0.28
## PP.Nat_3R_PBPB -0.49 -0.47 -0.48
## PP.Nat_1_PBFB 0.88 0.86 0.87
## PP.Nat_4R_PBFB -0.22 -0.19 -0.20
## PP.Nat_2R_PBFB 0.12 0.13 0.12
## PP.Nat_3R_PBFB 0.17 0.18 0.17
## PP.Nat_1_VB 0.45 0.42 0.43
## PP.Nat_4R_VB -0.54 -0.58 -0.57
## PP.Nat_2R_VB -0.67 -0.71 -0.69
## PP.Nat_3R_VB -0.71 -0.73 -0.72
## PP.BehavInt1_GFFB 0.39 0.44 0.40
## PP.BehavInt2_GFFB 0.31 0.36 0.33
## PP.BehavInt3_GFFB 0.42 0.48 0.44
## PP.BehavInt4_GFFB 0.36 0.41 0.37
## PP.BehavInt1_GFPRB 0.69 0.64 0.67
## PP.BehavInt2_GFPRB 0.72 0.69 0.70
## PP.BehavInt3_GFPRB 0.71 0.67 0.70
## PP.BehavInt4_GFPRB 0.69 0.65 0.67
## PP.BehavInt1_CBB 1.00 0.99 0.99
## PP.BehavInt2_CBB 0.99 1.00 0.99
## PP.BehavInt3_CBB 0.99 0.99 1.00
## PP.BehavInt4_CBB 0.99 0.99 0.99
## PP.BehavInt1_PBPB 0.69 0.64 0.67
## PP.BehavInt2_PBPB 0.72 0.69 0.70
## PP.BehavInt3_PBPB 0.71 0.67 0.70
## PP.BehavInt4_PBPB 0.69 0.65 0.67
## PP.BehavInt1_PBFB 0.81 0.78 0.80
## PP.BehavInt2_PBFB 0.83 0.81 0.82
## PP.BehavInt3_PBFB 0.81 0.78 0.80
## PP.BehavInt4_PBFB 0.82 0.79 0.81
## PP.BehavInt1_VB 0.49 0.46 0.48
## PP.BehavInt2_VB 0.50 0.48 0.48
## PP.BehavInt3_VB 0.48 0.43 0.46
## PP.BehavInt4_VB 0.49 0.45 0.47
## PP.BehavInt4_CBB PP.BehavInt1_PBPB PP.BehavInt2_PBPB
## PP.Nat_1_GFFB 0.40 -0.12 -0.12
## PP.Nat_4R_GFFB -0.75 -0.76 -0.81
## PP.Nat_2R_GFFB -0.74 -0.84 -0.86
## PP.Nat_3R_GFFB -0.84 -0.65 -0.69
## PP.Nat_1_GFPRB -0.23 -0.17 -0.25
## PP.Nat_4R_GFPRB -0.79 -0.54 -0.62
## PP.Nat_2R_GFPRB -0.74 -0.56 -0.63
## PP.Nat_3R_GFPRB -0.84 -0.62 -0.67
## PP.Nat_1_CBB 0.94 0.55 0.60
## PP.Nat_4R_CBB 0.18 -0.04 -0.01
## PP.Nat_2R_CBB 0.09 -0.27 -0.22
## PP.Nat_3R_CBB -0.04 -0.36 -0.30
## PP.Nat_1_PBPB 0.74 0.92 0.93
## PP.Nat_4R_PBPB -0.23 0.27 0.25
## PP.Nat_2R_PBPB -0.28 0.15 0.14
## PP.Nat_3R_PBPB -0.47 -0.29 -0.27
## PP.Nat_1_PBFB 0.86 0.86 0.88
## PP.Nat_4R_PBFB -0.21 -0.49 -0.48
## PP.Nat_2R_PBFB 0.12 -0.06 -0.05
## PP.Nat_3R_PBFB 0.17 0.09 0.07
## PP.Nat_1_VB 0.42 0.84 0.83
## PP.Nat_4R_VB -0.55 0.10 0.05
## PP.Nat_2R_VB -0.70 -0.15 -0.20
## PP.Nat_3R_VB -0.73 -0.28 -0.32
## PP.BehavInt1_GFFB 0.40 -0.11 -0.10
## PP.BehavInt2_GFFB 0.32 -0.15 -0.16
## PP.BehavInt3_GFFB 0.44 -0.08 -0.07
## PP.BehavInt4_GFFB 0.38 -0.14 -0.14
## PP.BehavInt1_GFPRB 0.66 1.00 0.98
## PP.BehavInt2_GFPRB 0.70 0.98 1.00
## PP.BehavInt3_GFPRB 0.70 0.99 0.98
## PP.BehavInt4_GFPRB 0.66 0.99 0.98
## PP.BehavInt1_CBB 0.99 0.69 0.72
## PP.BehavInt2_CBB 0.99 0.64 0.69
## PP.BehavInt3_CBB 0.99 0.67 0.70
## PP.BehavInt4_CBB 1.00 0.66 0.70
## PP.BehavInt1_PBPB 0.66 1.00 0.98
## PP.BehavInt2_PBPB 0.70 0.98 1.00
## PP.BehavInt3_PBPB 0.70 0.99 0.98
## PP.BehavInt4_PBPB 0.66 0.99 0.98
## PP.BehavInt1_PBFB 0.79 0.95 0.96
## PP.BehavInt2_PBFB 0.82 0.92 0.95
## PP.BehavInt3_PBFB 0.80 0.94 0.94
## PP.BehavInt4_PBFB 0.81 0.93 0.94
## PP.BehavInt1_VB 0.48 0.92 0.91
## PP.BehavInt2_VB 0.48 0.91 0.91
## PP.BehavInt3_VB 0.46 0.92 0.89
## PP.BehavInt4_VB 0.47 0.92 0.91
## PP.BehavInt3_PBPB PP.BehavInt4_PBPB PP.BehavInt1_PBFB
## PP.Nat_1_GFFB -0.10 -0.11 -0.01
## PP.Nat_4R_GFFB -0.79 -0.79 -0.87
## PP.Nat_2R_GFFB -0.86 -0.86 -0.88
## PP.Nat_3R_GFFB -0.68 -0.67 -0.79
## PP.Nat_1_GFPRB -0.19 -0.17 -0.29
## PP.Nat_4R_GFPRB -0.59 -0.57 -0.73
## PP.Nat_2R_GFPRB -0.61 -0.59 -0.74
## PP.Nat_3R_GFPRB -0.65 -0.63 -0.77
## PP.Nat_1_CBB 0.58 0.56 0.70
## PP.Nat_4R_CBB -0.04 -0.09 0.01
## PP.Nat_2R_CBB -0.26 -0.32 -0.16
## PP.Nat_3R_CBB -0.33 -0.39 -0.25
## PP.Nat_1_PBPB 0.93 0.92 0.92
## PP.Nat_4R_PBPB 0.23 0.22 0.10
## PP.Nat_2R_PBPB 0.12 0.10 0.02
## PP.Nat_3R_PBPB -0.32 -0.33 -0.32
## PP.Nat_1_PBFB 0.87 0.86 0.94
## PP.Nat_4R_PBFB -0.46 -0.43 -0.43
## PP.Nat_2R_PBFB -0.02 0.00 -0.03
## PP.Nat_3R_PBFB 0.13 0.16 0.10
## PP.Nat_1_VB 0.85 0.86 0.78
## PP.Nat_4R_VB 0.04 0.07 -0.11
## PP.Nat_2R_VB -0.21 -0.18 -0.32
## PP.Nat_3R_VB -0.35 -0.32 -0.40
## PP.BehavInt1_GFFB -0.08 -0.08 0.02
## PP.BehavInt2_GFFB -0.13 -0.13 -0.05
## PP.BehavInt3_GFFB -0.04 -0.04 0.05
## PP.BehavInt4_GFFB -0.11 -0.11 -0.01
## PP.BehavInt1_GFPRB 0.99 0.99 0.95
## PP.BehavInt2_GFPRB 0.98 0.98 0.96
## PP.BehavInt3_GFPRB 1.00 0.99 0.95
## PP.BehavInt4_GFPRB 0.99 1.00 0.95
## PP.BehavInt1_CBB 0.71 0.69 0.81
## PP.BehavInt2_CBB 0.67 0.65 0.78
## PP.BehavInt3_CBB 0.70 0.67 0.80
## PP.BehavInt4_CBB 0.70 0.66 0.79
## PP.BehavInt1_PBPB 0.99 0.99 0.95
## PP.BehavInt2_PBPB 0.98 0.98 0.96
## PP.BehavInt3_PBPB 1.00 0.99 0.95
## PP.BehavInt4_PBPB 0.99 1.00 0.95
## PP.BehavInt1_PBFB 0.95 0.95 1.00
## PP.BehavInt2_PBFB 0.92 0.91 0.99
## PP.BehavInt3_PBFB 0.95 0.94 0.99
## PP.BehavInt4_PBFB 0.95 0.94 0.99
## PP.BehavInt1_VB 0.92 0.93 0.86
## PP.BehavInt2_VB 0.92 0.92 0.87
## PP.BehavInt3_VB 0.92 0.93 0.85
## PP.BehavInt4_VB 0.92 0.93 0.85
## PP.BehavInt2_PBFB PP.BehavInt3_PBFB PP.BehavInt4_PBFB
## PP.Nat_1_GFFB 0.06 0.04 0.05
## PP.Nat_4R_GFFB -0.88 -0.87 -0.87
## PP.Nat_2R_GFFB -0.86 -0.88 -0.87
## PP.Nat_3R_GFFB -0.82 -0.80 -0.81
## PP.Nat_1_GFPRB -0.29 -0.24 -0.24
## PP.Nat_4R_GFPRB -0.77 -0.72 -0.73
## PP.Nat_2R_GFPRB -0.78 -0.75 -0.76
## PP.Nat_3R_GFPRB -0.82 -0.78 -0.80
## PP.Nat_1_CBB 0.75 0.70 0.72
## PP.Nat_4R_CBB 0.04 -0.02 0.00
## PP.Nat_2R_CBB -0.11 -0.18 -0.15
## PP.Nat_3R_CBB -0.19 -0.27 -0.24
## PP.Nat_1_PBPB 0.93 0.92 0.93
## PP.Nat_4R_PBPB 0.08 0.06 0.07
## PP.Nat_2R_PBPB 0.00 -0.02 0.00
## PP.Nat_3R_PBPB -0.31 -0.36 -0.35
## PP.Nat_1_PBFB 0.95 0.95 0.95
## PP.Nat_4R_PBFB -0.42 -0.40 -0.41
## PP.Nat_2R_PBFB -0.03 0.00 -0.02
## PP.Nat_3R_PBFB 0.09 0.14 0.13
## PP.Nat_1_VB 0.75 0.78 0.78
## PP.Nat_4R_VB -0.16 -0.13 -0.13
## PP.Nat_2R_VB -0.37 -0.34 -0.34
## PP.Nat_3R_VB -0.45 -0.43 -0.44
## PP.BehavInt1_GFFB 0.08 0.07 0.07
## PP.BehavInt2_GFFB 0.00 0.00 0.01
## PP.BehavInt3_GFFB 0.11 0.10 0.10
## PP.BehavInt4_GFFB 0.04 0.03 0.04
## PP.BehavInt1_GFPRB 0.92 0.94 0.93
## PP.BehavInt2_GFPRB 0.95 0.94 0.94
## PP.BehavInt3_GFPRB 0.92 0.95 0.95
## PP.BehavInt4_GFPRB 0.91 0.94 0.94
## PP.BehavInt1_CBB 0.83 0.81 0.82
## PP.BehavInt2_CBB 0.81 0.78 0.79
## PP.BehavInt3_CBB 0.82 0.80 0.81
## PP.BehavInt4_CBB 0.82 0.80 0.81
## PP.BehavInt1_PBPB 0.92 0.94 0.93
## PP.BehavInt2_PBPB 0.95 0.94 0.94
## PP.BehavInt3_PBPB 0.92 0.95 0.95
## PP.BehavInt4_PBPB 0.91 0.94 0.94
## PP.BehavInt1_PBFB 0.99 0.99 0.99
## PP.BehavInt2_PBFB 1.00 0.98 0.98
## PP.BehavInt3_PBFB 0.98 1.00 1.00
## PP.BehavInt4_PBFB 0.98 1.00 1.00
## PP.BehavInt1_VB 0.83 0.86 0.85
## PP.BehavInt2_VB 0.86 0.86 0.86
## PP.BehavInt3_VB 0.81 0.86 0.85
## PP.BehavInt4_VB 0.83 0.86 0.85
## PP.BehavInt1_VB PP.BehavInt2_VB PP.BehavInt3_VB
## PP.Nat_1_GFFB -0.14 -0.17 -0.15
## PP.Nat_4R_GFFB -0.67 -0.71 -0.66
## PP.Nat_2R_GFFB -0.72 -0.72 -0.73
## PP.Nat_3R_GFFB -0.54 -0.56 -0.52
## PP.Nat_1_GFPRB -0.08 -0.18 -0.05
## PP.Nat_4R_GFPRB -0.47 -0.55 -0.44
## PP.Nat_2R_GFPRB -0.53 -0.62 -0.50
## PP.Nat_3R_GFPRB -0.54 -0.60 -0.50
## PP.Nat_1_CBB 0.37 0.40 0.34
## PP.Nat_4R_CBB -0.25 -0.21 -0.28
## PP.Nat_2R_CBB -0.46 -0.39 -0.50
## PP.Nat_3R_CBB -0.49 -0.43 -0.53
## PP.Nat_1_PBPB 0.86 0.88 0.85
## PP.Nat_4R_PBPB 0.28 0.35 0.28
## PP.Nat_2R_PBPB 0.10 0.19 0.11
## PP.Nat_3R_PBPB -0.28 -0.14 -0.27
## PP.Nat_1_PBFB 0.74 0.77 0.73
## PP.Nat_4R_PBFB -0.42 -0.43 -0.40
## PP.Nat_2R_PBFB 0.03 -0.04 0.03
## PP.Nat_3R_PBFB 0.16 0.09 0.16
## PP.Nat_1_VB 0.92 0.89 0.91
## PP.Nat_4R_VB 0.21 0.20 0.24
## PP.Nat_2R_VB -0.04 -0.06 -0.01
## PP.Nat_3R_VB -0.18 -0.18 -0.15
## PP.BehavInt1_GFFB -0.11 -0.14 -0.11
## PP.BehavInt2_GFFB -0.14 -0.18 -0.13
## PP.BehavInt3_GFFB -0.09 -0.11 -0.09
## PP.BehavInt4_GFFB -0.14 -0.16 -0.14
## PP.BehavInt1_GFPRB 0.92 0.91 0.92
## PP.BehavInt2_GFPRB 0.91 0.91 0.89
## PP.BehavInt3_GFPRB 0.92 0.92 0.92
## PP.BehavInt4_GFPRB 0.93 0.92 0.93
## PP.BehavInt1_CBB 0.49 0.50 0.48
## PP.BehavInt2_CBB 0.46 0.48 0.43
## PP.BehavInt3_CBB 0.48 0.48 0.46
## PP.BehavInt4_CBB 0.48 0.48 0.46
## PP.BehavInt1_PBPB 0.92 0.91 0.92
## PP.BehavInt2_PBPB 0.91 0.91 0.89
## PP.BehavInt3_PBPB 0.92 0.92 0.92
## PP.BehavInt4_PBPB 0.93 0.92 0.93
## PP.BehavInt1_PBFB 0.86 0.87 0.85
## PP.BehavInt2_PBFB 0.83 0.86 0.81
## PP.BehavInt3_PBFB 0.86 0.86 0.86
## PP.BehavInt4_PBFB 0.85 0.86 0.85
## PP.BehavInt1_VB 1.00 0.97 0.99
## PP.BehavInt2_VB 0.97 1.00 0.95
## PP.BehavInt3_VB 0.99 0.95 1.00
## PP.BehavInt4_VB 0.99 0.97 0.99
## PP.BehavInt4_VB
## PP.Nat_1_GFFB -0.15
## PP.Nat_4R_GFFB -0.68
## PP.Nat_2R_GFFB -0.73
## PP.Nat_3R_GFFB -0.53
## PP.Nat_1_GFPRB -0.08
## PP.Nat_4R_GFPRB -0.48
## PP.Nat_2R_GFPRB -0.53
## PP.Nat_3R_GFPRB -0.53
## PP.Nat_1_CBB 0.36
## PP.Nat_4R_CBB -0.26
## PP.Nat_2R_CBB -0.46
## PP.Nat_3R_CBB -0.50
## PP.Nat_1_PBPB 0.86
## PP.Nat_4R_PBPB 0.29
## PP.Nat_2R_PBPB 0.13
## PP.Nat_3R_PBPB -0.26
## PP.Nat_1_PBFB 0.73
## PP.Nat_4R_PBFB -0.40
## PP.Nat_2R_PBFB 0.04
## PP.Nat_3R_PBFB 0.15
## PP.Nat_1_VB 0.91
## PP.Nat_4R_VB 0.21
## PP.Nat_2R_VB -0.04
## PP.Nat_3R_VB -0.18
## PP.BehavInt1_GFFB -0.13
## PP.BehavInt2_GFFB -0.16
## PP.BehavInt3_GFFB -0.10
## PP.BehavInt4_GFFB -0.16
## PP.BehavInt1_GFPRB 0.92
## PP.BehavInt2_GFPRB 0.91
## PP.BehavInt3_GFPRB 0.92
## PP.BehavInt4_GFPRB 0.93
## PP.BehavInt1_CBB 0.49
## PP.BehavInt2_CBB 0.45
## PP.BehavInt3_CBB 0.47
## PP.BehavInt4_CBB 0.47
## PP.BehavInt1_PBPB 0.92
## PP.BehavInt2_PBPB 0.91
## PP.BehavInt3_PBPB 0.92
## PP.BehavInt4_PBPB 0.93
## PP.BehavInt1_PBFB 0.85
## PP.BehavInt2_PBFB 0.83
## PP.BehavInt3_PBFB 0.86
## PP.BehavInt4_PBFB 0.85
## PP.BehavInt1_VB 0.99
## PP.BehavInt2_VB 0.97
## PP.BehavInt3_VB 0.99
## PP.BehavInt4_VB 1.00
##
## n= 48
##
##
## P
## PP.Nat_1_GFFB PP.Nat_4R_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB
## PP.Nat_1_GFFB 0.9750 0.9035 0.0055
## PP.Nat_4R_GFFB 0.9750 0.0000 0.0000
## PP.Nat_2R_GFFB 0.9035 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0055 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0009 0.0180 0.1291 0.4124
## PP.Nat_4R_GFPRB 0.0893 0.0000 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.1703 0.0000 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0475 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0006 0.0000 0.0000 0.0000
## PP.Nat_4R_CBB 0.0741 0.8075 0.6245 0.6559
## PP.Nat_2R_CBB 0.4533 0.4298 0.0957 0.4871
## PP.Nat_3R_CBB 0.3388 0.2605 0.0315 0.2723
## PP.Nat_1_PBPB 0.9904 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.0000 0.9023 0.9301 0.1403
## PP.Nat_2R_PBPB 0.0000 0.8597 0.9435 0.0596
## PP.Nat_3R_PBPB 0.0000 0.1943 0.0269 0.0032
## PP.Nat_1_PBFB 0.4227 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0000 0.0803 0.0620 0.8538
## PP.Nat_2R_PBFB 0.0000 0.9014 0.4460 0.0799
## PP.Nat_3R_PBFB 0.0000 0.6431 0.2172 0.0243
## PP.Nat_1_VB 0.4114 0.0000 0.0000 0.0003
## PP.Nat_4R_VB 0.0000 0.0688 0.1987 0.0003
## PP.Nat_2R_VB 0.0000 0.0065 0.0201 0.0000
## PP.Nat_3R_VB 0.0000 0.0063 0.0060 0.0000
## PP.BehavInt1_GFFB 0.0000 0.8166 0.9957 0.0035
## PP.BehavInt2_GFFB 0.0000 0.7427 0.6654 0.0247
## PP.BehavInt3_GFFB 0.0000 0.6037 0.7974 0.0015
## PP.BehavInt4_GFFB 0.0000 0.9813 0.8575 0.0074
## PP.BehavInt1_GFPRB 0.4073 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.4043 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.4905 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.4694 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0089 0.0000 0.0000 0.0000
## PP.BehavInt2_CBB 0.0024 0.0000 0.0000 0.0000
## PP.BehavInt3_CBB 0.0059 0.0000 0.0000 0.0000
## PP.BehavInt4_CBB 0.0051 0.0000 0.0000 0.0000
## PP.BehavInt1_PBPB 0.4073 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.4043 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.4905 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.4694 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.9372 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.6968 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.7981 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.7596 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.3462 0.0000 0.0000 0.0000
## PP.BehavInt2_VB 0.2443 0.0000 0.0000 0.0000
## PP.BehavInt3_VB 0.3179 0.0000 0.0000 0.0001
## PP.BehavInt4_VB 0.2993 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB PP.Nat_4R_GFPRB PP.Nat_2R_GFPRB
## PP.Nat_1_GFFB 0.0009 0.0893 0.1703
## PP.Nat_4R_GFFB 0.0180 0.0000 0.0000
## PP.Nat_2R_GFFB 0.1291 0.0000 0.0000
## PP.Nat_3R_GFFB 0.4124 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0006 0.0019
## PP.Nat_4R_GFPRB 0.0006 0.0000
## PP.Nat_2R_GFPRB 0.0019 0.0000
## PP.Nat_3R_GFPRB 0.0306 0.0000 0.0000
## PP.Nat_1_CBB 0.0750 0.0000 0.0000
## PP.Nat_4R_CBB 0.0012 0.7360 0.5989
## PP.Nat_2R_CBB 0.0010 0.5215 0.5202
## PP.Nat_3R_CBB 0.0025 0.8450 0.7837
## PP.Nat_1_PBPB 0.0563 0.0000 0.0000
## PP.Nat_4R_PBPB 0.0453 0.2776 0.8376
## PP.Nat_2R_PBPB 0.0150 0.2990 0.7528
## PP.Nat_3R_PBPB 0.0006 0.2698 0.6346
## PP.Nat_1_PBFB 0.0213 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0000 0.2754 0.0959
## PP.Nat_2R_PBFB 0.0002 0.5809 0.8932
## PP.Nat_3R_PBFB 0.0000 0.6391 0.9673
## PP.Nat_1_VB 0.5501 0.0009 0.0002
## PP.Nat_4R_VB 0.6513 0.0003 0.0057
## PP.Nat_2R_VB 0.8906 0.0000 0.0000
## PP.Nat_3R_VB 0.8300 0.0000 0.0000
## PP.BehavInt1_GFFB 0.0088 0.0554 0.1364
## PP.BehavInt2_GFFB 0.0013 0.2389 0.4398
## PP.BehavInt3_GFFB 0.0167 0.0294 0.0769
## PP.BehavInt4_GFFB 0.0091 0.0803 0.1765
## PP.BehavInt1_GFPRB 0.2613 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0841 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.1876 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.2464 0.0000 0.0000
## PP.BehavInt1_CBB 0.1057 0.0000 0.0000
## PP.BehavInt2_CBB 0.1086 0.0000 0.0000
## PP.BehavInt3_CBB 0.0990 0.0000 0.0000
## PP.BehavInt4_CBB 0.1116 0.0000 0.0000
## PP.BehavInt1_PBPB 0.2613 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0841 0.0000 0.0000
## PP.BehavInt3_PBPB 0.1876 0.0000 0.0000
## PP.BehavInt4_PBPB 0.2464 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0463 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0433 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0975 0.0000 0.0000
## PP.BehavInt4_PBFB 0.1067 0.0000 0.0000
## PP.BehavInt1_VB 0.5729 0.0007 0.0001
## PP.BehavInt2_VB 0.2083 0.0000 0.0000
## PP.BehavInt3_VB 0.7437 0.0019 0.0003
## PP.BehavInt4_VB 0.5869 0.0006 0.0001
## PP.Nat_3R_GFPRB PP.Nat_1_CBB PP.Nat_4R_CBB PP.Nat_2R_CBB
## PP.Nat_1_GFFB 0.0475 0.0006 0.0741 0.4533
## PP.Nat_4R_GFFB 0.0000 0.0000 0.8075 0.4298
## PP.Nat_2R_GFFB 0.0000 0.0000 0.6245 0.0957
## PP.Nat_3R_GFFB 0.0000 0.0000 0.6559 0.4871
## PP.Nat_1_GFPRB 0.0306 0.0750 0.0012 0.0010
## PP.Nat_4R_GFPRB 0.0000 0.0000 0.7360 0.5215
## PP.Nat_2R_GFPRB 0.0000 0.0000 0.5989 0.5202
## PP.Nat_3R_GFPRB 0.0000 0.5609 0.6687
## PP.Nat_1_CBB 0.0000 0.2001 0.2714
## PP.Nat_4R_CBB 0.5609 0.2001 0.0000
## PP.Nat_2R_CBB 0.6687 0.2714 0.0000
## PP.Nat_3R_CBB 0.7608 0.7653 0.0000 0.0000
## PP.Nat_1_PBPB 0.0000 0.0000 0.9691 0.2569
## PP.Nat_4R_PBPB 0.7031 0.0575 0.0640 0.5041
## PP.Nat_2R_PBPB 0.4313 0.0252 0.0043 0.0164
## PP.Nat_3R_PBPB 0.0761 0.0067 0.0523 0.0066
## PP.Nat_1_PBFB 0.0000 0.0000 0.5080 0.8660
## PP.Nat_4R_PBFB 0.2066 0.2726 0.0001 0.0154
## PP.Nat_2R_PBFB 0.5951 0.3879 0.0000 0.0000
## PP.Nat_3R_PBFB 0.3703 0.3154 0.0001 0.0000
## PP.Nat_1_VB 0.0001 0.0107 0.0674 0.0019
## PP.Nat_4R_VB 0.0013 0.0000 0.9493 0.2787
## PP.Nat_2R_VB 0.0000 0.0000 0.9619 0.5037
## PP.Nat_3R_VB 0.0000 0.0000 0.9144 0.7186
## PP.BehavInt1_GFFB 0.0300 0.0004 0.0127 0.2145
## PP.BehavInt2_GFFB 0.1175 0.0055 0.0045 0.1099
## PP.BehavInt3_GFFB 0.0159 0.0001 0.0151 0.2490
## PP.BehavInt4_GFFB 0.0639 0.0009 0.0128 0.2549
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.7698 0.0645
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.9614 0.1375
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.7846 0.0764
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.5295 0.0289
## PP.BehavInt1_CBB 0.0000 0.0000 0.2535 0.5990
## PP.BehavInt2_CBB 0.0000 0.0000 0.2586 0.4740
## PP.BehavInt3_CBB 0.0000 0.0000 0.2674 0.5351
## PP.BehavInt4_CBB 0.0000 0.0000 0.2258 0.5242
## PP.BehavInt1_PBPB 0.0000 0.0000 0.7698 0.0645
## PP.BehavInt2_PBPB 0.0000 0.0000 0.9614 0.1375
## PP.BehavInt3_PBPB 0.0000 0.0000 0.7846 0.0764
## PP.BehavInt4_PBPB 0.0000 0.0000 0.5295 0.0289
## PP.BehavInt1_PBFB 0.0000 0.0000 0.9649 0.2856
## PP.BehavInt2_PBFB 0.0000 0.0000 0.8031 0.4689
## PP.BehavInt3_PBFB 0.0000 0.0000 0.8894 0.2195
## PP.BehavInt4_PBFB 0.0000 0.0000 0.9876 0.2934
## PP.BehavInt1_VB 0.0000 0.0094 0.0889 0.0010
## PP.BehavInt2_VB 0.0000 0.0049 0.1611 0.0069
## PP.BehavInt3_VB 0.0003 0.0169 0.0542 0.0003
## PP.BehavInt4_VB 0.0001 0.0126 0.0704 0.0009
## PP.Nat_3R_CBB PP.Nat_1_PBPB PP.Nat_4R_PBPB PP.Nat_2R_PBPB
## PP.Nat_1_GFFB 0.3388 0.9904 0.0000 0.0000
## PP.Nat_4R_GFFB 0.2605 0.0000 0.9023 0.8597
## PP.Nat_2R_GFFB 0.0315 0.0000 0.9301 0.9435
## PP.Nat_3R_GFFB 0.2723 0.0000 0.1403 0.0596
## PP.Nat_1_GFPRB 0.0025 0.0563 0.0453 0.0150
## PP.Nat_4R_GFPRB 0.8450 0.0000 0.2776 0.2990
## PP.Nat_2R_GFPRB 0.7837 0.0000 0.8376 0.7528
## PP.Nat_3R_GFPRB 0.7608 0.0000 0.7031 0.4313
## PP.Nat_1_CBB 0.7653 0.0000 0.0575 0.0252
## PP.Nat_4R_CBB 0.0000 0.9691 0.0640 0.0043
## PP.Nat_2R_CBB 0.0000 0.2569 0.5041 0.0164
## PP.Nat_3R_CBB 0.0927 0.6270 0.0167
## PP.Nat_1_PBPB 0.0927 0.0980 0.4360
## PP.Nat_4R_PBPB 0.6270 0.0980 0.0000
## PP.Nat_2R_PBPB 0.0167 0.4360 0.0000
## PP.Nat_3R_PBPB 0.0021 0.1179 0.0000 0.0000
## PP.Nat_1_PBFB 0.4838 0.0000 0.8267 0.9185
## PP.Nat_4R_PBFB 0.0491 0.0005 0.0000 0.0000
## PP.Nat_2R_PBFB 0.0000 0.7899 0.0000 0.0000
## PP.Nat_3R_PBFB 0.0000 0.6341 0.0000 0.0000
## PP.Nat_1_VB 0.0006 0.0000 0.0523 0.4780
## PP.Nat_4R_VB 0.4204 0.8877 0.0000 0.0000
## PP.Nat_2R_VB 0.7310 0.0361 0.0000 0.0000
## PP.Nat_3R_VB 0.9568 0.0026 0.0004 0.0002
## PP.BehavInt1_GFFB 0.1548 0.8805 0.0000 0.0000
## PP.BehavInt2_GFFB 0.0694 0.7045 0.0000 0.0000
## PP.BehavInt3_GFFB 0.1776 0.6909 0.0000 0.0000
## PP.BehavInt4_GFFB 0.1873 0.9945 0.0000 0.0000
## PP.BehavInt1_GFPRB 0.0124 0.0000 0.0679 0.3167
## PP.BehavInt2_GFPRB 0.0387 0.0000 0.0911 0.3541
## PP.BehavInt3_GFPRB 0.0208 0.0000 0.1151 0.4094
## PP.BehavInt4_GFPRB 0.0068 0.0000 0.1264 0.4930
## PP.BehavInt1_CBB 0.6880 0.0000 0.1056 0.0577
## PP.BehavInt2_CBB 0.8455 0.0000 0.0798 0.0358
## PP.BehavInt3_CBB 0.7641 0.0000 0.0977 0.0562
## PP.BehavInt4_CBB 0.8005 0.0000 0.1120 0.0582
## PP.BehavInt1_PBPB 0.0124 0.0000 0.0679 0.3167
## PP.BehavInt2_PBPB 0.0387 0.0000 0.0911 0.3541
## PP.BehavInt3_PBPB 0.0208 0.0000 0.1151 0.4094
## PP.BehavInt4_PBPB 0.0068 0.0000 0.1264 0.4930
## PP.BehavInt1_PBFB 0.0878 0.0000 0.4969 0.8688
## PP.BehavInt2_PBFB 0.1924 0.0000 0.5769 0.9918
## PP.BehavInt3_PBFB 0.0679 0.0000 0.6994 0.9038
## PP.BehavInt4_PBFB 0.0990 0.0000 0.6436 0.9847
## PP.BehavInt1_VB 0.0004 0.0000 0.0510 0.4804
## PP.BehavInt2_VB 0.0025 0.0000 0.0139 0.1995
## PP.BehavInt3_VB 0.0000 0.0000 0.0554 0.4538
## PP.BehavInt4_VB 0.0003 0.0000 0.0495 0.3842
## PP.Nat_3R_PBPB PP.Nat_1_PBFB PP.Nat_4R_PBFB PP.Nat_2R_PBFB
## PP.Nat_1_GFFB 0.0000 0.4227 0.0000 0.0000
## PP.Nat_4R_GFFB 0.1943 0.0000 0.0803 0.9014
## PP.Nat_2R_GFFB 0.0269 0.0000 0.0620 0.4460
## PP.Nat_3R_GFFB 0.0032 0.0000 0.8538 0.0799
## PP.Nat_1_GFPRB 0.0006 0.0213 0.0000 0.0002
## PP.Nat_4R_GFPRB 0.2698 0.0000 0.2754 0.5809
## PP.Nat_2R_GFPRB 0.6346 0.0000 0.0959 0.8932
## PP.Nat_3R_GFPRB 0.0761 0.0000 0.2066 0.5951
## PP.Nat_1_CBB 0.0067 0.0000 0.2726 0.3879
## PP.Nat_4R_CBB 0.0523 0.5080 0.0001 0.0000
## PP.Nat_2R_CBB 0.0066 0.8660 0.0154 0.0000
## PP.Nat_3R_CBB 0.0021 0.4838 0.0491 0.0000
## PP.Nat_1_PBPB 0.1179 0.0000 0.0005 0.7899
## PP.Nat_4R_PBPB 0.0000 0.8267 0.0000 0.0000
## PP.Nat_2R_PBPB 0.0000 0.9185 0.0000 0.0000
## PP.Nat_3R_PBPB 0.0468 0.0037 0.0000
## PP.Nat_1_PBFB 0.0468 0.0016 0.6806
## PP.Nat_4R_PBFB 0.0037 0.0016 0.0000
## PP.Nat_2R_PBFB 0.0000 0.6806 0.0000
## PP.Nat_3R_PBFB 0.0000 0.7361 0.0000 0.0000
## PP.Nat_1_VB 0.1208 0.0000 0.0025 0.9593
## PP.Nat_4R_VB 0.0003 0.1289 0.0002 0.0000
## PP.Nat_2R_VB 0.0003 0.0026 0.0252 0.0004
## PP.Nat_3R_VB 0.0000 0.0003 0.0650 0.0005
## PP.BehavInt1_GFFB 0.0000 0.3289 0.0000 0.0000
## PP.BehavInt2_GFFB 0.0000 0.6913 0.0000 0.0000
## PP.BehavInt3_GFFB 0.0000 0.2283 0.0002 0.0000
## PP.BehavInt4_GFFB 0.0002 0.4443 0.0001 0.0000
## PP.BehavInt1_GFPRB 0.0423 0.0000 0.0004 0.7019
## PP.BehavInt2_GFPRB 0.0633 0.0000 0.0005 0.7404
## PP.BehavInt3_GFPRB 0.0281 0.0000 0.0010 0.8750
## PP.BehavInt4_GFPRB 0.0240 0.0000 0.0022 0.9902
## PP.BehavInt1_CBB 0.0004 0.0000 0.1419 0.4328
## PP.BehavInt2_CBB 0.0008 0.0000 0.1978 0.3701
## PP.BehavInt3_CBB 0.0006 0.0000 0.1733 0.4005
## PP.BehavInt4_CBB 0.0007 0.0000 0.1473 0.4306
## PP.BehavInt1_PBPB 0.0423 0.0000 0.0004 0.7019
## PP.BehavInt2_PBPB 0.0633 0.0000 0.0005 0.7404
## PP.BehavInt3_PBPB 0.0281 0.0000 0.0010 0.8750
## PP.BehavInt4_PBPB 0.0240 0.0000 0.0022 0.9902
## PP.BehavInt1_PBFB 0.0245 0.0000 0.0022 0.8417
## PP.BehavInt2_PBFB 0.0334 0.0000 0.0031 0.8623
## PP.BehavInt3_PBFB 0.0117 0.0000 0.0045 0.9996
## PP.BehavInt4_PBFB 0.0144 0.0000 0.0037 0.9073
## PP.BehavInt1_VB 0.0576 0.0000 0.0032 0.8177
## PP.BehavInt2_VB 0.3288 0.0000 0.0023 0.8034
## PP.BehavInt3_VB 0.0682 0.0000 0.0047 0.8596
## PP.BehavInt4_VB 0.0770 0.0000 0.0051 0.8119
## PP.Nat_3R_PBFB PP.Nat_1_VB PP.Nat_4R_VB PP.Nat_2R_VB
## PP.Nat_1_GFFB 0.0000 0.4114 0.0000 0.0000
## PP.Nat_4R_GFFB 0.6431 0.0000 0.0688 0.0065
## PP.Nat_2R_GFFB 0.2172 0.0000 0.1987 0.0201
## PP.Nat_3R_GFFB 0.0243 0.0003 0.0003 0.0000
## PP.Nat_1_GFPRB 0.0000 0.5501 0.6513 0.8906
## PP.Nat_4R_GFPRB 0.6391 0.0009 0.0003 0.0000
## PP.Nat_2R_GFPRB 0.9673 0.0002 0.0057 0.0000
## PP.Nat_3R_GFPRB 0.3703 0.0001 0.0013 0.0000
## PP.Nat_1_CBB 0.3154 0.0107 0.0000 0.0000
## PP.Nat_4R_CBB 0.0001 0.0674 0.9493 0.9619
## PP.Nat_2R_CBB 0.0000 0.0019 0.2787 0.5037
## PP.Nat_3R_CBB 0.0000 0.0006 0.4204 0.7310
## PP.Nat_1_PBPB 0.6341 0.0000 0.8877 0.0361
## PP.Nat_4R_PBPB 0.0000 0.0523 0.0000 0.0000
## PP.Nat_2R_PBPB 0.0000 0.4780 0.0000 0.0000
## PP.Nat_3R_PBPB 0.0000 0.1208 0.0003 0.0003
## PP.Nat_1_PBFB 0.7361 0.0000 0.1289 0.0026
## PP.Nat_4R_PBFB 0.0000 0.0025 0.0002 0.0252
## PP.Nat_2R_PBFB 0.0000 0.9593 0.0000 0.0004
## PP.Nat_3R_PBFB 0.4963 0.0015 0.0012
## PP.Nat_1_VB 0.4963 0.0589 0.8010
## PP.Nat_4R_VB 0.0015 0.0589 0.0000
## PP.Nat_2R_VB 0.0012 0.8010 0.0000
## PP.Nat_3R_VB 0.0000 0.4384 0.0000 0.0000
## PP.BehavInt1_GFFB 0.0000 0.6509 0.0000 0.0000
## PP.BehavInt2_GFFB 0.0000 0.4965 0.0000 0.0000
## PP.BehavInt3_GFFB 0.0002 0.7539 0.0000 0.0000
## PP.BehavInt4_GFFB 0.0002 0.4941 0.0000 0.0000
## PP.BehavInt1_GFPRB 0.5303 0.0000 0.5091 0.3204
## PP.BehavInt2_GFPRB 0.6319 0.0000 0.7559 0.1826
## PP.BehavInt3_GFPRB 0.3912 0.0000 0.7663 0.1487
## PP.BehavInt4_GFPRB 0.2823 0.0000 0.6510 0.2116
## PP.BehavInt1_CBB 0.2428 0.0013 0.0000 0.0000
## PP.BehavInt2_CBB 0.2341 0.0026 0.0000 0.0000
## PP.BehavInt3_CBB 0.2385 0.0022 0.0000 0.0000
## PP.BehavInt4_CBB 0.2531 0.0028 0.0000 0.0000
## PP.BehavInt1_PBPB 0.5303 0.0000 0.5091 0.3204
## PP.BehavInt2_PBPB 0.6319 0.0000 0.7559 0.1826
## PP.BehavInt3_PBPB 0.3912 0.0000 0.7663 0.1487
## PP.BehavInt4_PBPB 0.2823 0.0000 0.6510 0.2116
## PP.BehavInt1_PBFB 0.4922 0.0000 0.4542 0.0268
## PP.BehavInt2_PBFB 0.5253 0.0000 0.2743 0.0088
## PP.BehavInt3_PBFB 0.3432 0.0000 0.3919 0.0199
## PP.BehavInt4_PBFB 0.3898 0.0000 0.3737 0.0185
## PP.BehavInt1_VB 0.2727 0.0000 0.1454 0.8079
## PP.BehavInt2_VB 0.5522 0.0000 0.1699 0.6698
## PP.BehavInt3_VB 0.2843 0.0000 0.1057 0.9557
## PP.BehavInt4_VB 0.2964 0.0000 0.1541 0.7858
## PP.Nat_3R_VB PP.BehavInt1_GFFB PP.BehavInt2_GFFB
## PP.Nat_1_GFFB 0.0000 0.0000 0.0000
## PP.Nat_4R_GFFB 0.0063 0.8166 0.7427
## PP.Nat_2R_GFFB 0.0060 0.9957 0.6654
## PP.Nat_3R_GFFB 0.0000 0.0035 0.0247
## PP.Nat_1_GFPRB 0.8300 0.0088 0.0013
## PP.Nat_4R_GFPRB 0.0000 0.0554 0.2389
## PP.Nat_2R_GFPRB 0.0000 0.1364 0.4398
## PP.Nat_3R_GFPRB 0.0000 0.0300 0.1175
## PP.Nat_1_CBB 0.0000 0.0004 0.0055
## PP.Nat_4R_CBB 0.9144 0.0127 0.0045
## PP.Nat_2R_CBB 0.7186 0.2145 0.1099
## PP.Nat_3R_CBB 0.9568 0.1548 0.0694
## PP.Nat_1_PBPB 0.0026 0.8805 0.7045
## PP.Nat_4R_PBPB 0.0004 0.0000 0.0000
## PP.Nat_2R_PBPB 0.0002 0.0000 0.0000
## PP.Nat_3R_PBPB 0.0000 0.0000 0.0000
## PP.Nat_1_PBFB 0.0003 0.3289 0.6913
## PP.Nat_4R_PBFB 0.0650 0.0000 0.0000
## PP.Nat_2R_PBFB 0.0005 0.0000 0.0000
## PP.Nat_3R_PBFB 0.0000 0.0000 0.0000
## PP.Nat_1_VB 0.4384 0.6509 0.4965
## PP.Nat_4R_VB 0.0000 0.0000 0.0000
## PP.Nat_2R_VB 0.0000 0.0000 0.0000
## PP.Nat_3R_VB 0.0000 0.0000
## PP.BehavInt1_GFFB 0.0000 0.0000
## PP.BehavInt2_GFFB 0.0000 0.0000
## PP.BehavInt3_GFFB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFFB 0.0000 0.0000 0.0000
## PP.BehavInt1_GFPRB 0.0573 0.4669 0.3039
## PP.BehavInt2_GFPRB 0.0286 0.4785 0.2628
## PP.BehavInt3_GFPRB 0.0140 0.6009 0.3717
## PP.BehavInt4_GFPRB 0.0271 0.6068 0.3910
## PP.BehavInt1_CBB 0.0000 0.0065 0.0316
## PP.BehavInt2_CBB 0.0000 0.0018 0.0126
## PP.BehavInt3_CBB 0.0000 0.0044 0.0228
## PP.BehavInt4_CBB 0.0000 0.0044 0.0247
## PP.BehavInt1_PBPB 0.0573 0.4669 0.3039
## PP.BehavInt2_PBPB 0.0286 0.4785 0.2628
## PP.BehavInt3_PBPB 0.0140 0.6009 0.3717
## PP.BehavInt4_PBPB 0.0271 0.6068 0.3910
## PP.BehavInt1_PBFB 0.0049 0.8822 0.7564
## PP.BehavInt2_PBFB 0.0013 0.6009 0.9975
## PP.BehavInt3_PBFB 0.0023 0.6344 0.9810
## PP.BehavInt4_PBFB 0.0020 0.6156 0.9712
## PP.BehavInt1_VB 0.2183 0.4529 0.3467
## PP.BehavInt2_VB 0.2140 0.3557 0.2212
## PP.BehavInt3_VB 0.3027 0.4525 0.3669
## PP.BehavInt4_VB 0.2199 0.3924 0.2868
## PP.BehavInt3_GFFB PP.BehavInt4_GFFB PP.BehavInt1_GFPRB
## PP.Nat_1_GFFB 0.0000 0.0000 0.4073
## PP.Nat_4R_GFFB 0.6037 0.9813 0.0000
## PP.Nat_2R_GFFB 0.7974 0.8575 0.0000
## PP.Nat_3R_GFFB 0.0015 0.0074 0.0000
## PP.Nat_1_GFPRB 0.0167 0.0091 0.2613
## PP.Nat_4R_GFPRB 0.0294 0.0803 0.0000
## PP.Nat_2R_GFPRB 0.0769 0.1765 0.0000
## PP.Nat_3R_GFPRB 0.0159 0.0639 0.0000
## PP.Nat_1_CBB 0.0001 0.0009 0.0000
## PP.Nat_4R_CBB 0.0151 0.0128 0.7698
## PP.Nat_2R_CBB 0.2490 0.2549 0.0645
## PP.Nat_3R_CBB 0.1776 0.1873 0.0124
## PP.Nat_1_PBPB 0.6909 0.9945 0.0000
## PP.Nat_4R_PBPB 0.0000 0.0000 0.0679
## PP.Nat_2R_PBPB 0.0000 0.0000 0.3167
## PP.Nat_3R_PBPB 0.0000 0.0002 0.0423
## PP.Nat_1_PBFB 0.2283 0.4443 0.0000
## PP.Nat_4R_PBFB 0.0002 0.0001 0.0004
## PP.Nat_2R_PBFB 0.0000 0.0000 0.7019
## PP.Nat_3R_PBFB 0.0002 0.0002 0.5303
## PP.Nat_1_VB 0.7539 0.4941 0.0000
## PP.Nat_4R_VB 0.0000 0.0000 0.5091
## PP.Nat_2R_VB 0.0000 0.0000 0.3204
## PP.Nat_3R_VB 0.0000 0.0000 0.0573
## PP.BehavInt1_GFFB 0.0000 0.0000 0.4669
## PP.BehavInt2_GFFB 0.0000 0.0000 0.3039
## PP.BehavInt3_GFFB 0.0000 0.6055
## PP.BehavInt4_GFFB 0.0000 0.3542
## PP.BehavInt1_GFPRB 0.6055 0.3542
## PP.BehavInt2_GFPRB 0.6454 0.3526 0.0000
## PP.BehavInt3_GFPRB 0.7700 0.4653 0.0000
## PP.BehavInt4_GFPRB 0.7644 0.4567 0.0000
## PP.BehavInt1_CBB 0.0028 0.0130 0.0000
## PP.BehavInt2_CBB 0.0006 0.0038 0.0000
## PP.BehavInt3_CBB 0.0018 0.0087 0.0000
## PP.BehavInt4_CBB 0.0018 0.0085 0.0000
## PP.BehavInt1_PBPB 0.6055 0.3542 0.0000
## PP.BehavInt2_PBPB 0.6454 0.3526 0.0000
## PP.BehavInt3_PBPB 0.7700 0.4653 0.0000
## PP.BehavInt4_PBPB 0.7644 0.4567 0.0000
## PP.BehavInt1_PBFB 0.7225 0.9417 0.0000
## PP.BehavInt2_PBFB 0.4561 0.7669 0.0000
## PP.BehavInt3_PBFB 0.5033 0.8157 0.0000
## PP.BehavInt4_PBFB 0.4799 0.7958 0.0000
## PP.BehavInt1_VB 0.5474 0.3352 0.0000
## PP.BehavInt2_VB 0.4693 0.2643 0.0000
## PP.BehavInt3_VB 0.5389 0.3349 0.0000
## PP.BehavInt4_VB 0.4839 0.2821 0.0000
## PP.BehavInt2_GFPRB PP.BehavInt3_GFPRB PP.BehavInt4_GFPRB
## PP.Nat_1_GFFB 0.4043 0.4905 0.4694
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0841 0.1876 0.2464
## PP.Nat_4R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0000 0.0000 0.0000
## PP.Nat_4R_CBB 0.9614 0.7846 0.5295
## PP.Nat_2R_CBB 0.1375 0.0764 0.0289
## PP.Nat_3R_CBB 0.0387 0.0208 0.0068
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.0911 0.1151 0.1264
## PP.Nat_2R_PBPB 0.3541 0.4094 0.4930
## PP.Nat_3R_PBPB 0.0633 0.0281 0.0240
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0005 0.0010 0.0022
## PP.Nat_2R_PBFB 0.7404 0.8750 0.9902
## PP.Nat_3R_PBFB 0.6319 0.3912 0.2823
## PP.Nat_1_VB 0.0000 0.0000 0.0000
## PP.Nat_4R_VB 0.7559 0.7663 0.6510
## PP.Nat_2R_VB 0.1826 0.1487 0.2116
## PP.Nat_3R_VB 0.0286 0.0140 0.0271
## PP.BehavInt1_GFFB 0.4785 0.6009 0.6068
## PP.BehavInt2_GFFB 0.2628 0.3717 0.3910
## PP.BehavInt3_GFFB 0.6454 0.7700 0.7644
## PP.BehavInt4_GFFB 0.3526 0.4653 0.4567
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.0000 0.0000
## PP.BehavInt2_CBB 0.0000 0.0000 0.0000
## PP.BehavInt3_CBB 0.0000 0.0000 0.0000
## PP.BehavInt4_CBB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.0000 0.0000 0.0000
## PP.BehavInt2_VB 0.0000 0.0000 0.0000
## PP.BehavInt3_VB 0.0000 0.0000 0.0000
## PP.BehavInt4_VB 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB PP.BehavInt2_CBB PP.BehavInt3_CBB
## PP.Nat_1_GFFB 0.0089 0.0024 0.0059
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB 0.1057 0.1086 0.0990
## PP.Nat_4R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0000 0.0000 0.0000
## PP.Nat_4R_CBB 0.2535 0.2586 0.2674
## PP.Nat_2R_CBB 0.5990 0.4740 0.5351
## PP.Nat_3R_CBB 0.6880 0.8455 0.7641
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.1056 0.0798 0.0977
## PP.Nat_2R_PBPB 0.0577 0.0358 0.0562
## PP.Nat_3R_PBPB 0.0004 0.0008 0.0006
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.1419 0.1978 0.1733
## PP.Nat_2R_PBFB 0.4328 0.3701 0.4005
## PP.Nat_3R_PBFB 0.2428 0.2341 0.2385
## PP.Nat_1_VB 0.0013 0.0026 0.0022
## PP.Nat_4R_VB 0.0000 0.0000 0.0000
## PP.Nat_2R_VB 0.0000 0.0000 0.0000
## PP.Nat_3R_VB 0.0000 0.0000 0.0000
## PP.BehavInt1_GFFB 0.0065 0.0018 0.0044
## PP.BehavInt2_GFFB 0.0316 0.0126 0.0228
## PP.BehavInt3_GFFB 0.0028 0.0006 0.0018
## PP.BehavInt4_GFFB 0.0130 0.0038 0.0087
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.0000
## PP.BehavInt2_CBB 0.0000 0.0000
## PP.BehavInt3_CBB 0.0000 0.0000
## PP.BehavInt4_CBB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.0004 0.0011 0.0006
## PP.BehavInt2_VB 0.0003 0.0006 0.0005
## PP.BehavInt3_VB 0.0006 0.0021 0.0010
## PP.BehavInt4_VB 0.0004 0.0014 0.0007
## PP.BehavInt4_CBB PP.BehavInt1_PBPB PP.BehavInt2_PBPB
## PP.Nat_1_GFFB 0.0051 0.4073 0.4043
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB 0.1116 0.2613 0.0841
## PP.Nat_4R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0000 0.0000 0.0000
## PP.Nat_4R_CBB 0.2258 0.7698 0.9614
## PP.Nat_2R_CBB 0.5242 0.0645 0.1375
## PP.Nat_3R_CBB 0.8005 0.0124 0.0387
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.1120 0.0679 0.0911
## PP.Nat_2R_PBPB 0.0582 0.3167 0.3541
## PP.Nat_3R_PBPB 0.0007 0.0423 0.0633
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.1473 0.0004 0.0005
## PP.Nat_2R_PBFB 0.4306 0.7019 0.7404
## PP.Nat_3R_PBFB 0.2531 0.5303 0.6319
## PP.Nat_1_VB 0.0028 0.0000 0.0000
## PP.Nat_4R_VB 0.0000 0.5091 0.7559
## PP.Nat_2R_VB 0.0000 0.3204 0.1826
## PP.Nat_3R_VB 0.0000 0.0573 0.0286
## PP.BehavInt1_GFFB 0.0044 0.4669 0.4785
## PP.BehavInt2_GFFB 0.0247 0.3039 0.2628
## PP.BehavInt3_GFFB 0.0018 0.6055 0.6454
## PP.BehavInt4_GFFB 0.0085 0.3542 0.3526
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.0000 0.0000
## PP.BehavInt2_CBB 0.0000 0.0000 0.0000
## PP.BehavInt3_CBB 0.0000 0.0000 0.0000
## PP.BehavInt4_CBB 0.0000 0.0000
## PP.BehavInt1_PBPB 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.0006 0.0000 0.0000
## PP.BehavInt2_VB 0.0006 0.0000 0.0000
## PP.BehavInt3_VB 0.0010 0.0000 0.0000
## PP.BehavInt4_VB 0.0007 0.0000 0.0000
## PP.BehavInt3_PBPB PP.BehavInt4_PBPB PP.BehavInt1_PBFB
## PP.Nat_1_GFFB 0.4905 0.4694 0.9372
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB 0.1876 0.2464 0.0463
## PP.Nat_4R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0000 0.0000 0.0000
## PP.Nat_4R_CBB 0.7846 0.5295 0.9649
## PP.Nat_2R_CBB 0.0764 0.0289 0.2856
## PP.Nat_3R_CBB 0.0208 0.0068 0.0878
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.1151 0.1264 0.4969
## PP.Nat_2R_PBPB 0.4094 0.4930 0.8688
## PP.Nat_3R_PBPB 0.0281 0.0240 0.0245
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0010 0.0022 0.0022
## PP.Nat_2R_PBFB 0.8750 0.9902 0.8417
## PP.Nat_3R_PBFB 0.3912 0.2823 0.4922
## PP.Nat_1_VB 0.0000 0.0000 0.0000
## PP.Nat_4R_VB 0.7663 0.6510 0.4542
## PP.Nat_2R_VB 0.1487 0.2116 0.0268
## PP.Nat_3R_VB 0.0140 0.0271 0.0049
## PP.BehavInt1_GFFB 0.6009 0.6068 0.8822
## PP.BehavInt2_GFFB 0.3717 0.3910 0.7564
## PP.BehavInt3_GFFB 0.7700 0.7644 0.7225
## PP.BehavInt4_GFFB 0.4653 0.4567 0.9417
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.0000 0.0000
## PP.BehavInt2_CBB 0.0000 0.0000 0.0000
## PP.BehavInt3_CBB 0.0000 0.0000 0.0000
## PP.BehavInt4_CBB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.0000 0.0000 0.0000
## PP.BehavInt2_VB 0.0000 0.0000 0.0000
## PP.BehavInt3_VB 0.0000 0.0000 0.0000
## PP.BehavInt4_VB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB PP.BehavInt3_PBFB PP.BehavInt4_PBFB
## PP.Nat_1_GFFB 0.6968 0.7981 0.7596
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0433 0.0975 0.1067
## PP.Nat_4R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0000 0.0000 0.0000
## PP.Nat_4R_CBB 0.8031 0.8894 0.9876
## PP.Nat_2R_CBB 0.4689 0.2195 0.2934
## PP.Nat_3R_CBB 0.1924 0.0679 0.0990
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.5769 0.6994 0.6436
## PP.Nat_2R_PBPB 0.9918 0.9038 0.9847
## PP.Nat_3R_PBPB 0.0334 0.0117 0.0144
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0031 0.0045 0.0037
## PP.Nat_2R_PBFB 0.8623 0.9996 0.9073
## PP.Nat_3R_PBFB 0.5253 0.3432 0.3898
## PP.Nat_1_VB 0.0000 0.0000 0.0000
## PP.Nat_4R_VB 0.2743 0.3919 0.3737
## PP.Nat_2R_VB 0.0088 0.0199 0.0185
## PP.Nat_3R_VB 0.0013 0.0023 0.0020
## PP.BehavInt1_GFFB 0.6009 0.6344 0.6156
## PP.BehavInt2_GFFB 0.9975 0.9810 0.9712
## PP.BehavInt3_GFFB 0.4561 0.5033 0.4799
## PP.BehavInt4_GFFB 0.7669 0.8157 0.7958
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.0000 0.0000
## PP.BehavInt2_CBB 0.0000 0.0000 0.0000
## PP.BehavInt3_CBB 0.0000 0.0000 0.0000
## PP.BehavInt4_CBB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000
## PP.BehavInt1_VB 0.0000 0.0000 0.0000
## PP.BehavInt2_VB 0.0000 0.0000 0.0000
## PP.BehavInt3_VB 0.0000 0.0000 0.0000
## PP.BehavInt4_VB 0.0000 0.0000 0.0000
## PP.BehavInt1_VB PP.BehavInt2_VB PP.BehavInt3_VB
## PP.Nat_1_GFFB 0.3462 0.2443 0.3179
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0001
## PP.Nat_1_GFPRB 0.5729 0.2083 0.7437
## PP.Nat_4R_GFPRB 0.0007 0.0000 0.0019
## PP.Nat_2R_GFPRB 0.0001 0.0000 0.0003
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0003
## PP.Nat_1_CBB 0.0094 0.0049 0.0169
## PP.Nat_4R_CBB 0.0889 0.1611 0.0542
## PP.Nat_2R_CBB 0.0010 0.0069 0.0003
## PP.Nat_3R_CBB 0.0004 0.0025 0.0000
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.0510 0.0139 0.0554
## PP.Nat_2R_PBPB 0.4804 0.1995 0.4538
## PP.Nat_3R_PBPB 0.0576 0.3288 0.0682
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0032 0.0023 0.0047
## PP.Nat_2R_PBFB 0.8177 0.8034 0.8596
## PP.Nat_3R_PBFB 0.2727 0.5522 0.2843
## PP.Nat_1_VB 0.0000 0.0000 0.0000
## PP.Nat_4R_VB 0.1454 0.1699 0.1057
## PP.Nat_2R_VB 0.8079 0.6698 0.9557
## PP.Nat_3R_VB 0.2183 0.2140 0.3027
## PP.BehavInt1_GFFB 0.4529 0.3557 0.4525
## PP.BehavInt2_GFFB 0.3467 0.2212 0.3669
## PP.BehavInt3_GFFB 0.5474 0.4693 0.5389
## PP.BehavInt4_GFFB 0.3352 0.2643 0.3349
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0004 0.0003 0.0006
## PP.BehavInt2_CBB 0.0011 0.0006 0.0021
## PP.BehavInt3_CBB 0.0006 0.0005 0.0010
## PP.BehavInt4_CBB 0.0006 0.0006 0.0010
## PP.BehavInt1_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.0000 0.0000
## PP.BehavInt2_VB 0.0000 0.0000
## PP.BehavInt3_VB 0.0000 0.0000
## PP.BehavInt4_VB 0.0000 0.0000 0.0000
## PP.BehavInt4_VB
## PP.Nat_1_GFFB 0.2993
## PP.Nat_4R_GFFB 0.0000
## PP.Nat_2R_GFFB 0.0000
## PP.Nat_3R_GFFB 0.0000
## PP.Nat_1_GFPRB 0.5869
## PP.Nat_4R_GFPRB 0.0006
## PP.Nat_2R_GFPRB 0.0001
## PP.Nat_3R_GFPRB 0.0001
## PP.Nat_1_CBB 0.0126
## PP.Nat_4R_CBB 0.0704
## PP.Nat_2R_CBB 0.0009
## PP.Nat_3R_CBB 0.0003
## PP.Nat_1_PBPB 0.0000
## PP.Nat_4R_PBPB 0.0495
## PP.Nat_2R_PBPB 0.3842
## PP.Nat_3R_PBPB 0.0770
## PP.Nat_1_PBFB 0.0000
## PP.Nat_4R_PBFB 0.0051
## PP.Nat_2R_PBFB 0.8119
## PP.Nat_3R_PBFB 0.2964
## PP.Nat_1_VB 0.0000
## PP.Nat_4R_VB 0.1541
## PP.Nat_2R_VB 0.7858
## PP.Nat_3R_VB 0.2199
## PP.BehavInt1_GFFB 0.3924
## PP.BehavInt2_GFFB 0.2868
## PP.BehavInt3_GFFB 0.4839
## PP.BehavInt4_GFFB 0.2821
## PP.BehavInt1_GFPRB 0.0000
## PP.BehavInt2_GFPRB 0.0000
## PP.BehavInt3_GFPRB 0.0000
## PP.BehavInt4_GFPRB 0.0000
## PP.BehavInt1_CBB 0.0004
## PP.BehavInt2_CBB 0.0014
## PP.BehavInt3_CBB 0.0007
## PP.BehavInt4_CBB 0.0007
## PP.BehavInt1_PBPB 0.0000
## PP.BehavInt2_PBPB 0.0000
## PP.BehavInt3_PBPB 0.0000
## PP.BehavInt4_PBPB 0.0000
## PP.BehavInt1_PBFB 0.0000
## PP.BehavInt2_PBFB 0.0000
## PP.BehavInt3_PBFB 0.0000
## PP.BehavInt4_PBFB 0.0000
## PP.BehavInt1_VB 0.0000
## PP.BehavInt2_VB 0.0000
## PP.BehavInt3_VB 0.0000
## PP.BehavInt4_VB
library(corrplot)
corrplot(mydata.cor4, method="color")
corrplot(mydata.cor4, addCoef.col = 1, number.cex = 0.3, method = 'number')
#Naturalness Perceptions, Willingness to Support Technologies, and Individual Difference Measures
PP$corAll <- data.frame(PP$Naturalness_Scale_GFFB_Tot, PP$Naturalness_Scale_GFPRB_Tot, PP$Naturalness_Scale_CBB_Tot, PP$Naturalness_Scale_PBPB_Tot, PP$Naturalness_Scale_PBFB_Tot, PP$Naturalness_Scale_VB_Tot, PP$Behav_Scale_GFFB, PP$Behav_Scale_GFPRB, PP$Behav_Scale_CBB, PP$Behav_Scale_PBPB, PP$Behav_Scale_PBFB, PP$Behav_Scale_VB, PP$CCB_Scale,PP$CNS_Scale,PP$ATNS_Scale, PP$CollScale, PP$IndScale)
mydata.cor6 = cor(PP$corAll, use = "pairwise.complete.obs")
head(round(mydata.cor6,2))
## PP.Nat_1_GFFB PP.Nat_4R_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB
## PP.Nat_1_GFFB 1.00 0.18 0.18 -0.15
## PP.Nat_4R_GFFB 0.18 1.00 0.61 0.50
## PP.Nat_2R_GFFB 0.18 0.61 1.00 0.44
## PP.Nat_3R_GFFB -0.15 0.50 0.44 1.00
## PP.Nat_1_GFPRB 0.42 0.15 0.07 0.01
## PP.Nat_4R_GFPRB 0.04 0.47 0.21 0.33
## PP.Nat_1_GFPRB PP.Nat_4R_GFPRB PP.Nat_2R_GFPRB PP.Nat_3R_GFPRB
## PP.Nat_1_GFFB 0.42 0.04 -0.03 -0.04
## PP.Nat_4R_GFFB 0.15 0.47 0.49 0.38
## PP.Nat_2R_GFFB 0.07 0.21 0.29 0.17
## PP.Nat_3R_GFFB 0.01 0.33 0.34 0.49
## PP.Nat_1_GFPRB 1.00 0.38 0.25 0.14
## PP.Nat_4R_GFPRB 0.38 1.00 0.68 0.52
## PP.Nat_1_CBB PP.Nat_4R_CBB PP.Nat_2R_CBB PP.Nat_3R_CBB
## PP.Nat_1_GFFB 0.35 -0.01 0.04 0.00
## PP.Nat_4R_GFFB -0.36 0.20 0.14 0.05
## PP.Nat_2R_GFFB -0.32 0.13 0.22 0.21
## PP.Nat_3R_GFFB -0.41 0.08 0.07 0.01
## PP.Nat_1_GFPRB -0.10 -0.05 -0.13 -0.13
## PP.Nat_4R_GFPRB -0.34 0.11 -0.06 -0.06
## PP.Nat_1_PBPB PP.Nat_4R_PBPB PP.Nat_2R_PBPB PP.Nat_3R_PBPB
## PP.Nat_1_GFFB 0.14 -0.21 -0.26 -0.17
## PP.Nat_4R_GFFB -0.23 0.08 0.00 -0.04
## PP.Nat_2R_GFFB -0.27 0.15 0.04 0.06
## PP.Nat_3R_GFFB -0.36 0.09 0.14 0.10
## PP.Nat_1_GFPRB -0.04 0.03 0.05 -0.33
## PP.Nat_4R_GFPRB -0.23 0.20 0.11 -0.12
## PP.Nat_1_PBFB PP.Nat_4R_PBFB PP.Nat_2R_PBFB PP.Nat_3R_PBFB
## PP.Nat_1_GFFB 0.17 0.24 0.28 0.29
## PP.Nat_4R_GFFB -0.35 -0.07 0.03 0.05
## PP.Nat_2R_GFFB -0.33 0.05 -0.11 -0.07
## PP.Nat_3R_GFFB -0.37 -0.11 -0.11 -0.15
## PP.Nat_1_GFPRB -0.06 0.23 0.20 0.28
## PP.Nat_4R_GFPRB -0.35 -0.01 -0.04 0.05
## PP.Nat_1_VB PP.Nat_4R_VB PP.Nat_2R_VB PP.Nat_3R_VB
## PP.Nat_1_GFFB 0.09 -0.21 -0.22 -0.24
## PP.Nat_4R_GFFB -0.13 0.25 0.13 0.05
## PP.Nat_2R_GFFB -0.09 0.15 0.12 0.12
## PP.Nat_3R_GFFB -0.04 0.27 0.22 0.20
## PP.Nat_1_GFPRB 0.09 0.02 0.07 0.06
## PP.Nat_4R_GFPRB -0.11 0.32 0.39 0.25
## PP.BehavInt1_GFFB PP.BehavInt2_GFFB PP.BehavInt3_GFFB
## PP.Nat_1_GFFB 0.59 0.52 0.58
## PP.Nat_4R_GFFB 0.13 0.18 0.10
## PP.Nat_2R_GFFB 0.16 0.16 0.12
## PP.Nat_3R_GFFB -0.19 -0.09 -0.21
## PP.Nat_1_GFPRB 0.27 0.31 0.24
## PP.Nat_4R_GFPRB -0.04 0.05 -0.03
## PP.BehavInt4_GFFB PP.BehavInt1_GFPRB PP.BehavInt2_GFPRB
## PP.Nat_1_GFFB 0.59 0.08 0.03
## PP.Nat_4R_GFFB 0.15 -0.19 -0.24
## PP.Nat_2R_GFFB 0.14 -0.29 -0.31
## PP.Nat_3R_GFFB -0.17 -0.20 -0.23
## PP.Nat_1_GFPRB 0.26 0.15 0.04
## PP.Nat_4R_GFPRB -0.05 -0.04 -0.13
## PP.BehavInt3_GFPRB PP.BehavInt4_GFPRB PP.BehavInt1_CBB
## PP.Nat_1_GFFB 0.02 0.02 0.26
## PP.Nat_4R_GFFB -0.22 -0.29 -0.26
## PP.Nat_2R_GFFB -0.34 -0.33 -0.27
## PP.Nat_3R_GFFB -0.22 -0.22 -0.29
## PP.Nat_1_GFPRB 0.08 0.07 -0.02
## PP.Nat_4R_GFPRB -0.10 -0.05 -0.27
## PP.BehavInt2_CBB PP.BehavInt3_CBB PP.BehavInt4_CBB
## PP.Nat_1_GFFB 0.35 0.29 0.31
## PP.Nat_4R_GFFB -0.29 -0.29 -0.26
## PP.Nat_2R_GFFB -0.25 -0.28 -0.28
## PP.Nat_3R_GFFB -0.29 -0.32 -0.33
## PP.Nat_1_GFPRB -0.03 -0.06 -0.03
## PP.Nat_4R_GFPRB -0.34 -0.33 -0.30
## PP.BehavInt1_PBPB PP.BehavInt2_PBPB PP.BehavInt3_PBPB
## PP.Nat_1_GFFB 0.08 0.03 0.02
## PP.Nat_4R_GFFB -0.19 -0.24 -0.22
## PP.Nat_2R_GFFB -0.29 -0.31 -0.34
## PP.Nat_3R_GFFB -0.20 -0.23 -0.22
## PP.Nat_1_GFPRB 0.15 0.04 0.08
## PP.Nat_4R_GFPRB -0.04 -0.13 -0.10
## PP.BehavInt4_PBPB PP.BehavInt1_PBFB PP.BehavInt2_PBFB
## PP.Nat_1_GFFB 0.02 0.03 0.16
## PP.Nat_4R_GFFB -0.29 -0.38 -0.38
## PP.Nat_2R_GFFB -0.33 -0.37 -0.29
## PP.Nat_3R_GFFB -0.22 -0.34 -0.39
## PP.Nat_1_GFPRB 0.07 -0.10 -0.04
## PP.Nat_4R_GFPRB -0.05 -0.27 -0.28
## PP.BehavInt3_PBFB PP.BehavInt4_PBFB PP.BehavInt1_VB
## PP.Nat_1_GFFB 0.08 0.12 0.05
## PP.Nat_4R_GFFB -0.37 -0.35 -0.14
## PP.Nat_2R_GFFB -0.36 -0.31 -0.17
## PP.Nat_3R_GFFB -0.38 -0.41 -0.11
## PP.Nat_1_GFPRB -0.01 0.05 0.10
## PP.Nat_4R_GFPRB -0.22 -0.20 -0.08
## PP.BehavInt2_VB PP.BehavInt3_VB PP.BehavInt4_VB PP.CCB_48
## PP.Nat_1_GFFB 0.04 0.05 0.05 -0.05
## PP.Nat_4R_GFFB -0.17 -0.17 -0.15 -0.06
## PP.Nat_2R_GFFB -0.12 -0.18 -0.18 -0.17
## PP.Nat_3R_GFFB -0.09 -0.10 -0.09 -0.02
## PP.Nat_1_GFPRB 0.03 0.17 0.13 0.07
## PP.Nat_4R_GFPRB -0.21 -0.03 -0.12 0.02
## PP.CCB_49 PP.CCB_50 PP.CCB_51 PP.CNS_1 PP.CNS_2 PP.CNS_3
## PP.Nat_1_GFFB -0.03 0.01 0.07 0.12 0.16 0.11
## PP.Nat_4R_GFFB -0.10 -0.05 -0.05 -0.10 -0.04 -0.03
## PP.Nat_2R_GFFB -0.14 -0.13 -0.16 -0.11 -0.12 -0.14
## PP.Nat_3R_GFFB 0.01 -0.01 -0.03 -0.13 -0.09 -0.03
## PP.Nat_1_GFPRB 0.08 0.04 0.06 0.12 0.22 0.11
## PP.Nat_4R_GFPRB 0.00 0.01 -0.06 -0.09 0.00 -0.06
## PP.ATNS_1 PP.ATNS_2R PP.ATNS_3 PP.ATNS_4 PP.ATNS_5 PP.Ind_3
## PP.Nat_1_GFFB 0.20 -0.23 0.10 0.09 0.11 0.22
## PP.Nat_4R_GFFB -0.12 0.23 -0.13 -0.04 -0.10 -0.15
## PP.Nat_2R_GFFB -0.14 0.09 -0.10 -0.08 -0.10 -0.10
## PP.Nat_3R_GFFB -0.17 0.23 -0.11 -0.08 -0.10 -0.24
## PP.Nat_1_GFPRB 0.10 0.12 0.04 0.11 0.08 0.12
## PP.Nat_4R_GFPRB -0.09 0.34 -0.20 -0.10 -0.12 -0.21
## PP.Ind_4 PP.Ind_7 PP.Ind_8 PP.Ind_1 PP.Ind_2 PP.Ind_5 PP.Ind_6
## PP.Nat_1_GFFB 0.22 0.19 0.22 0.12 0.12 0.12 0.13
## PP.Nat_4R_GFFB 0.05 -0.12 0.04 0.06 0.02 -0.02 -0.02
## PP.Nat_2R_GFFB 0.00 -0.09 0.01 0.00 -0.06 -0.13 -0.04
## PP.Nat_3R_GFFB -0.05 -0.20 -0.09 -0.05 -0.02 -0.12 -0.05
## PP.Nat_1_GFPRB 0.26 0.10 0.31 0.26 0.24 0.21 0.26
## PP.Nat_4R_GFPRB 0.01 -0.17 -0.02 0.06 0.00 0.01 0.00
library("Hmisc")
mydata.rcorr6 = rcorr(as.matrix(mydata.cor6))
mydata.rcorr6
## PP.Nat_1_GFFB PP.Nat_4R_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB
## PP.Nat_1_GFFB 1.00 -0.02 0.02 -0.42
## PP.Nat_4R_GFFB -0.02 1.00 0.92 0.85
## PP.Nat_2R_GFFB 0.02 0.92 1.00 0.79
## PP.Nat_3R_GFFB -0.42 0.85 0.79 1.00
## PP.Nat_1_GFPRB 0.45 0.34 0.22 0.11
## PP.Nat_4R_GFPRB -0.27 0.82 0.66 0.80
## PP.Nat_2R_GFPRB -0.22 0.83 0.68 0.79
## PP.Nat_3R_GFPRB -0.31 0.81 0.68 0.87
## PP.Nat_1_CBB 0.50 -0.73 -0.66 -0.84
## PP.Nat_4R_CBB -0.22 0.05 0.10 0.08
## PP.Nat_2R_CBB -0.08 0.12 0.26 0.10
## PP.Nat_3R_CBB -0.11 0.16 0.32 0.15
## PP.Nat_1_PBPB 0.04 -0.79 -0.79 -0.74
## PP.Nat_4R_PBPB -0.66 0.01 0.02 0.23
## PP.Nat_2R_PBPB -0.73 0.00 0.04 0.28
## PP.Nat_3R_PBPB -0.54 0.20 0.34 0.40
## PP.Nat_1_PBFB 0.14 -0.86 -0.82 -0.81
## PP.Nat_4R_PBFB 0.53 0.22 0.24 0.00
## PP.Nat_2R_PBFB 0.56 -0.05 -0.14 -0.26
## PP.Nat_3R_PBFB 0.50 -0.08 -0.20 -0.30
## PP.Nat_1_VB -0.10 -0.63 -0.66 -0.49
## PP.Nat_4R_VB -0.71 0.28 0.20 0.51
## PP.Nat_2R_VB -0.70 0.39 0.33 0.63
## PP.Nat_3R_VB -0.65 0.40 0.40 0.64
## PP.BehavInt1_GFFB 0.92 -0.05 0.00 -0.43
## PP.BehavInt2_GFFB 0.89 0.03 0.06 -0.35
## PP.BehavInt3_GFFB 0.91 -0.09 -0.04 -0.46
## PP.BehavInt4_GFFB 0.91 -0.02 0.02 -0.40
## PP.BehavInt1_GFPRB -0.09 -0.71 -0.77 -0.60
## PP.BehavInt2_GFPRB -0.09 -0.76 -0.80 -0.64
## PP.BehavInt3_GFPRB -0.08 -0.74 -0.80 -0.63
## PP.BehavInt4_GFPRB -0.08 -0.75 -0.80 -0.63
## PP.BehavInt1_CBB 0.39 -0.73 -0.71 -0.80
## PP.BehavInt2_CBB 0.44 -0.72 -0.68 -0.81
## PP.BehavInt3_CBB 0.40 -0.74 -0.70 -0.81
## PP.BehavInt4_CBB 0.41 -0.72 -0.70 -0.80
## PP.BehavInt1_PBPB -0.09 -0.71 -0.77 -0.60
## PP.BehavInt2_PBPB -0.09 -0.76 -0.80 -0.64
## PP.BehavInt3_PBPB -0.08 -0.74 -0.80 -0.63
## PP.BehavInt4_PBPB -0.08 -0.75 -0.80 -0.63
## PP.BehavInt1_PBFB 0.01 -0.83 -0.83 -0.74
## PP.BehavInt2_PBFB 0.09 -0.83 -0.80 -0.77
## PP.BehavInt3_PBFB 0.06 -0.83 -0.83 -0.76
## PP.BehavInt4_PBFB 0.07 -0.82 -0.81 -0.76
## PP.BehavInt1_VB -0.12 -0.66 -0.71 -0.52
## PP.BehavInt2_VB -0.13 -0.70 -0.71 -0.55
## PP.BehavInt3_VB -0.13 -0.65 -0.72 -0.51
## PP.BehavInt4_VB -0.13 -0.66 -0.72 -0.52
## PP.CCB_48 -0.17 -0.40 -0.53 -0.26
## PP.CCB_49 -0.13 -0.41 -0.53 -0.27
## PP.CCB_50 -0.12 -0.44 -0.56 -0.31
## PP.CCB_51 0.00 -0.52 -0.64 -0.43
## PP.CNS_1 0.24 -0.51 -0.55 -0.53
## PP.CNS_2 0.23 -0.36 -0.46 -0.40
## PP.CNS_3 0.17 -0.39 -0.48 -0.38
## PP.ATNS_1 0.42 -0.25 -0.26 -0.37
## PP.ATNS_2R -0.54 0.66 0.55 0.77
## PP.ATNS_3 0.24 -0.35 -0.35 -0.38
## PP.ATNS_4 0.15 -0.34 -0.40 -0.36
## PP.ATNS_5 0.23 -0.22 -0.25 -0.26
## PP.Ind_3 0.45 -0.44 -0.40 -0.58
## PP.Ind_4 0.39 -0.10 -0.16 -0.25
## PP.Ind_7 0.44 -0.44 -0.41 -0.59
## PP.Ind_8 0.43 -0.15 -0.21 -0.32
## PP.Ind_1 0.20 -0.05 -0.16 -0.14
## PP.Ind_2 0.21 -0.08 -0.17 -0.15
## PP.Ind_5 0.24 -0.22 -0.34 -0.30
## PP.Ind_6 0.27 -0.09 -0.16 -0.19
## PP.Nat_1_GFPRB PP.Nat_4R_GFPRB PP.Nat_2R_GFPRB
## PP.Nat_1_GFFB 0.45 -0.27 -0.22
## PP.Nat_4R_GFFB 0.34 0.82 0.83
## PP.Nat_2R_GFFB 0.22 0.66 0.68
## PP.Nat_3R_GFFB 0.11 0.80 0.79
## PP.Nat_1_GFPRB 1.00 0.45 0.42
## PP.Nat_4R_GFPRB 0.45 1.00 0.94
## PP.Nat_2R_GFPRB 0.42 0.94 1.00
## PP.Nat_3R_GFPRB 0.31 0.89 0.90
## PP.Nat_1_CBB -0.26 -0.80 -0.77
## PP.Nat_4R_CBB -0.45 0.01 -0.05
## PP.Nat_2R_CBB -0.46 -0.04 -0.07
## PP.Nat_3R_CBB -0.43 -0.01 -0.03
## PP.Nat_1_PBPB -0.29 -0.67 -0.72
## PP.Nat_4R_PBPB -0.31 0.20 0.05
## PP.Nat_2R_PBPB -0.37 0.19 0.07
## PP.Nat_3R_PBPB -0.46 0.17 0.09
## PP.Nat_1_PBFB -0.34 -0.78 -0.81
## PP.Nat_4R_PBFB 0.53 0.11 0.21
## PP.Nat_2R_PBFB 0.50 -0.13 -0.01
## PP.Nat_3R_PBFB 0.54 -0.08 -0.02
## PP.Nat_1_VB -0.09 -0.45 -0.52
## PP.Nat_4R_VB -0.08 0.52 0.40
## PP.Nat_2R_VB -0.01 0.66 0.57
## PP.Nat_3R_VB -0.04 0.62 0.55
## PP.BehavInt1_GFFB 0.37 -0.30 -0.23
## PP.BehavInt2_GFFB 0.44 -0.20 -0.13
## PP.BehavInt3_GFFB 0.33 -0.33 -0.28
## PP.BehavInt4_GFFB 0.37 -0.28 -0.22
## PP.BehavInt1_GFPRB -0.20 -0.48 -0.53
## PP.BehavInt2_GFPRB -0.28 -0.56 -0.60
## PP.BehavInt3_GFPRB -0.23 -0.53 -0.58
## PP.BehavInt4_GFPRB -0.20 -0.51 -0.56
## PP.BehavInt1_CBB -0.24 -0.74 -0.71
## PP.BehavInt2_CBB -0.24 -0.77 -0.74
## PP.BehavInt3_CBB -0.25 -0.76 -0.73
## PP.BehavInt4_CBB -0.24 -0.74 -0.72
## PP.BehavInt1_PBPB -0.20 -0.48 -0.53
## PP.BehavInt2_PBPB -0.28 -0.56 -0.60
## PP.BehavInt3_PBPB -0.23 -0.53 -0.58
## PP.BehavInt4_PBPB -0.20 -0.51 -0.56
## PP.BehavInt1_PBFB -0.31 -0.67 -0.71
## PP.BehavInt2_PBFB -0.32 -0.71 -0.75
## PP.BehavInt3_PBFB -0.27 -0.67 -0.72
## PP.BehavInt4_PBFB -0.26 -0.66 -0.72
## PP.BehavInt1_VB -0.09 -0.46 -0.53
## PP.BehavInt2_VB -0.19 -0.54 -0.62
## PP.BehavInt3_VB -0.06 -0.42 -0.50
## PP.BehavInt4_VB -0.09 -0.46 -0.53
## PP.CCB_48 0.03 -0.22 -0.26
## PP.CCB_49 0.05 -0.24 -0.26
## PP.CCB_50 0.00 -0.29 -0.32
## PP.CCB_51 -0.01 -0.39 -0.39
## PP.CNS_1 0.08 -0.52 -0.48
## PP.CNS_2 0.28 -0.32 -0.30
## PP.CNS_3 0.14 -0.39 -0.38
## PP.ATNS_1 0.26 -0.33 -0.27
## PP.ATNS_2R 0.19 0.77 0.75
## PP.ATNS_3 0.13 -0.42 -0.34
## PP.ATNS_4 0.17 -0.36 -0.30
## PP.ATNS_5 0.23 -0.27 -0.18
## PP.Ind_3 0.15 -0.56 -0.49
## PP.Ind_4 0.46 -0.18 -0.14
## PP.Ind_7 0.17 -0.55 -0.51
## PP.Ind_8 0.49 -0.21 -0.16
## PP.Ind_1 0.46 -0.06 -0.03
## PP.Ind_2 0.43 -0.10 -0.07
## PP.Ind_5 0.39 -0.20 -0.17
## PP.Ind_6 0.45 -0.13 -0.09
## PP.Nat_3R_GFPRB PP.Nat_1_CBB PP.Nat_4R_CBB PP.Nat_2R_CBB
## PP.Nat_1_GFFB -0.31 0.50 -0.22 -0.08
## PP.Nat_4R_GFFB 0.81 -0.73 0.05 0.12
## PP.Nat_2R_GFFB 0.68 -0.66 0.10 0.26
## PP.Nat_3R_GFFB 0.87 -0.84 0.08 0.10
## PP.Nat_1_GFPRB 0.31 -0.26 -0.45 -0.46
## PP.Nat_4R_GFPRB 0.89 -0.80 0.01 -0.04
## PP.Nat_2R_GFPRB 0.90 -0.77 -0.05 -0.07
## PP.Nat_3R_GFPRB 1.00 -0.85 -0.08 -0.07
## PP.Nat_1_CBB -0.85 1.00 0.21 0.19
## PP.Nat_4R_CBB -0.08 0.21 1.00 0.89
## PP.Nat_2R_CBB -0.07 0.19 0.89 1.00
## PP.Nat_3R_CBB 0.03 0.07 0.80 0.92
## PP.Nat_1_PBPB -0.76 0.70 0.08 -0.07
## PP.Nat_4R_PBPB 0.06 -0.23 0.38 0.22
## PP.Nat_2R_PBPB 0.11 -0.28 0.48 0.43
## PP.Nat_3R_PBPB 0.26 -0.36 0.33 0.42
## PP.Nat_1_PBFB -0.84 0.82 0.15 0.03
## PP.Nat_4R_PBFB 0.17 -0.16 -0.55 -0.39
## PP.Nat_2R_PBFB -0.08 0.10 -0.68 -0.64
## PP.Nat_3R_PBFB -0.12 0.11 -0.56 -0.60
## PP.Nat_1_VB -0.52 0.37 -0.25 -0.41
## PP.Nat_4R_VB 0.44 -0.58 0.09 -0.07
## PP.Nat_2R_VB 0.60 -0.72 0.06 -0.04
## PP.Nat_3R_VB 0.61 -0.70 0.07 0.02
## PP.BehavInt1_GFFB -0.33 0.50 -0.31 -0.16
## PP.BehavInt2_GFFB -0.25 0.41 -0.35 -0.20
## PP.BehavInt3_GFFB -0.36 0.54 -0.30 -0.14
## PP.BehavInt4_GFFB -0.29 0.47 -0.34 -0.17
## PP.BehavInt1_GFPRB -0.60 0.55 0.08 -0.13
## PP.BehavInt2_GFPRB -0.65 0.61 0.12 -0.08
## PP.BehavInt3_GFPRB -0.64 0.58 0.08 -0.12
## PP.BehavInt4_GFPRB -0.62 0.56 0.03 -0.18
## PP.BehavInt1_CBB -0.82 0.93 0.23 0.15
## PP.BehavInt2_CBB -0.84 0.95 0.23 0.17
## PP.BehavInt3_CBB -0.84 0.94 0.22 0.15
## PP.BehavInt4_CBB -0.82 0.94 0.24 0.16
## PP.BehavInt1_PBPB -0.60 0.55 0.08 -0.13
## PP.BehavInt2_PBPB -0.65 0.61 0.12 -0.08
## PP.BehavInt3_PBPB -0.64 0.58 0.08 -0.12
## PP.BehavInt4_PBPB -0.62 0.56 0.03 -0.18
## PP.BehavInt1_PBFB -0.75 0.70 0.10 -0.06
## PP.BehavInt2_PBFB -0.79 0.75 0.14 0.01
## PP.BehavInt3_PBFB -0.76 0.71 0.08 -0.07
## PP.BehavInt4_PBFB -0.77 0.72 0.12 -0.03
## PP.BehavInt1_VB -0.54 0.38 -0.19 -0.39
## PP.BehavInt2_VB -0.61 0.43 -0.15 -0.31
## PP.BehavInt3_VB -0.51 0.36 -0.22 -0.43
## PP.BehavInt4_VB -0.53 0.37 -0.20 -0.39
## PP.CCB_48 -0.25 0.10 -0.39 -0.53
## PP.CCB_49 -0.27 0.13 -0.39 -0.54
## PP.CCB_50 -0.31 0.18 -0.35 -0.50
## PP.CCB_51 -0.42 0.34 -0.33 -0.48
## PP.CNS_1 -0.50 0.48 -0.36 -0.43
## PP.CNS_2 -0.32 0.26 -0.53 -0.61
## PP.CNS_3 -0.36 0.30 -0.47 -0.54
## PP.ATNS_1 -0.22 0.20 -0.62 -0.55
## PP.ATNS_2R 0.80 -0.85 -0.04 -0.06
## PP.ATNS_3 -0.28 0.19 -0.60 -0.58
## PP.ATNS_4 -0.28 0.16 -0.59 -0.61
## PP.ATNS_5 -0.12 0.05 -0.68 -0.64
## PP.Ind_3 -0.51 0.48 -0.35 -0.31
## PP.Ind_4 -0.14 0.11 -0.59 -0.59
## PP.Ind_7 -0.51 0.45 -0.44 -0.40
## PP.Ind_8 -0.19 0.18 -0.62 -0.61
## PP.Ind_1 -0.05 -0.02 -0.61 -0.65
## PP.Ind_2 -0.08 -0.01 -0.59 -0.60
## PP.Ind_5 -0.22 0.13 -0.60 -0.67
## PP.Ind_6 -0.08 0.05 -0.55 -0.57
## PP.Nat_3R_CBB PP.Nat_1_PBPB PP.Nat_4R_PBPB PP.Nat_2R_PBPB
## PP.Nat_1_GFFB -0.11 0.04 -0.66 -0.73
## PP.Nat_4R_GFFB 0.16 -0.79 0.01 0.00
## PP.Nat_2R_GFFB 0.32 -0.79 0.02 0.04
## PP.Nat_3R_GFFB 0.15 -0.74 0.23 0.28
## PP.Nat_1_GFPRB -0.43 -0.29 -0.31 -0.37
## PP.Nat_4R_GFPRB -0.01 -0.67 0.20 0.19
## PP.Nat_2R_GFPRB -0.03 -0.72 0.05 0.07
## PP.Nat_3R_GFPRB 0.03 -0.76 0.06 0.11
## PP.Nat_1_CBB 0.07 0.70 -0.23 -0.28
## PP.Nat_4R_CBB 0.80 0.08 0.38 0.48
## PP.Nat_2R_CBB 0.92 -0.07 0.22 0.43
## PP.Nat_3R_CBB 1.00 -0.17 0.16 0.40
## PP.Nat_1_PBPB -0.17 1.00 0.28 0.16
## PP.Nat_4R_PBPB 0.16 0.28 1.00 0.84
## PP.Nat_2R_PBPB 0.40 0.16 0.84 1.00
## PP.Nat_3R_PBPB 0.47 -0.20 0.61 0.71
## PP.Nat_1_PBFB -0.06 0.93 0.07 0.02
## PP.Nat_4R_PBFB -0.32 -0.49 -0.67 -0.64
## PP.Nat_2R_PBFB -0.62 -0.09 -0.65 -0.80
## PP.Nat_3R_PBFB -0.59 0.02 -0.55 -0.69
## PP.Nat_1_VB -0.47 0.81 0.25 0.08
## PP.Nat_4R_VB -0.06 0.00 0.75 0.66
## PP.Nat_2R_VB -0.02 -0.27 0.57 0.60
## PP.Nat_3R_VB 0.04 -0.38 0.51 0.54
## PP.BehavInt1_GFFB -0.18 0.05 -0.65 -0.77
## PP.BehavInt2_GFFB -0.23 -0.03 -0.64 -0.78
## PP.BehavInt3_GFFB -0.16 0.09 -0.63 -0.75
## PP.BehavInt4_GFFB -0.19 0.01 -0.65 -0.77
## PP.BehavInt1_GFPRB -0.25 0.92 0.33 0.21
## PP.BehavInt2_GFPRB -0.19 0.93 0.31 0.20
## PP.BehavInt3_GFPRB -0.23 0.93 0.29 0.19
## PP.BehavInt4_GFPRB -0.28 0.92 0.28 0.17
## PP.BehavInt1_CBB 0.00 0.76 -0.15 -0.20
## PP.BehavInt2_CBB 0.02 0.74 -0.17 -0.23
## PP.BehavInt3_CBB 0.01 0.75 -0.16 -0.20
## PP.BehavInt4_CBB 0.01 0.76 -0.15 -0.20
## PP.BehavInt1_PBPB -0.25 0.92 0.33 0.21
## PP.BehavInt2_PBPB -0.19 0.93 0.31 0.20
## PP.BehavInt3_PBPB -0.23 0.93 0.29 0.19
## PP.BehavInt4_PBPB -0.28 0.92 0.28 0.17
## PP.BehavInt1_PBFB -0.18 0.92 0.16 0.08
## PP.BehavInt2_PBFB -0.10 0.93 0.15 0.07
## PP.BehavInt3_PBFB -0.19 0.92 0.12 0.04
## PP.BehavInt4_PBFB -0.15 0.93 0.15 0.08
## PP.BehavInt1_VB -0.46 0.85 0.28 0.11
## PP.BehavInt2_VB -0.38 0.87 0.34 0.19
## PP.BehavInt3_VB -0.49 0.84 0.27 0.11
## PP.BehavInt4_VB -0.45 0.85 0.28 0.13
## PP.CCB_48 -0.57 0.38 0.00 -0.12
## PP.CCB_49 -0.58 0.38 -0.05 -0.17
## PP.CCB_50 -0.54 0.43 -0.03 -0.15
## PP.CCB_51 -0.54 0.54 -0.08 -0.20
## PP.CNS_1 -0.45 0.42 -0.30 -0.41
## PP.CNS_2 -0.59 0.29 -0.33 -0.45
## PP.CNS_3 -0.53 0.30 -0.30 -0.41
## PP.ATNS_1 -0.46 0.02 -0.50 -0.59
## PP.ATNS_2R 0.04 -0.64 0.28 0.33
## PP.ATNS_3 -0.46 0.16 -0.43 -0.50
## PP.ATNS_4 -0.54 0.25 -0.31 -0.41
## PP.ATNS_5 -0.53 0.00 -0.46 -0.52
## PP.Ind_3 -0.26 0.34 -0.33 -0.42
## PP.Ind_4 -0.51 0.04 -0.42 -0.57
## PP.Ind_7 -0.35 0.36 -0.39 -0.49
## PP.Ind_8 -0.55 0.15 -0.40 -0.54
## PP.Ind_1 -0.63 -0.03 -0.38 -0.50
## PP.Ind_2 -0.56 -0.04 -0.44 -0.49
## PP.Ind_5 -0.65 0.16 -0.36 -0.49
## PP.Ind_6 -0.48 -0.03 -0.41 -0.52
## PP.Nat_3R_PBPB PP.Nat_1_PBFB PP.Nat_4R_PBFB PP.Nat_2R_PBFB
## PP.Nat_1_GFFB -0.54 0.14 0.53 0.56
## PP.Nat_4R_GFFB 0.20 -0.86 0.22 -0.05
## PP.Nat_2R_GFFB 0.34 -0.82 0.24 -0.14
## PP.Nat_3R_GFFB 0.40 -0.81 0.00 -0.26
## PP.Nat_1_GFPRB -0.46 -0.34 0.53 0.50
## PP.Nat_4R_GFPRB 0.17 -0.78 0.11 -0.13
## PP.Nat_2R_GFPRB 0.09 -0.81 0.21 -0.01
## PP.Nat_3R_GFPRB 0.26 -0.84 0.17 -0.08
## PP.Nat_1_CBB -0.36 0.82 -0.16 0.10
## PP.Nat_4R_CBB 0.33 0.15 -0.55 -0.68
## PP.Nat_2R_CBB 0.42 0.03 -0.39 -0.64
## PP.Nat_3R_CBB 0.47 -0.06 -0.32 -0.62
## PP.Nat_1_PBPB -0.20 0.93 -0.49 -0.09
## PP.Nat_4R_PBPB 0.61 0.07 -0.67 -0.65
## PP.Nat_2R_PBPB 0.71 0.02 -0.64 -0.80
## PP.Nat_3R_PBPB 1.00 -0.27 -0.41 -0.71
## PP.Nat_1_PBFB -0.27 1.00 -0.44 -0.09
## PP.Nat_4R_PBFB -0.41 -0.44 1.00 0.78
## PP.Nat_2R_PBFB -0.71 -0.09 0.78 1.00
## PP.Nat_3R_PBFB -0.82 0.03 0.68 0.87
## PP.Nat_1_VB -0.26 0.72 -0.40 0.03
## PP.Nat_4R_VB 0.50 -0.20 -0.54 -0.55
## PP.Nat_2R_VB 0.48 -0.39 -0.34 -0.51
## PP.Nat_3R_VB 0.63 -0.47 -0.29 -0.52
## PP.BehavInt1_GFFB -0.52 0.15 0.51 0.55
## PP.BehavInt2_GFFB -0.53 0.07 0.55 0.57
## PP.BehavInt3_GFFB -0.49 0.19 0.49 0.53
## PP.BehavInt4_GFFB -0.50 0.12 0.52 0.55
## PP.BehavInt1_GFPRB -0.25 0.85 -0.51 -0.13
## PP.BehavInt2_GFPRB -0.22 0.88 -0.49 -0.12
## PP.BehavInt3_GFPRB -0.27 0.87 -0.47 -0.09
## PP.BehavInt4_GFPRB -0.29 0.86 -0.45 -0.06
## PP.BehavInt1_CBB -0.44 0.88 -0.24 0.06
## PP.BehavInt2_CBB -0.42 0.86 -0.21 0.08
## PP.BehavInt3_CBB -0.43 0.87 -0.22 0.07
## PP.BehavInt4_CBB -0.43 0.87 -0.23 0.06
## PP.BehavInt1_PBPB -0.25 0.85 -0.51 -0.13
## PP.BehavInt2_PBPB -0.22 0.88 -0.49 -0.12
## PP.BehavInt3_PBPB -0.27 0.87 -0.47 -0.09
## PP.BehavInt4_PBPB -0.29 0.86 -0.45 -0.06
## PP.BehavInt1_PBFB -0.30 0.94 -0.44 -0.07
## PP.BehavInt2_PBFB -0.27 0.95 -0.43 -0.08
## PP.BehavInt3_PBFB -0.33 0.95 -0.41 -0.05
## PP.BehavInt4_PBFB -0.31 0.95 -0.42 -0.08
## PP.BehavInt1_VB -0.29 0.74 -0.41 0.03
## PP.BehavInt2_VB -0.15 0.77 -0.42 -0.04
## PP.BehavInt3_VB -0.28 0.74 -0.39 0.02
## PP.BehavInt4_VB -0.27 0.74 -0.40 0.03
## PP.CCB_48 -0.46 0.36 -0.08 0.30
## PP.CCB_49 -0.50 0.38 -0.05 0.32
## PP.CCB_50 -0.50 0.42 -0.06 0.33
## PP.CCB_51 -0.56 0.55 -0.09 0.32
## PP.CNS_1 -0.51 0.49 0.02 0.40
## PP.CNS_2 -0.57 0.33 0.14 0.48
## PP.CNS_3 -0.52 0.37 0.07 0.43
## PP.ATNS_1 -0.39 0.07 0.47 0.63
## PP.ATNS_2R 0.39 -0.74 -0.01 -0.22
## PP.ATNS_3 -0.36 0.19 0.30 0.55
## PP.ATNS_4 -0.44 0.26 0.22 0.50
## PP.ATNS_5 -0.40 0.04 0.43 0.62
## PP.Ind_3 -0.34 0.34 0.17 0.43
## PP.Ind_4 -0.46 0.04 0.31 0.60
## PP.Ind_7 -0.41 0.38 0.16 0.45
## PP.Ind_8 -0.49 0.12 0.25 0.54
## PP.Ind_1 -0.50 -0.02 0.29 0.55
## PP.Ind_2 -0.44 -0.01 0.29 0.51
## PP.Ind_5 -0.54 0.15 0.21 0.54
## PP.Ind_6 -0.40 -0.02 0.30 0.53
## PP.Nat_3R_PBFB PP.Nat_1_VB PP.Nat_4R_VB PP.Nat_2R_VB
## PP.Nat_1_GFFB 0.50 -0.10 -0.71 -0.70
## PP.Nat_4R_GFFB -0.08 -0.63 0.28 0.39
## PP.Nat_2R_GFFB -0.20 -0.66 0.20 0.33
## PP.Nat_3R_GFFB -0.30 -0.49 0.51 0.63
## PP.Nat_1_GFPRB 0.54 -0.09 -0.08 -0.01
## PP.Nat_4R_GFPRB -0.08 -0.45 0.52 0.66
## PP.Nat_2R_GFPRB -0.02 -0.52 0.40 0.57
## PP.Nat_3R_GFPRB -0.12 -0.52 0.44 0.60
## PP.Nat_1_CBB 0.11 0.37 -0.58 -0.72
## PP.Nat_4R_CBB -0.56 -0.25 0.09 0.06
## PP.Nat_2R_CBB -0.60 -0.41 -0.07 -0.04
## PP.Nat_3R_CBB -0.59 -0.47 -0.06 -0.02
## PP.Nat_1_PBPB 0.02 0.81 0.00 -0.27
## PP.Nat_4R_PBPB -0.55 0.25 0.75 0.57
## PP.Nat_2R_PBPB -0.69 0.08 0.66 0.60
## PP.Nat_3R_PBPB -0.82 -0.26 0.50 0.48
## PP.Nat_1_PBFB 0.03 0.72 -0.20 -0.39
## PP.Nat_4R_PBFB 0.68 -0.40 -0.54 -0.34
## PP.Nat_2R_PBFB 0.87 0.03 -0.55 -0.51
## PP.Nat_3R_PBFB 1.00 0.13 -0.45 -0.44
## PP.Nat_1_VB 0.13 1.00 0.25 0.03
## PP.Nat_4R_VB -0.45 0.25 1.00 0.89
## PP.Nat_2R_VB -0.44 0.03 0.89 1.00
## PP.Nat_3R_VB -0.56 -0.13 0.77 0.87
## PP.BehavInt1_GFFB 0.48 -0.05 -0.67 -0.67
## PP.BehavInt2_GFFB 0.50 -0.09 -0.63 -0.60
## PP.BehavInt3_GFFB 0.45 -0.03 -0.69 -0.69
## PP.BehavInt4_GFFB 0.47 -0.08 -0.67 -0.67
## PP.BehavInt1_GFPRB 0.03 0.81 0.13 -0.10
## PP.BehavInt2_GFPRB 0.01 0.79 0.08 -0.15
## PP.BehavInt3_GFPRB 0.07 0.81 0.08 -0.16
## PP.BehavInt4_GFPRB 0.10 0.83 0.10 -0.14
## PP.BehavInt1_CBB 0.12 0.45 -0.48 -0.61
## PP.BehavInt2_CBB 0.12 0.43 -0.53 -0.66
## PP.BehavInt3_CBB 0.12 0.44 -0.51 -0.64
## PP.BehavInt4_CBB 0.11 0.43 -0.50 -0.64
## PP.BehavInt1_PBPB 0.03 0.81 0.13 -0.10
## PP.BehavInt2_PBPB 0.01 0.79 0.08 -0.15
## PP.BehavInt3_PBPB 0.07 0.81 0.08 -0.16
## PP.BehavInt4_PBPB 0.10 0.83 0.10 -0.14
## PP.BehavInt1_PBFB 0.07 0.76 -0.08 -0.27
## PP.BehavInt2_PBFB 0.04 0.72 -0.12 -0.32
## PP.BehavInt3_PBFB 0.09 0.76 -0.09 -0.29
## PP.BehavInt4_PBFB 0.07 0.75 -0.09 -0.28
## PP.BehavInt1_VB 0.17 0.92 0.21 -0.03
## PP.BehavInt2_VB 0.08 0.88 0.19 -0.07
## PP.BehavInt3_VB 0.16 0.91 0.23 0.00
## PP.BehavInt4_VB 0.15 0.91 0.21 -0.03
## PP.CCB_48 0.45 0.61 0.07 0.00
## PP.CCB_49 0.47 0.61 0.03 -0.02
## PP.CCB_50 0.48 0.61 0.00 -0.09
## PP.CCB_51 0.47 0.67 -0.08 -0.18
## PP.CNS_1 0.39 0.49 -0.35 -0.44
## PP.CNS_2 0.50 0.47 -0.22 -0.26
## PP.CNS_3 0.46 0.49 -0.24 -0.30
## PP.ATNS_1 0.50 0.19 -0.45 -0.45
## PP.ATNS_2R -0.20 -0.39 0.55 0.66
## PP.ATNS_3 0.46 0.32 -0.32 -0.37
## PP.ATNS_4 0.49 0.45 -0.21 -0.29
## PP.ATNS_5 0.53 0.23 -0.30 -0.29
## PP.Ind_3 0.33 0.29 -0.42 -0.56
## PP.Ind_4 0.56 0.22 -0.28 -0.37
## PP.Ind_7 0.37 0.37 -0.40 -0.52
## PP.Ind_8 0.51 0.31 -0.26 -0.34
## PP.Ind_1 0.54 0.28 -0.17 -0.18
## PP.Ind_2 0.50 0.25 -0.21 -0.19
## PP.Ind_5 0.54 0.41 -0.19 -0.26
## PP.Ind_6 0.47 0.20 -0.26 -0.27
## PP.Nat_3R_VB PP.BehavInt1_GFFB PP.BehavInt2_GFFB
## PP.Nat_1_GFFB -0.65 0.92 0.89
## PP.Nat_4R_GFFB 0.40 -0.05 0.03
## PP.Nat_2R_GFFB 0.40 0.00 0.06
## PP.Nat_3R_GFFB 0.64 -0.43 -0.35
## PP.Nat_1_GFPRB -0.04 0.37 0.44
## PP.Nat_4R_GFPRB 0.62 -0.30 -0.20
## PP.Nat_2R_GFPRB 0.55 -0.23 -0.13
## PP.Nat_3R_GFPRB 0.61 -0.33 -0.25
## PP.Nat_1_CBB -0.70 0.50 0.41
## PP.Nat_4R_CBB 0.07 -0.31 -0.35
## PP.Nat_2R_CBB 0.02 -0.16 -0.20
## PP.Nat_3R_CBB 0.04 -0.18 -0.23
## PP.Nat_1_PBPB -0.38 0.05 -0.03
## PP.Nat_4R_PBPB 0.51 -0.65 -0.64
## PP.Nat_2R_PBPB 0.54 -0.77 -0.78
## PP.Nat_3R_PBPB 0.63 -0.52 -0.53
## PP.Nat_1_PBFB -0.47 0.15 0.07
## PP.Nat_4R_PBFB -0.29 0.51 0.55
## PP.Nat_2R_PBFB -0.52 0.55 0.57
## PP.Nat_3R_PBFB -0.56 0.48 0.50
## PP.Nat_1_VB -0.13 -0.05 -0.09
## PP.Nat_4R_VB 0.77 -0.67 -0.63
## PP.Nat_2R_VB 0.87 -0.67 -0.60
## PP.Nat_3R_VB 1.00 -0.62 -0.56
## PP.BehavInt1_GFFB -0.62 1.00 0.98
## PP.BehavInt2_GFFB -0.56 0.98 1.00
## PP.BehavInt3_GFFB -0.64 0.99 0.97
## PP.BehavInt4_GFFB -0.61 0.99 0.97
## PP.BehavInt1_GFPRB -0.22 -0.09 -0.13
## PP.BehavInt2_GFPRB -0.26 -0.08 -0.14
## PP.BehavInt3_GFPRB -0.29 -0.06 -0.12
## PP.BehavInt4_GFPRB -0.26 -0.06 -0.11
## PP.BehavInt1_CBB -0.64 0.39 0.32
## PP.BehavInt2_CBB -0.67 0.44 0.37
## PP.BehavInt3_CBB -0.66 0.41 0.33
## PP.BehavInt4_CBB -0.66 0.40 0.33
## PP.BehavInt1_PBPB -0.22 -0.09 -0.13
## PP.BehavInt2_PBPB -0.26 -0.08 -0.14
## PP.BehavInt3_PBPB -0.29 -0.06 -0.12
## PP.BehavInt4_PBPB -0.26 -0.06 -0.11
## PP.BehavInt1_PBFB -0.35 0.03 -0.03
## PP.BehavInt2_PBFB -0.39 0.09 0.02
## PP.BehavInt3_PBFB -0.38 0.08 0.02
## PP.BehavInt4_PBFB -0.37 0.09 0.02
## PP.BehavInt1_VB -0.18 -0.09 -0.12
## PP.BehavInt2_VB -0.19 -0.11 -0.15
## PP.BehavInt3_VB -0.15 -0.10 -0.12
## PP.BehavInt4_VB -0.18 -0.11 -0.14
## PP.CCB_48 -0.20 -0.14 -0.15
## PP.CCB_49 -0.22 -0.10 -0.10
## PP.CCB_50 -0.29 -0.11 -0.13
## PP.CCB_51 -0.38 0.01 -0.01
## PP.CNS_1 -0.54 0.25 0.22
## PP.CNS_2 -0.40 0.24 0.23
## PP.CNS_3 -0.44 0.20 0.18
## PP.ATNS_1 -0.45 0.43 0.43
## PP.ATNS_2R 0.64 -0.54 -0.47
## PP.ATNS_3 -0.40 0.26 0.25
## PP.ATNS_4 -0.38 0.19 0.18
## PP.ATNS_5 -0.35 0.26 0.26
## PP.Ind_3 -0.60 0.44 0.39
## PP.Ind_4 -0.43 0.40 0.39
## PP.Ind_7 -0.58 0.49 0.46
## PP.Ind_8 -0.40 0.47 0.46
## PP.Ind_1 -0.26 0.23 0.25
## PP.Ind_2 -0.23 0.23 0.25
## PP.Ind_5 -0.35 0.27 0.28
## PP.Ind_6 -0.30 0.31 0.32
## PP.BehavInt3_GFFB PP.BehavInt4_GFFB PP.BehavInt1_GFPRB
## PP.Nat_1_GFFB 0.91 0.91 -0.09
## PP.Nat_4R_GFFB -0.09 -0.02 -0.71
## PP.Nat_2R_GFFB -0.04 0.02 -0.77
## PP.Nat_3R_GFFB -0.46 -0.40 -0.60
## PP.Nat_1_GFPRB 0.33 0.37 -0.20
## PP.Nat_4R_GFPRB -0.33 -0.28 -0.48
## PP.Nat_2R_GFPRB -0.28 -0.22 -0.53
## PP.Nat_3R_GFPRB -0.36 -0.29 -0.60
## PP.Nat_1_CBB 0.54 0.47 0.55
## PP.Nat_4R_CBB -0.30 -0.34 0.08
## PP.Nat_2R_CBB -0.14 -0.17 -0.13
## PP.Nat_3R_CBB -0.16 -0.19 -0.25
## PP.Nat_1_PBPB 0.09 0.01 0.92
## PP.Nat_4R_PBPB -0.63 -0.65 0.33
## PP.Nat_2R_PBPB -0.75 -0.77 0.21
## PP.Nat_3R_PBPB -0.49 -0.50 -0.25
## PP.Nat_1_PBFB 0.19 0.12 0.85
## PP.Nat_4R_PBFB 0.49 0.52 -0.51
## PP.Nat_2R_PBFB 0.53 0.55 -0.13
## PP.Nat_3R_PBFB 0.45 0.47 0.03
## PP.Nat_1_VB -0.03 -0.08 0.81
## PP.Nat_4R_VB -0.69 -0.67 0.13
## PP.Nat_2R_VB -0.69 -0.67 -0.10
## PP.Nat_3R_VB -0.64 -0.61 -0.22
## PP.BehavInt1_GFFB 0.99 0.99 -0.09
## PP.BehavInt2_GFFB 0.97 0.97 -0.13
## PP.BehavInt3_GFFB 1.00 0.99 -0.05
## PP.BehavInt4_GFFB 0.99 1.00 -0.13
## PP.BehavInt1_GFPRB -0.05 -0.13 1.00
## PP.BehavInt2_GFPRB -0.04 -0.12 0.98
## PP.BehavInt3_GFPRB -0.03 -0.10 0.99
## PP.BehavInt4_GFPRB -0.03 -0.10 0.99
## PP.BehavInt1_CBB 0.43 0.35 0.71
## PP.BehavInt2_CBB 0.48 0.41 0.66
## PP.BehavInt3_CBB 0.44 0.37 0.69
## PP.BehavInt4_CBB 0.44 0.37 0.68
## PP.BehavInt1_PBPB -0.05 -0.13 1.00
## PP.BehavInt2_PBPB -0.04 -0.12 0.98
## PP.BehavInt3_PBPB -0.03 -0.10 0.99
## PP.BehavInt4_PBPB -0.03 -0.10 0.99
## PP.BehavInt1_PBFB 0.07 0.00 0.95
## PP.BehavInt2_PBFB 0.13 0.05 0.92
## PP.BehavInt3_PBFB 0.11 0.04 0.94
## PP.BehavInt4_PBFB 0.12 0.04 0.94
## PP.BehavInt1_VB -0.07 -0.13 0.90
## PP.BehavInt2_VB -0.07 -0.14 0.89
## PP.BehavInt3_VB -0.08 -0.13 0.90
## PP.BehavInt4_VB -0.09 -0.14 0.90
## PP.CCB_48 -0.15 -0.13 0.44
## PP.CCB_49 -0.11 -0.09 0.44
## PP.CCB_50 -0.11 -0.10 0.48
## PP.CCB_51 0.02 0.02 0.57
## PP.CNS_1 0.27 0.27 0.32
## PP.CNS_2 0.24 0.28 0.23
## PP.CNS_3 0.20 0.23 0.24
## PP.ATNS_1 0.44 0.47 -0.11
## PP.ATNS_2R -0.57 -0.50 -0.52
## PP.ATNS_3 0.28 0.30 0.03
## PP.ATNS_4 0.20 0.22 0.19
## PP.ATNS_5 0.26 0.30 -0.07
## PP.Ind_3 0.45 0.44 0.19
## PP.Ind_4 0.37 0.41 -0.04
## PP.Ind_7 0.49 0.49 0.22
## PP.Ind_8 0.44 0.48 0.08
## PP.Ind_1 0.19 0.25 -0.04
## PP.Ind_2 0.20 0.24 -0.08
## PP.Ind_5 0.25 0.28 0.12
## PP.Ind_6 0.29 0.33 -0.10
## PP.BehavInt2_GFPRB PP.BehavInt3_GFPRB PP.BehavInt4_GFPRB
## PP.Nat_1_GFFB -0.09 -0.08 -0.08
## PP.Nat_4R_GFFB -0.76 -0.74 -0.75
## PP.Nat_2R_GFFB -0.80 -0.80 -0.80
## PP.Nat_3R_GFFB -0.64 -0.63 -0.63
## PP.Nat_1_GFPRB -0.28 -0.23 -0.20
## PP.Nat_4R_GFPRB -0.56 -0.53 -0.51
## PP.Nat_2R_GFPRB -0.60 -0.58 -0.56
## PP.Nat_3R_GFPRB -0.65 -0.64 -0.62
## PP.Nat_1_CBB 0.61 0.58 0.56
## PP.Nat_4R_CBB 0.12 0.08 0.03
## PP.Nat_2R_CBB -0.08 -0.12 -0.18
## PP.Nat_3R_CBB -0.19 -0.23 -0.28
## PP.Nat_1_PBPB 0.93 0.93 0.92
## PP.Nat_4R_PBPB 0.31 0.29 0.28
## PP.Nat_2R_PBPB 0.20 0.19 0.17
## PP.Nat_3R_PBPB -0.22 -0.27 -0.29
## PP.Nat_1_PBFB 0.88 0.87 0.86
## PP.Nat_4R_PBFB -0.49 -0.47 -0.45
## PP.Nat_2R_PBFB -0.12 -0.09 -0.06
## PP.Nat_3R_PBFB 0.01 0.07 0.10
## PP.Nat_1_VB 0.79 0.81 0.83
## PP.Nat_4R_VB 0.08 0.08 0.10
## PP.Nat_2R_VB -0.15 -0.16 -0.14
## PP.Nat_3R_VB -0.26 -0.29 -0.26
## PP.BehavInt1_GFFB -0.08 -0.06 -0.06
## PP.BehavInt2_GFFB -0.14 -0.12 -0.11
## PP.BehavInt3_GFFB -0.04 -0.03 -0.03
## PP.BehavInt4_GFFB -0.12 -0.10 -0.10
## PP.BehavInt1_GFPRB 0.98 0.99 0.99
## PP.BehavInt2_GFPRB 1.00 0.98 0.98
## PP.BehavInt3_GFPRB 0.98 1.00 0.99
## PP.BehavInt4_GFPRB 0.98 0.99 1.00
## PP.BehavInt1_CBB 0.74 0.73 0.70
## PP.BehavInt2_CBB 0.70 0.69 0.66
## PP.BehavInt3_CBB 0.72 0.71 0.69
## PP.BehavInt4_CBB 0.72 0.71 0.68
## PP.BehavInt1_PBPB 0.98 0.99 0.99
## PP.BehavInt2_PBPB 1.00 0.98 0.98
## PP.BehavInt3_PBPB 0.98 1.00 0.99
## PP.BehavInt4_PBPB 0.98 0.99 1.00
## PP.BehavInt1_PBFB 0.96 0.95 0.95
## PP.BehavInt2_PBFB 0.95 0.93 0.92
## PP.BehavInt3_PBFB 0.94 0.95 0.94
## PP.BehavInt4_PBFB 0.94 0.95 0.94
## PP.BehavInt1_VB 0.88 0.90 0.91
## PP.BehavInt2_VB 0.89 0.90 0.91
## PP.BehavInt3_VB 0.87 0.90 0.91
## PP.BehavInt4_VB 0.89 0.91 0.92
## PP.CCB_48 0.40 0.46 0.48
## PP.CCB_49 0.40 0.46 0.48
## PP.CCB_50 0.45 0.50 0.52
## PP.CCB_51 0.55 0.60 0.61
## PP.CNS_1 0.33 0.34 0.34
## PP.CNS_2 0.22 0.24 0.26
## PP.CNS_3 0.24 0.27 0.27
## PP.ATNS_1 -0.08 -0.08 -0.06
## PP.ATNS_2R -0.57 -0.55 -0.54
## PP.ATNS_3 0.06 0.06 0.08
## PP.ATNS_4 0.19 0.21 0.23
## PP.ATNS_5 -0.07 -0.04 -0.02
## PP.Ind_3 0.22 0.22 0.22
## PP.Ind_4 -0.06 -0.02 0.00
## PP.Ind_7 0.23 0.25 0.25
## PP.Ind_8 0.04 0.09 0.11
## PP.Ind_1 -0.09 -0.04 -0.02
## PP.Ind_2 -0.11 -0.08 -0.06
## PP.Ind_5 0.09 0.13 0.15
## PP.Ind_6 -0.11 -0.09 -0.07
## PP.BehavInt1_CBB PP.BehavInt2_CBB PP.BehavInt3_CBB
## PP.Nat_1_GFFB 0.39 0.44 0.40
## PP.Nat_4R_GFFB -0.73 -0.72 -0.74
## PP.Nat_2R_GFFB -0.71 -0.68 -0.70
## PP.Nat_3R_GFFB -0.80 -0.81 -0.81
## PP.Nat_1_GFPRB -0.24 -0.24 -0.25
## PP.Nat_4R_GFPRB -0.74 -0.77 -0.76
## PP.Nat_2R_GFPRB -0.71 -0.74 -0.73
## PP.Nat_3R_GFPRB -0.82 -0.84 -0.84
## PP.Nat_1_CBB 0.93 0.95 0.94
## PP.Nat_4R_CBB 0.23 0.23 0.22
## PP.Nat_2R_CBB 0.15 0.17 0.15
## PP.Nat_3R_CBB 0.00 0.02 0.01
## PP.Nat_1_PBPB 0.76 0.74 0.75
## PP.Nat_4R_PBPB -0.15 -0.17 -0.16
## PP.Nat_2R_PBPB -0.20 -0.23 -0.20
## PP.Nat_3R_PBPB -0.44 -0.42 -0.43
## PP.Nat_1_PBFB 0.88 0.86 0.87
## PP.Nat_4R_PBFB -0.24 -0.21 -0.22
## PP.Nat_2R_PBFB 0.06 0.08 0.07
## PP.Nat_3R_PBFB 0.12 0.12 0.12
## PP.Nat_1_VB 0.45 0.43 0.44
## PP.Nat_4R_VB -0.48 -0.53 -0.51
## PP.Nat_2R_VB -0.61 -0.66 -0.64
## PP.Nat_3R_VB -0.64 -0.67 -0.66
## PP.BehavInt1_GFFB 0.39 0.44 0.41
## PP.BehavInt2_GFFB 0.32 0.37 0.33
## PP.BehavInt3_GFFB 0.43 0.48 0.44
## PP.BehavInt4_GFFB 0.35 0.41 0.37
## PP.BehavInt1_GFPRB 0.71 0.66 0.69
## PP.BehavInt2_GFPRB 0.74 0.70 0.72
## PP.BehavInt3_GFPRB 0.73 0.69 0.71
## PP.BehavInt4_GFPRB 0.70 0.66 0.69
## PP.BehavInt1_CBB 1.00 0.99 0.99
## PP.BehavInt2_CBB 0.99 1.00 0.99
## PP.BehavInt3_CBB 0.99 0.99 1.00
## PP.BehavInt4_CBB 0.99 0.99 0.99
## PP.BehavInt1_PBPB 0.71 0.66 0.69
## PP.BehavInt2_PBPB 0.74 0.70 0.72
## PP.BehavInt3_PBPB 0.73 0.69 0.71
## PP.BehavInt4_PBPB 0.70 0.66 0.69
## PP.BehavInt1_PBFB 0.82 0.79 0.81
## PP.BehavInt2_PBFB 0.84 0.82 0.83
## PP.BehavInt3_PBFB 0.82 0.79 0.81
## PP.BehavInt4_PBFB 0.83 0.80 0.82
## PP.BehavInt1_VB 0.51 0.47 0.49
## PP.BehavInt2_VB 0.53 0.50 0.51
## PP.BehavInt3_VB 0.49 0.45 0.48
## PP.BehavInt4_VB 0.50 0.47 0.49
## PP.CCB_48 0.20 0.16 0.20
## PP.CCB_49 0.23 0.19 0.22
## PP.CCB_50 0.27 0.23 0.27
## PP.CCB_51 0.44 0.40 0.44
## PP.CNS_1 0.44 0.45 0.44
## PP.CNS_2 0.25 0.25 0.25
## PP.CNS_3 0.29 0.29 0.28
## PP.ATNS_1 0.07 0.11 0.08
## PP.ATNS_2R -0.84 -0.86 -0.85
## PP.ATNS_3 0.08 0.10 0.09
## PP.ATNS_4 0.13 0.13 0.14
## PP.ATNS_5 -0.05 -0.03 -0.03
## PP.Ind_3 0.36 0.40 0.38
## PP.Ind_4 0.02 0.05 0.02
## PP.Ind_7 0.36 0.38 0.38
## PP.Ind_8 0.12 0.14 0.12
## PP.Ind_1 -0.04 -0.04 -0.04
## PP.Ind_2 -0.03 -0.03 -0.03
## PP.Ind_5 0.13 0.12 0.13
## PP.Ind_6 -0.02 -0.01 -0.02
## PP.BehavInt4_CBB PP.BehavInt1_PBPB PP.BehavInt2_PBPB
## PP.Nat_1_GFFB 0.41 -0.09 -0.09
## PP.Nat_4R_GFFB -0.72 -0.71 -0.76
## PP.Nat_2R_GFFB -0.70 -0.77 -0.80
## PP.Nat_3R_GFFB -0.80 -0.60 -0.64
## PP.Nat_1_GFPRB -0.24 -0.20 -0.28
## PP.Nat_4R_GFPRB -0.74 -0.48 -0.56
## PP.Nat_2R_GFPRB -0.72 -0.53 -0.60
## PP.Nat_3R_GFPRB -0.82 -0.60 -0.65
## PP.Nat_1_CBB 0.94 0.55 0.61
## PP.Nat_4R_CBB 0.24 0.08 0.12
## PP.Nat_2R_CBB 0.16 -0.13 -0.08
## PP.Nat_3R_CBB 0.01 -0.25 -0.19
## PP.Nat_1_PBPB 0.76 0.92 0.93
## PP.Nat_4R_PBPB -0.15 0.33 0.31
## PP.Nat_2R_PBPB -0.20 0.21 0.20
## PP.Nat_3R_PBPB -0.43 -0.25 -0.22
## PP.Nat_1_PBFB 0.87 0.85 0.88
## PP.Nat_4R_PBFB -0.23 -0.51 -0.49
## PP.Nat_2R_PBFB 0.06 -0.13 -0.12
## PP.Nat_3R_PBFB 0.11 0.03 0.01
## PP.Nat_1_VB 0.43 0.81 0.79
## PP.Nat_4R_VB -0.50 0.13 0.08
## PP.Nat_2R_VB -0.64 -0.10 -0.15
## PP.Nat_3R_VB -0.66 -0.22 -0.26
## PP.BehavInt1_GFFB 0.40 -0.09 -0.08
## PP.BehavInt2_GFFB 0.33 -0.13 -0.14
## PP.BehavInt3_GFFB 0.44 -0.05 -0.04
## PP.BehavInt4_GFFB 0.37 -0.13 -0.12
## PP.BehavInt1_GFPRB 0.68 1.00 0.98
## PP.BehavInt2_GFPRB 0.72 0.98 1.00
## PP.BehavInt3_GFPRB 0.71 0.99 0.98
## PP.BehavInt4_GFPRB 0.68 0.99 0.98
## PP.BehavInt1_CBB 0.99 0.71 0.74
## PP.BehavInt2_CBB 0.99 0.66 0.70
## PP.BehavInt3_CBB 0.99 0.69 0.72
## PP.BehavInt4_CBB 1.00 0.68 0.72
## PP.BehavInt1_PBPB 0.68 1.00 0.98
## PP.BehavInt2_PBPB 0.72 0.98 1.00
## PP.BehavInt3_PBPB 0.71 0.99 0.98
## PP.BehavInt4_PBPB 0.68 0.99 0.98
## PP.BehavInt1_PBFB 0.80 0.95 0.96
## PP.BehavInt2_PBFB 0.83 0.92 0.95
## PP.BehavInt3_PBFB 0.81 0.94 0.94
## PP.BehavInt4_PBFB 0.82 0.94 0.94
## PP.BehavInt1_VB 0.49 0.90 0.88
## PP.BehavInt2_VB 0.50 0.89 0.89
## PP.BehavInt3_VB 0.48 0.90 0.87
## PP.BehavInt4_VB 0.49 0.90 0.89
## PP.CCB_48 0.19 0.44 0.40
## PP.CCB_49 0.21 0.44 0.40
## PP.CCB_50 0.26 0.48 0.45
## PP.CCB_51 0.43 0.57 0.55
## PP.CNS_1 0.44 0.32 0.33
## PP.CNS_2 0.24 0.23 0.22
## PP.CNS_3 0.28 0.24 0.24
## PP.ATNS_1 0.07 -0.11 -0.08
## PP.ATNS_2R -0.84 -0.52 -0.57
## PP.ATNS_3 0.08 0.03 0.06
## PP.ATNS_4 0.13 0.19 0.19
## PP.ATNS_5 -0.05 -0.07 -0.07
## PP.Ind_3 0.37 0.19 0.22
## PP.Ind_4 0.02 -0.04 -0.06
## PP.Ind_7 0.36 0.22 0.23
## PP.Ind_8 0.11 0.08 0.04
## PP.Ind_1 -0.05 -0.04 -0.09
## PP.Ind_2 -0.04 -0.08 -0.11
## PP.Ind_5 0.13 0.12 0.09
## PP.Ind_6 -0.02 -0.10 -0.11
## PP.BehavInt3_PBPB PP.BehavInt4_PBPB PP.BehavInt1_PBFB
## PP.Nat_1_GFFB -0.08 -0.08 0.01
## PP.Nat_4R_GFFB -0.74 -0.75 -0.83
## PP.Nat_2R_GFFB -0.80 -0.80 -0.83
## PP.Nat_3R_GFFB -0.63 -0.63 -0.74
## PP.Nat_1_GFPRB -0.23 -0.20 -0.31
## PP.Nat_4R_GFPRB -0.53 -0.51 -0.67
## PP.Nat_2R_GFPRB -0.58 -0.56 -0.71
## PP.Nat_3R_GFPRB -0.64 -0.62 -0.75
## PP.Nat_1_CBB 0.58 0.56 0.70
## PP.Nat_4R_CBB 0.08 0.03 0.10
## PP.Nat_2R_CBB -0.12 -0.18 -0.06
## PP.Nat_3R_CBB -0.23 -0.28 -0.18
## PP.Nat_1_PBPB 0.93 0.92 0.92
## PP.Nat_4R_PBPB 0.29 0.28 0.16
## PP.Nat_2R_PBPB 0.19 0.17 0.08
## PP.Nat_3R_PBPB -0.27 -0.29 -0.30
## PP.Nat_1_PBFB 0.87 0.86 0.94
## PP.Nat_4R_PBFB -0.47 -0.45 -0.44
## PP.Nat_2R_PBFB -0.09 -0.06 -0.07
## PP.Nat_3R_PBFB 0.07 0.10 0.07
## PP.Nat_1_VB 0.81 0.83 0.76
## PP.Nat_4R_VB 0.08 0.10 -0.08
## PP.Nat_2R_VB -0.16 -0.14 -0.27
## PP.Nat_3R_VB -0.29 -0.26 -0.35
## PP.BehavInt1_GFFB -0.06 -0.06 0.03
## PP.BehavInt2_GFFB -0.12 -0.11 -0.03
## PP.BehavInt3_GFFB -0.03 -0.03 0.07
## PP.BehavInt4_GFFB -0.10 -0.10 0.00
## PP.BehavInt1_GFPRB 0.99 0.99 0.95
## PP.BehavInt2_GFPRB 0.98 0.98 0.96
## PP.BehavInt3_GFPRB 1.00 0.99 0.95
## PP.BehavInt4_GFPRB 0.99 1.00 0.95
## PP.BehavInt1_CBB 0.73 0.70 0.82
## PP.BehavInt2_CBB 0.69 0.66 0.79
## PP.BehavInt3_CBB 0.71 0.69 0.81
## PP.BehavInt4_CBB 0.71 0.68 0.80
## PP.BehavInt1_PBPB 0.99 0.99 0.95
## PP.BehavInt2_PBPB 0.98 0.98 0.96
## PP.BehavInt3_PBPB 1.00 0.99 0.95
## PP.BehavInt4_PBPB 0.99 1.00 0.95
## PP.BehavInt1_PBFB 0.95 0.95 1.00
## PP.BehavInt2_PBFB 0.93 0.92 0.98
## PP.BehavInt3_PBFB 0.95 0.94 0.99
## PP.BehavInt4_PBFB 0.95 0.94 0.99
## PP.BehavInt1_VB 0.90 0.91 0.85
## PP.BehavInt2_VB 0.90 0.91 0.86
## PP.BehavInt3_VB 0.90 0.91 0.84
## PP.BehavInt4_VB 0.91 0.92 0.85
## PP.CCB_48 0.46 0.48 0.45
## PP.CCB_49 0.46 0.48 0.46
## PP.CCB_50 0.50 0.52 0.50
## PP.CCB_51 0.60 0.61 0.61
## PP.CNS_1 0.34 0.34 0.42
## PP.CNS_2 0.24 0.26 0.30
## PP.CNS_3 0.27 0.27 0.34
## PP.ATNS_1 -0.08 -0.06 -0.01
## PP.ATNS_2R -0.55 -0.54 -0.68
## PP.ATNS_3 0.06 0.08 0.11
## PP.ATNS_4 0.21 0.23 0.23
## PP.ATNS_5 -0.04 -0.02 -0.01
## PP.Ind_3 0.22 0.22 0.25
## PP.Ind_4 -0.02 0.00 0.00
## PP.Ind_7 0.25 0.25 0.31
## PP.Ind_8 0.09 0.11 0.09
## PP.Ind_1 -0.04 -0.02 -0.03
## PP.Ind_2 -0.08 -0.06 -0.05
## PP.Ind_5 0.13 0.15 0.13
## PP.Ind_6 -0.09 -0.07 -0.06
## PP.BehavInt2_PBFB PP.BehavInt3_PBFB PP.BehavInt4_PBFB
## PP.Nat_1_GFFB 0.09 0.06 0.07
## PP.Nat_4R_GFFB -0.83 -0.83 -0.82
## PP.Nat_2R_GFFB -0.80 -0.83 -0.81
## PP.Nat_3R_GFFB -0.77 -0.76 -0.76
## PP.Nat_1_GFPRB -0.32 -0.27 -0.26
## PP.Nat_4R_GFPRB -0.71 -0.67 -0.66
## PP.Nat_2R_GFPRB -0.75 -0.72 -0.72
## PP.Nat_3R_GFPRB -0.79 -0.76 -0.77
## PP.Nat_1_CBB 0.75 0.71 0.72
## PP.Nat_4R_CBB 0.14 0.08 0.12
## PP.Nat_2R_CBB 0.01 -0.07 -0.03
## PP.Nat_3R_CBB -0.10 -0.19 -0.15
## PP.Nat_1_PBPB 0.93 0.92 0.93
## PP.Nat_4R_PBPB 0.15 0.12 0.15
## PP.Nat_2R_PBPB 0.07 0.04 0.08
## PP.Nat_3R_PBPB -0.27 -0.33 -0.31
## PP.Nat_1_PBFB 0.95 0.95 0.95
## PP.Nat_4R_PBFB -0.43 -0.41 -0.42
## PP.Nat_2R_PBFB -0.08 -0.05 -0.08
## PP.Nat_3R_PBFB 0.04 0.09 0.07
## PP.Nat_1_VB 0.72 0.76 0.75
## PP.Nat_4R_VB -0.12 -0.09 -0.09
## PP.Nat_2R_VB -0.32 -0.29 -0.28
## PP.Nat_3R_VB -0.39 -0.38 -0.37
## PP.BehavInt1_GFFB 0.09 0.08 0.09
## PP.BehavInt2_GFFB 0.02 0.02 0.02
## PP.BehavInt3_GFFB 0.13 0.11 0.12
## PP.BehavInt4_GFFB 0.05 0.04 0.04
## PP.BehavInt1_GFPRB 0.92 0.94 0.94
## PP.BehavInt2_GFPRB 0.95 0.94 0.94
## PP.BehavInt3_GFPRB 0.93 0.95 0.95
## PP.BehavInt4_GFPRB 0.92 0.94 0.94
## PP.BehavInt1_CBB 0.84 0.82 0.83
## PP.BehavInt2_CBB 0.82 0.79 0.80
## PP.BehavInt3_CBB 0.83 0.81 0.82
## PP.BehavInt4_CBB 0.83 0.81 0.82
## PP.BehavInt1_PBPB 0.92 0.94 0.94
## PP.BehavInt2_PBPB 0.95 0.94 0.94
## PP.BehavInt3_PBPB 0.93 0.95 0.95
## PP.BehavInt4_PBPB 0.92 0.94 0.94
## PP.BehavInt1_PBFB 0.98 0.99 0.99
## PP.BehavInt2_PBFB 1.00 0.98 0.98
## PP.BehavInt3_PBFB 0.98 1.00 1.00
## PP.BehavInt4_PBFB 0.98 1.00 1.00
## PP.BehavInt1_VB 0.82 0.85 0.84
## PP.BehavInt2_VB 0.85 0.86 0.85
## PP.BehavInt3_VB 0.80 0.85 0.83
## PP.BehavInt4_VB 0.82 0.85 0.84
## PP.CCB_48 0.37 0.44 0.40
## PP.CCB_49 0.37 0.45 0.41
## PP.CCB_50 0.42 0.49 0.45
## PP.CCB_51 0.54 0.60 0.56
## PP.CNS_1 0.38 0.43 0.39
## PP.CNS_2 0.25 0.31 0.27
## PP.CNS_3 0.28 0.34 0.30
## PP.ATNS_1 -0.02 0.01 -0.03
## PP.ATNS_2R -0.73 -0.70 -0.71
## PP.ATNS_3 0.10 0.13 0.09
## PP.ATNS_4 0.19 0.25 0.21
## PP.ATNS_5 -0.04 0.01 -0.04
## PP.Ind_3 0.29 0.26 0.25
## PP.Ind_4 -0.02 0.02 -0.01
## PP.Ind_7 0.33 0.33 0.31
## PP.Ind_8 0.07 0.10 0.07
## PP.Ind_1 -0.09 -0.03 -0.06
## PP.Ind_2 -0.10 -0.04 -0.08
## PP.Ind_5 0.08 0.14 0.11
## PP.Ind_6 -0.10 -0.06 -0.10
## PP.BehavInt1_VB PP.BehavInt2_VB PP.BehavInt3_VB
## PP.Nat_1_GFFB -0.12 -0.13 -0.13
## PP.Nat_4R_GFFB -0.66 -0.70 -0.65
## PP.Nat_2R_GFFB -0.71 -0.71 -0.72
## PP.Nat_3R_GFFB -0.52 -0.55 -0.51
## PP.Nat_1_GFPRB -0.09 -0.19 -0.06
## PP.Nat_4R_GFPRB -0.46 -0.54 -0.42
## PP.Nat_2R_GFPRB -0.53 -0.62 -0.50
## PP.Nat_3R_GFPRB -0.54 -0.61 -0.51
## PP.Nat_1_CBB 0.38 0.43 0.36
## PP.Nat_4R_CBB -0.19 -0.15 -0.22
## PP.Nat_2R_CBB -0.39 -0.31 -0.43
## PP.Nat_3R_CBB -0.46 -0.38 -0.49
## PP.Nat_1_PBPB 0.85 0.87 0.84
## PP.Nat_4R_PBPB 0.28 0.34 0.27
## PP.Nat_2R_PBPB 0.11 0.19 0.11
## PP.Nat_3R_PBPB -0.29 -0.15 -0.28
## PP.Nat_1_PBFB 0.74 0.77 0.74
## PP.Nat_4R_PBFB -0.41 -0.42 -0.39
## PP.Nat_2R_PBFB 0.03 -0.04 0.02
## PP.Nat_3R_PBFB 0.17 0.08 0.16
## PP.Nat_1_VB 0.92 0.88 0.91
## PP.Nat_4R_VB 0.21 0.19 0.23
## PP.Nat_2R_VB -0.03 -0.07 0.00
## PP.Nat_3R_VB -0.18 -0.19 -0.15
## PP.BehavInt1_GFFB -0.09 -0.11 -0.10
## PP.BehavInt2_GFFB -0.12 -0.15 -0.12
## PP.BehavInt3_GFFB -0.07 -0.07 -0.08
## PP.BehavInt4_GFFB -0.13 -0.14 -0.13
## PP.BehavInt1_GFPRB 0.90 0.89 0.90
## PP.BehavInt2_GFPRB 0.88 0.89 0.87
## PP.BehavInt3_GFPRB 0.90 0.90 0.90
## PP.BehavInt4_GFPRB 0.91 0.91 0.91
## PP.BehavInt1_CBB 0.51 0.53 0.49
## PP.BehavInt2_CBB 0.47 0.50 0.45
## PP.BehavInt3_CBB 0.49 0.51 0.48
## PP.BehavInt4_CBB 0.49 0.50 0.48
## PP.BehavInt1_PBPB 0.90 0.89 0.90
## PP.BehavInt2_PBPB 0.88 0.89 0.87
## PP.BehavInt3_PBPB 0.90 0.90 0.90
## PP.BehavInt4_PBPB 0.91 0.91 0.91
## PP.BehavInt1_PBFB 0.85 0.86 0.84
## PP.BehavInt2_PBFB 0.82 0.85 0.80
## PP.BehavInt3_PBFB 0.85 0.86 0.85
## PP.BehavInt4_PBFB 0.84 0.85 0.83
## PP.BehavInt1_VB 1.00 0.96 0.99
## PP.BehavInt2_VB 0.96 1.00 0.95
## PP.BehavInt3_VB 0.99 0.95 1.00
## PP.BehavInt4_VB 0.99 0.96 0.99
## PP.CCB_48 0.62 0.52 0.62
## PP.CCB_49 0.62 0.51 0.62
## PP.CCB_50 0.64 0.55 0.64
## PP.CCB_51 0.69 0.59 0.68
## PP.CNS_1 0.46 0.44 0.46
## PP.CNS_2 0.43 0.37 0.45
## PP.CNS_3 0.46 0.41 0.46
## PP.ATNS_1 0.07 0.08 0.08
## PP.ATNS_2R -0.43 -0.48 -0.41
## PP.ATNS_3 0.24 0.24 0.25
## PP.ATNS_4 0.39 0.36 0.40
## PP.ATNS_5 0.16 0.14 0.16
## PP.Ind_3 0.31 0.33 0.28
## PP.Ind_4 0.21 0.17 0.21
## PP.Ind_7 0.39 0.37 0.37
## PP.Ind_8 0.28 0.23 0.27
## PP.Ind_1 0.21 0.12 0.21
## PP.Ind_2 0.16 0.08 0.16
## PP.Ind_5 0.35 0.27 0.35
## PP.Ind_6 0.13 0.07 0.13
## PP.BehavInt4_VB PP.CCB_48 PP.CCB_49 PP.CCB_50 PP.CCB_51
## PP.Nat_1_GFFB -0.13 -0.17 -0.13 -0.12 0.00
## PP.Nat_4R_GFFB -0.66 -0.40 -0.41 -0.44 -0.52
## PP.Nat_2R_GFFB -0.72 -0.53 -0.53 -0.56 -0.64
## PP.Nat_3R_GFFB -0.52 -0.26 -0.27 -0.31 -0.43
## PP.Nat_1_GFPRB -0.09 0.03 0.05 0.00 -0.01
## PP.Nat_4R_GFPRB -0.46 -0.22 -0.24 -0.29 -0.39
## PP.Nat_2R_GFPRB -0.53 -0.26 -0.26 -0.32 -0.39
## PP.Nat_3R_GFPRB -0.53 -0.25 -0.27 -0.31 -0.42
## PP.Nat_1_CBB 0.37 0.10 0.13 0.18 0.34
## PP.Nat_4R_CBB -0.20 -0.39 -0.39 -0.35 -0.33
## PP.Nat_2R_CBB -0.39 -0.53 -0.54 -0.50 -0.48
## PP.Nat_3R_CBB -0.45 -0.57 -0.58 -0.54 -0.54
## PP.Nat_1_PBPB 0.85 0.38 0.38 0.43 0.54
## PP.Nat_4R_PBPB 0.28 0.00 -0.05 -0.03 -0.08
## PP.Nat_2R_PBPB 0.13 -0.12 -0.17 -0.15 -0.20
## PP.Nat_3R_PBPB -0.27 -0.46 -0.50 -0.50 -0.56
## PP.Nat_1_PBFB 0.74 0.36 0.38 0.42 0.55
## PP.Nat_4R_PBFB -0.40 -0.08 -0.05 -0.06 -0.09
## PP.Nat_2R_PBFB 0.03 0.30 0.32 0.33 0.32
## PP.Nat_3R_PBFB 0.15 0.45 0.47 0.48 0.47
## PP.Nat_1_VB 0.91 0.61 0.61 0.61 0.67
## PP.Nat_4R_VB 0.21 0.07 0.03 0.00 -0.08
## PP.Nat_2R_VB -0.03 0.00 -0.02 -0.09 -0.18
## PP.Nat_3R_VB -0.18 -0.20 -0.22 -0.29 -0.38
## PP.BehavInt1_GFFB -0.11 -0.14 -0.10 -0.11 0.01
## PP.BehavInt2_GFFB -0.14 -0.15 -0.10 -0.13 -0.01
## PP.BehavInt3_GFFB -0.09 -0.15 -0.11 -0.11 0.02
## PP.BehavInt4_GFFB -0.14 -0.13 -0.09 -0.10 0.02
## PP.BehavInt1_GFPRB 0.90 0.44 0.44 0.48 0.57
## PP.BehavInt2_GFPRB 0.89 0.40 0.40 0.45 0.55
## PP.BehavInt3_GFPRB 0.91 0.46 0.46 0.50 0.60
## PP.BehavInt4_GFPRB 0.92 0.48 0.48 0.52 0.61
## PP.BehavInt1_CBB 0.50 0.20 0.23 0.27 0.44
## PP.BehavInt2_CBB 0.47 0.16 0.19 0.23 0.40
## PP.BehavInt3_CBB 0.49 0.20 0.22 0.27 0.44
## PP.BehavInt4_CBB 0.49 0.19 0.21 0.26 0.43
## PP.BehavInt1_PBPB 0.90 0.44 0.44 0.48 0.57
## PP.BehavInt2_PBPB 0.89 0.40 0.40 0.45 0.55
## PP.BehavInt3_PBPB 0.91 0.46 0.46 0.50 0.60
## PP.BehavInt4_PBPB 0.92 0.48 0.48 0.52 0.61
## PP.BehavInt1_PBFB 0.85 0.45 0.46 0.50 0.61
## PP.BehavInt2_PBFB 0.82 0.37 0.37 0.42 0.54
## PP.BehavInt3_PBFB 0.85 0.44 0.45 0.49 0.60
## PP.BehavInt4_PBFB 0.84 0.40 0.41 0.45 0.56
## PP.BehavInt1_VB 0.99 0.62 0.62 0.64 0.69
## PP.BehavInt2_VB 0.96 0.52 0.51 0.55 0.59
## PP.BehavInt3_VB 0.99 0.62 0.62 0.64 0.68
## PP.BehavInt4_VB 1.00 0.60 0.59 0.62 0.67
## PP.CCB_48 0.60 1.00 0.98 0.97 0.93
## PP.CCB_49 0.59 0.98 1.00 0.96 0.94
## PP.CCB_50 0.62 0.97 0.96 1.00 0.94
## PP.CCB_51 0.67 0.93 0.94 0.94 1.00
## PP.CNS_1 0.46 0.57 0.60 0.62 0.65
## PP.CNS_2 0.42 0.66 0.68 0.66 0.68
## PP.CNS_3 0.45 0.70 0.72 0.72 0.72
## PP.ATNS_1 0.07 0.25 0.28 0.27 0.27
## PP.ATNS_2R -0.43 -0.11 -0.14 -0.19 -0.32
## PP.ATNS_3 0.23 0.38 0.41 0.41 0.40
## PP.ATNS_4 0.38 0.57 0.58 0.59 0.56
## PP.ATNS_5 0.14 0.41 0.44 0.42 0.40
## PP.Ind_3 0.31 0.16 0.17 0.21 0.26
## PP.Ind_4 0.20 0.35 0.36 0.35 0.34
## PP.Ind_7 0.37 0.29 0.31 0.32 0.37
## PP.Ind_8 0.26 0.35 0.37 0.36 0.37
## PP.Ind_1 0.19 0.54 0.55 0.52 0.48
## PP.Ind_2 0.14 0.46 0.48 0.45 0.41
## PP.Ind_5 0.33 0.57 0.58 0.57 0.54
## PP.Ind_6 0.12 0.41 0.42 0.39 0.37
## PP.CNS_1 PP.CNS_2 PP.CNS_3 PP.ATNS_1 PP.ATNS_2R PP.ATNS_3
## PP.Nat_1_GFFB 0.24 0.23 0.17 0.42 -0.54 0.24
## PP.Nat_4R_GFFB -0.51 -0.36 -0.39 -0.25 0.66 -0.35
## PP.Nat_2R_GFFB -0.55 -0.46 -0.48 -0.26 0.55 -0.35
## PP.Nat_3R_GFFB -0.53 -0.40 -0.38 -0.37 0.77 -0.38
## PP.Nat_1_GFPRB 0.08 0.28 0.14 0.26 0.19 0.13
## PP.Nat_4R_GFPRB -0.52 -0.32 -0.39 -0.33 0.77 -0.42
## PP.Nat_2R_GFPRB -0.48 -0.30 -0.38 -0.27 0.75 -0.34
## PP.Nat_3R_GFPRB -0.50 -0.32 -0.36 -0.22 0.80 -0.28
## PP.Nat_1_CBB 0.48 0.26 0.30 0.20 -0.85 0.19
## PP.Nat_4R_CBB -0.36 -0.53 -0.47 -0.62 -0.04 -0.60
## PP.Nat_2R_CBB -0.43 -0.61 -0.54 -0.55 -0.06 -0.58
## PP.Nat_3R_CBB -0.45 -0.59 -0.53 -0.46 0.04 -0.46
## PP.Nat_1_PBPB 0.42 0.29 0.30 0.02 -0.64 0.16
## PP.Nat_4R_PBPB -0.30 -0.33 -0.30 -0.50 0.28 -0.43
## PP.Nat_2R_PBPB -0.41 -0.45 -0.41 -0.59 0.33 -0.50
## PP.Nat_3R_PBPB -0.51 -0.57 -0.52 -0.39 0.39 -0.36
## PP.Nat_1_PBFB 0.49 0.33 0.37 0.07 -0.74 0.19
## PP.Nat_4R_PBFB 0.02 0.14 0.07 0.47 -0.01 0.30
## PP.Nat_2R_PBFB 0.40 0.48 0.43 0.63 -0.22 0.55
## PP.Nat_3R_PBFB 0.39 0.50 0.46 0.50 -0.20 0.46
## PP.Nat_1_VB 0.49 0.47 0.49 0.19 -0.39 0.32
## PP.Nat_4R_VB -0.35 -0.22 -0.24 -0.45 0.55 -0.32
## PP.Nat_2R_VB -0.44 -0.26 -0.30 -0.45 0.66 -0.37
## PP.Nat_3R_VB -0.54 -0.40 -0.44 -0.45 0.64 -0.40
## PP.BehavInt1_GFFB 0.25 0.24 0.20 0.43 -0.54 0.26
## PP.BehavInt2_GFFB 0.22 0.23 0.18 0.43 -0.47 0.25
## PP.BehavInt3_GFFB 0.27 0.24 0.20 0.44 -0.57 0.28
## PP.BehavInt4_GFFB 0.27 0.28 0.23 0.47 -0.50 0.30
## PP.BehavInt1_GFPRB 0.32 0.23 0.24 -0.11 -0.52 0.03
## PP.BehavInt2_GFPRB 0.33 0.22 0.24 -0.08 -0.57 0.06
## PP.BehavInt3_GFPRB 0.34 0.24 0.27 -0.08 -0.55 0.06
## PP.BehavInt4_GFPRB 0.34 0.26 0.27 -0.06 -0.54 0.08
## PP.BehavInt1_CBB 0.44 0.25 0.29 0.07 -0.84 0.08
## PP.BehavInt2_CBB 0.45 0.25 0.29 0.11 -0.86 0.10
## PP.BehavInt3_CBB 0.44 0.25 0.28 0.08 -0.85 0.09
## PP.BehavInt4_CBB 0.44 0.24 0.28 0.07 -0.84 0.08
## PP.BehavInt1_PBPB 0.32 0.23 0.24 -0.11 -0.52 0.03
## PP.BehavInt2_PBPB 0.33 0.22 0.24 -0.08 -0.57 0.06
## PP.BehavInt3_PBPB 0.34 0.24 0.27 -0.08 -0.55 0.06
## PP.BehavInt4_PBPB 0.34 0.26 0.27 -0.06 -0.54 0.08
## PP.BehavInt1_PBFB 0.42 0.30 0.34 -0.01 -0.68 0.11
## PP.BehavInt2_PBFB 0.38 0.25 0.28 -0.02 -0.73 0.10
## PP.BehavInt3_PBFB 0.43 0.31 0.34 0.01 -0.70 0.13
## PP.BehavInt4_PBFB 0.39 0.27 0.30 -0.03 -0.71 0.09
## PP.BehavInt1_VB 0.46 0.43 0.46 0.07 -0.43 0.24
## PP.BehavInt2_VB 0.44 0.37 0.41 0.08 -0.48 0.24
## PP.BehavInt3_VB 0.46 0.45 0.46 0.08 -0.41 0.25
## PP.BehavInt4_VB 0.46 0.42 0.45 0.07 -0.43 0.23
## PP.CCB_48 0.57 0.66 0.70 0.25 -0.11 0.38
## PP.CCB_49 0.60 0.68 0.72 0.28 -0.14 0.41
## PP.CCB_50 0.62 0.66 0.72 0.27 -0.19 0.41
## PP.CCB_51 0.65 0.68 0.72 0.27 -0.32 0.40
## PP.CNS_1 1.00 0.87 0.88 0.62 -0.40 0.67
## PP.CNS_2 0.87 1.00 0.91 0.64 -0.23 0.68
## PP.CNS_3 0.88 0.91 1.00 0.59 -0.25 0.63
## PP.ATNS_1 0.62 0.64 0.59 1.00 -0.24 0.82
## PP.ATNS_2R -0.40 -0.23 -0.25 -0.24 1.00 -0.19
## PP.ATNS_3 0.67 0.68 0.63 0.82 -0.19 1.00
## PP.ATNS_4 0.71 0.76 0.73 0.73 -0.17 0.86
## PP.ATNS_5 0.61 0.67 0.62 0.82 -0.09 0.88
## PP.Ind_3 0.58 0.51 0.49 0.57 -0.47 0.57
## PP.Ind_4 0.62 0.67 0.64 0.63 -0.13 0.61
## PP.Ind_7 0.61 0.60 0.57 0.60 -0.48 0.60
## PP.Ind_8 0.58 0.66 0.61 0.60 -0.20 0.59
## PP.Ind_1 0.63 0.72 0.73 0.55 0.03 0.56
## PP.Ind_2 0.62 0.69 0.69 0.55 0.02 0.57
## PP.Ind_5 0.70 0.76 0.75 0.56 -0.12 0.59
## PP.Ind_6 0.59 0.67 0.65 0.60 -0.03 0.59
## PP.ATNS_4 PP.ATNS_5 PP.Ind_3 PP.Ind_4 PP.Ind_7 PP.Ind_8
## PP.Nat_1_GFFB 0.15 0.23 0.45 0.39 0.44 0.43
## PP.Nat_4R_GFFB -0.34 -0.22 -0.44 -0.10 -0.44 -0.15
## PP.Nat_2R_GFFB -0.40 -0.25 -0.40 -0.16 -0.41 -0.21
## PP.Nat_3R_GFFB -0.36 -0.26 -0.58 -0.25 -0.59 -0.32
## PP.Nat_1_GFPRB 0.17 0.23 0.15 0.46 0.17 0.49
## PP.Nat_4R_GFPRB -0.36 -0.27 -0.56 -0.18 -0.55 -0.21
## PP.Nat_2R_GFPRB -0.30 -0.18 -0.49 -0.14 -0.51 -0.16
## PP.Nat_3R_GFPRB -0.28 -0.12 -0.51 -0.14 -0.51 -0.19
## PP.Nat_1_CBB 0.16 0.05 0.48 0.11 0.45 0.18
## PP.Nat_4R_CBB -0.59 -0.68 -0.35 -0.59 -0.44 -0.62
## PP.Nat_2R_CBB -0.61 -0.64 -0.31 -0.59 -0.40 -0.61
## PP.Nat_3R_CBB -0.54 -0.53 -0.26 -0.51 -0.35 -0.55
## PP.Nat_1_PBPB 0.25 0.00 0.34 0.04 0.36 0.15
## PP.Nat_4R_PBPB -0.31 -0.46 -0.33 -0.42 -0.39 -0.40
## PP.Nat_2R_PBPB -0.41 -0.52 -0.42 -0.57 -0.49 -0.54
## PP.Nat_3R_PBPB -0.44 -0.40 -0.34 -0.46 -0.41 -0.49
## PP.Nat_1_PBFB 0.26 0.04 0.34 0.04 0.38 0.12
## PP.Nat_4R_PBFB 0.22 0.43 0.17 0.31 0.16 0.25
## PP.Nat_2R_PBFB 0.50 0.62 0.43 0.60 0.45 0.54
## PP.Nat_3R_PBFB 0.49 0.53 0.33 0.56 0.37 0.51
## PP.Nat_1_VB 0.45 0.23 0.29 0.22 0.37 0.31
## PP.Nat_4R_VB -0.21 -0.30 -0.42 -0.28 -0.40 -0.26
## PP.Nat_2R_VB -0.29 -0.29 -0.56 -0.37 -0.52 -0.34
## PP.Nat_3R_VB -0.38 -0.35 -0.60 -0.43 -0.58 -0.40
## PP.BehavInt1_GFFB 0.19 0.26 0.44 0.40 0.49 0.47
## PP.BehavInt2_GFFB 0.18 0.26 0.39 0.39 0.46 0.46
## PP.BehavInt3_GFFB 0.20 0.26 0.45 0.37 0.49 0.44
## PP.BehavInt4_GFFB 0.22 0.30 0.44 0.41 0.49 0.48
## PP.BehavInt1_GFPRB 0.19 -0.07 0.19 -0.04 0.22 0.08
## PP.BehavInt2_GFPRB 0.19 -0.07 0.22 -0.06 0.23 0.04
## PP.BehavInt3_GFPRB 0.21 -0.04 0.22 -0.02 0.25 0.09
## PP.BehavInt4_GFPRB 0.23 -0.02 0.22 0.00 0.25 0.11
## PP.BehavInt1_CBB 0.13 -0.05 0.36 0.02 0.36 0.12
## PP.BehavInt2_CBB 0.13 -0.03 0.40 0.05 0.38 0.14
## PP.BehavInt3_CBB 0.14 -0.03 0.38 0.02 0.38 0.12
## PP.BehavInt4_CBB 0.13 -0.05 0.37 0.02 0.36 0.11
## PP.BehavInt1_PBPB 0.19 -0.07 0.19 -0.04 0.22 0.08
## PP.BehavInt2_PBPB 0.19 -0.07 0.22 -0.06 0.23 0.04
## PP.BehavInt3_PBPB 0.21 -0.04 0.22 -0.02 0.25 0.09
## PP.BehavInt4_PBPB 0.23 -0.02 0.22 0.00 0.25 0.11
## PP.BehavInt1_PBFB 0.23 -0.01 0.25 0.00 0.31 0.09
## PP.BehavInt2_PBFB 0.19 -0.04 0.29 -0.02 0.33 0.07
## PP.BehavInt3_PBFB 0.25 0.01 0.26 0.02 0.33 0.10
## PP.BehavInt4_PBFB 0.21 -0.04 0.25 -0.01 0.31 0.07
## PP.BehavInt1_VB 0.39 0.16 0.31 0.21 0.39 0.28
## PP.BehavInt2_VB 0.36 0.14 0.33 0.17 0.37 0.23
## PP.BehavInt3_VB 0.40 0.16 0.28 0.21 0.37 0.27
## PP.BehavInt4_VB 0.38 0.14 0.31 0.20 0.37 0.26
## PP.CCB_48 0.57 0.41 0.16 0.35 0.29 0.35
## PP.CCB_49 0.58 0.44 0.17 0.36 0.31 0.37
## PP.CCB_50 0.59 0.42 0.21 0.35 0.32 0.36
## PP.CCB_51 0.56 0.40 0.26 0.34 0.37 0.37
## PP.CNS_1 0.71 0.61 0.58 0.62 0.61 0.58
## PP.CNS_2 0.76 0.67 0.51 0.67 0.60 0.66
## PP.CNS_3 0.73 0.62 0.49 0.64 0.57 0.61
## PP.ATNS_1 0.73 0.82 0.57 0.63 0.60 0.60
## PP.ATNS_2R -0.17 -0.09 -0.47 -0.13 -0.48 -0.20
## PP.ATNS_3 0.86 0.88 0.57 0.61 0.60 0.59
## PP.ATNS_4 1.00 0.83 0.46 0.56 0.55 0.55
## PP.ATNS_5 0.83 1.00 0.50 0.63 0.57 0.58
## PP.Ind_3 0.46 0.50 1.00 0.72 0.89 0.70
## PP.Ind_4 0.56 0.63 0.72 1.00 0.73 0.87
## PP.Ind_7 0.55 0.57 0.89 0.73 1.00 0.73
## PP.Ind_8 0.55 0.58 0.70 0.87 0.73 1.00
## PP.Ind_1 0.59 0.59 0.45 0.77 0.54 0.74
## PP.Ind_2 0.57 0.58 0.42 0.70 0.51 0.69
## PP.Ind_5 0.63 0.59 0.53 0.74 0.61 0.76
## PP.Ind_6 0.55 0.60 0.55 0.78 0.62 0.78
## PP.Ind_1 PP.Ind_2 PP.Ind_5 PP.Ind_6
## PP.Nat_1_GFFB 0.20 0.21 0.24 0.27
## PP.Nat_4R_GFFB -0.05 -0.08 -0.22 -0.09
## PP.Nat_2R_GFFB -0.16 -0.17 -0.34 -0.16
## PP.Nat_3R_GFFB -0.14 -0.15 -0.30 -0.19
## PP.Nat_1_GFPRB 0.46 0.43 0.39 0.45
## PP.Nat_4R_GFPRB -0.06 -0.10 -0.20 -0.13
## PP.Nat_2R_GFPRB -0.03 -0.07 -0.17 -0.09
## PP.Nat_3R_GFPRB -0.05 -0.08 -0.22 -0.08
## PP.Nat_1_CBB -0.02 -0.01 0.13 0.05
## PP.Nat_4R_CBB -0.61 -0.59 -0.60 -0.55
## PP.Nat_2R_CBB -0.65 -0.60 -0.67 -0.57
## PP.Nat_3R_CBB -0.63 -0.56 -0.65 -0.48
## PP.Nat_1_PBPB -0.03 -0.04 0.16 -0.03
## PP.Nat_4R_PBPB -0.38 -0.44 -0.36 -0.41
## PP.Nat_2R_PBPB -0.50 -0.49 -0.49 -0.52
## PP.Nat_3R_PBPB -0.50 -0.44 -0.54 -0.40
## PP.Nat_1_PBFB -0.02 -0.01 0.15 -0.02
## PP.Nat_4R_PBFB 0.29 0.29 0.21 0.30
## PP.Nat_2R_PBFB 0.55 0.51 0.54 0.53
## PP.Nat_3R_PBFB 0.54 0.50 0.54 0.47
## PP.Nat_1_VB 0.28 0.25 0.41 0.20
## PP.Nat_4R_VB -0.17 -0.21 -0.19 -0.26
## PP.Nat_2R_VB -0.18 -0.19 -0.26 -0.27
## PP.Nat_3R_VB -0.26 -0.23 -0.35 -0.30
## PP.BehavInt1_GFFB 0.23 0.23 0.27 0.31
## PP.BehavInt2_GFFB 0.25 0.25 0.28 0.32
## PP.BehavInt3_GFFB 0.19 0.20 0.25 0.29
## PP.BehavInt4_GFFB 0.25 0.24 0.28 0.33
## PP.BehavInt1_GFPRB -0.04 -0.08 0.12 -0.10
## PP.BehavInt2_GFPRB -0.09 -0.11 0.09 -0.11
## PP.BehavInt3_GFPRB -0.04 -0.08 0.13 -0.09
## PP.BehavInt4_GFPRB -0.02 -0.06 0.15 -0.07
## PP.BehavInt1_CBB -0.04 -0.03 0.13 -0.02
## PP.BehavInt2_CBB -0.04 -0.03 0.12 -0.01
## PP.BehavInt3_CBB -0.04 -0.03 0.13 -0.02
## PP.BehavInt4_CBB -0.05 -0.04 0.13 -0.02
## PP.BehavInt1_PBPB -0.04 -0.08 0.12 -0.10
## PP.BehavInt2_PBPB -0.09 -0.11 0.09 -0.11
## PP.BehavInt3_PBPB -0.04 -0.08 0.13 -0.09
## PP.BehavInt4_PBPB -0.02 -0.06 0.15 -0.07
## PP.BehavInt1_PBFB -0.03 -0.05 0.13 -0.06
## PP.BehavInt2_PBFB -0.09 -0.10 0.08 -0.10
## PP.BehavInt3_PBFB -0.03 -0.04 0.14 -0.06
## PP.BehavInt4_PBFB -0.06 -0.08 0.11 -0.10
## PP.BehavInt1_VB 0.21 0.16 0.35 0.13
## PP.BehavInt2_VB 0.12 0.08 0.27 0.07
## PP.BehavInt3_VB 0.21 0.16 0.35 0.13
## PP.BehavInt4_VB 0.19 0.14 0.33 0.12
## PP.CCB_48 0.54 0.46 0.57 0.41
## PP.CCB_49 0.55 0.48 0.58 0.42
## PP.CCB_50 0.52 0.45 0.57 0.39
## PP.CCB_51 0.48 0.41 0.54 0.37
## PP.CNS_1 0.63 0.62 0.70 0.59
## PP.CNS_2 0.72 0.69 0.76 0.67
## PP.CNS_3 0.73 0.69 0.75 0.65
## PP.ATNS_1 0.55 0.55 0.56 0.60
## PP.ATNS_2R 0.03 0.02 -0.12 -0.03
## PP.ATNS_3 0.56 0.57 0.59 0.59
## PP.ATNS_4 0.59 0.57 0.63 0.55
## PP.ATNS_5 0.59 0.58 0.59 0.60
## PP.Ind_3 0.45 0.42 0.53 0.55
## PP.Ind_4 0.77 0.70 0.74 0.78
## PP.Ind_7 0.54 0.51 0.61 0.62
## PP.Ind_8 0.74 0.69 0.76 0.78
## PP.Ind_1 1.00 0.90 0.90 0.85
## PP.Ind_2 0.90 1.00 0.87 0.82
## PP.Ind_5 0.90 0.87 1.00 0.81
## PP.Ind_6 0.85 0.82 0.81 1.00
##
## n= 68
##
##
## P
## PP.Nat_1_GFFB PP.Nat_4R_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB
## PP.Nat_1_GFFB 0.8446 0.8908 0.0004
## PP.Nat_4R_GFFB 0.8446 0.0000 0.0000
## PP.Nat_2R_GFFB 0.8908 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0004 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0001 0.0046 0.0721 0.3669
## PP.Nat_4R_GFPRB 0.0250 0.0000 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.0683 0.0000 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0105 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0000 0.0000 0.0000 0.0000
## PP.Nat_4R_CBB 0.0769 0.6710 0.3989 0.5284
## PP.Nat_2R_CBB 0.4948 0.3310 0.0354 0.4028
## PP.Nat_3R_CBB 0.3601 0.1873 0.0076 0.2164
## PP.Nat_1_PBPB 0.7579 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.0000 0.9611 0.8901 0.0632
## PP.Nat_2R_PBPB 0.0000 0.9946 0.7492 0.0200
## PP.Nat_3R_PBPB 0.0000 0.1058 0.0050 0.0007
## PP.Nat_1_PBFB 0.2575 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0000 0.0686 0.0508 0.9713
## PP.Nat_2R_PBFB 0.0000 0.7049 0.2470 0.0305
## PP.Nat_3R_PBFB 0.0000 0.5294 0.0953 0.0130
## PP.Nat_1_VB 0.4088 0.0000 0.0000 0.0000
## PP.Nat_4R_VB 0.0000 0.0209 0.0985 0.0000
## PP.Nat_2R_VB 0.0000 0.0009 0.0054 0.0000
## PP.Nat_3R_VB 0.0000 0.0007 0.0007 0.0000
## PP.BehavInt1_GFFB 0.0000 0.6958 0.9854 0.0002
## PP.BehavInt2_GFFB 0.0000 0.7999 0.6078 0.0039
## PP.BehavInt3_GFFB 0.0000 0.4493 0.7700 0.0000
## PP.BehavInt4_GFFB 0.0000 0.8577 0.8744 0.0007
## PP.BehavInt1_GFPRB 0.4558 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.4866 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.5389 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.5219 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0011 0.0000 0.0000 0.0000
## PP.BehavInt2_CBB 0.0002 0.0000 0.0000 0.0000
## PP.BehavInt3_CBB 0.0006 0.0000 0.0000 0.0000
## PP.BehavInt4_CBB 0.0006 0.0000 0.0000 0.0000
## PP.BehavInt1_PBPB 0.4558 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.4866 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.5389 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.5219 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.9221 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.4798 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.6266 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.5611 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.3418 0.0000 0.0000 0.0000
## PP.BehavInt2_VB 0.2906 0.0000 0.0000 0.0000
## PP.BehavInt3_VB 0.3024 0.0000 0.0000 0.0000
## PP.BehavInt4_VB 0.2989 0.0000 0.0000 0.0000
## PP.CCB_48 0.1575 0.0008 0.0000 0.0351
## PP.CCB_49 0.2762 0.0005 0.0000 0.0243
## PP.CCB_50 0.3391 0.0002 0.0000 0.0095
## PP.CCB_51 0.9993 0.0000 0.0000 0.0003
## PP.CNS_1 0.0452 0.0000 0.0000 0.0000
## PP.CNS_2 0.0636 0.0025 0.0000 0.0008
## PP.CNS_3 0.1556 0.0009 0.0000 0.0012
## PP.ATNS_1 0.0004 0.0398 0.0348 0.0021
## PP.ATNS_2R 0.0000 0.0000 0.0000 0.0000
## PP.ATNS_3 0.0531 0.0039 0.0035 0.0015
## PP.ATNS_4 0.2079 0.0040 0.0007 0.0024
## PP.ATNS_5 0.0595 0.0709 0.0383 0.0317
## PP.Ind_3 0.0001 0.0002 0.0008 0.0000
## PP.Ind_4 0.0010 0.4363 0.1926 0.0389
## PP.Ind_7 0.0002 0.0001 0.0005 0.0000
## PP.Ind_8 0.0003 0.2254 0.0883 0.0087
## PP.Ind_1 0.1021 0.6618 0.1830 0.2610
## PP.Ind_2 0.0852 0.5195 0.1549 0.2347
## PP.Ind_5 0.0512 0.0719 0.0051 0.0122
## PP.Ind_6 0.0261 0.4567 0.2028 0.1224
## PP.Nat_1_GFPRB PP.Nat_4R_GFPRB PP.Nat_2R_GFPRB
## PP.Nat_1_GFFB 0.0001 0.0250 0.0683
## PP.Nat_4R_GFFB 0.0046 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0721 0.0000 0.0000
## PP.Nat_3R_GFFB 0.3669 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0001 0.0003
## PP.Nat_4R_GFPRB 0.0001 0.0000
## PP.Nat_2R_GFPRB 0.0003 0.0000
## PP.Nat_3R_GFPRB 0.0114 0.0000 0.0000
## PP.Nat_1_CBB 0.0343 0.0000 0.0000
## PP.Nat_4R_CBB 0.0001 0.9530 0.6969
## PP.Nat_2R_CBB 0.0000 0.7173 0.5609
## PP.Nat_3R_CBB 0.0002 0.9557 0.8117
## PP.Nat_1_PBPB 0.0163 0.0000 0.0000
## PP.Nat_4R_PBPB 0.0091 0.1055 0.6681
## PP.Nat_2R_PBPB 0.0019 0.1197 0.5770
## PP.Nat_3R_PBPB 0.0000 0.1549 0.4847
## PP.Nat_1_PBFB 0.0042 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0000 0.3579 0.0857
## PP.Nat_2R_PBFB 0.0000 0.2977 0.9140
## PP.Nat_3R_PBFB 0.0000 0.4908 0.8756
## PP.Nat_1_VB 0.4852 0.0000 0.0000
## PP.Nat_4R_VB 0.5047 0.0000 0.0006
## PP.Nat_2R_VB 0.9601 0.0000 0.0000
## PP.Nat_3R_VB 0.7210 0.0000 0.0000
## PP.BehavInt1_GFFB 0.0017 0.0142 0.0546
## PP.BehavInt2_GFFB 0.0002 0.1079 0.2747
## PP.BehavInt3_GFFB 0.0053 0.0053 0.0229
## PP.BehavInt4_GFFB 0.0017 0.0204 0.0740
## PP.BehavInt1_GFPRB 0.1092 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0207 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0642 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0973 0.0000 0.0000
## PP.BehavInt1_CBB 0.0449 0.0000 0.0000
## PP.BehavInt2_CBB 0.0486 0.0000 0.0000
## PP.BehavInt3_CBB 0.0381 0.0000 0.0000
## PP.BehavInt4_CBB 0.0447 0.0000 0.0000
## PP.BehavInt1_PBPB 0.1092 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0207 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0642 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0973 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0107 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0084 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0267 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0291 0.0000 0.0000
## PP.BehavInt1_VB 0.4447 0.0000 0.0000
## PP.BehavInt2_VB 0.1199 0.0000 0.0000
## PP.BehavInt3_VB 0.6061 0.0003 0.0000
## PP.BehavInt4_VB 0.4630 0.0000 0.0000
## PP.CCB_48 0.7977 0.0660 0.0329
## PP.CCB_49 0.6970 0.0458 0.0308
## PP.CCB_50 0.9745 0.0159 0.0085
## PP.CCB_51 0.9558 0.0009 0.0010
## PP.CNS_1 0.5228 0.0000 0.0000
## PP.CNS_2 0.0208 0.0079 0.0132
## PP.CNS_3 0.2428 0.0010 0.0012
## PP.ATNS_1 0.0316 0.0059 0.0250
## PP.ATNS_2R 0.1120 0.0000 0.0000
## PP.ATNS_3 0.2982 0.0004 0.0049
## PP.ATNS_4 0.1755 0.0026 0.0118
## PP.ATNS_5 0.0546 0.0261 0.1322
## PP.Ind_3 0.2126 0.0000 0.0000
## PP.Ind_4 0.0000 0.1399 0.2646
## PP.Ind_7 0.1717 0.0000 0.0000
## PP.Ind_8 0.0000 0.0829 0.1874
## PP.Ind_1 0.0000 0.6318 0.7991
## PP.Ind_2 0.0003 0.3962 0.5704
## PP.Ind_5 0.0009 0.0967 0.1752
## PP.Ind_6 0.0001 0.2829 0.4690
## PP.Nat_3R_GFPRB PP.Nat_1_CBB PP.Nat_4R_CBB PP.Nat_2R_CBB
## PP.Nat_1_GFFB 0.0105 0.0000 0.0769 0.4948
## PP.Nat_4R_GFFB 0.0000 0.0000 0.6710 0.3310
## PP.Nat_2R_GFFB 0.0000 0.0000 0.3989 0.0354
## PP.Nat_3R_GFFB 0.0000 0.0000 0.5284 0.4028
## PP.Nat_1_GFPRB 0.0114 0.0343 0.0001 0.0000
## PP.Nat_4R_GFPRB 0.0000 0.0000 0.9530 0.7173
## PP.Nat_2R_GFPRB 0.0000 0.0000 0.6969 0.5609
## PP.Nat_3R_GFPRB 0.0000 0.4993 0.5916
## PP.Nat_1_CBB 0.0000 0.0861 0.1258
## PP.Nat_4R_CBB 0.4993 0.0861 0.0000
## PP.Nat_2R_CBB 0.5916 0.1258 0.0000
## PP.Nat_3R_CBB 0.7788 0.5531 0.0000 0.0000
## PP.Nat_1_PBPB 0.0000 0.0000 0.4981 0.5982
## PP.Nat_4R_PBPB 0.6308 0.0636 0.0015 0.0687
## PP.Nat_2R_PBPB 0.3508 0.0219 0.0000 0.0003
## PP.Nat_3R_PBPB 0.0348 0.0029 0.0067 0.0003
## PP.Nat_1_PBFB 0.0000 0.0000 0.2264 0.7796
## PP.Nat_4R_PBFB 0.1575 0.1825 0.0000 0.0011
## PP.Nat_2R_PBFB 0.5092 0.4071 0.0000 0.0000
## PP.Nat_3R_PBFB 0.3336 0.3766 0.0000 0.0000
## PP.Nat_1_VB 0.0000 0.0020 0.0426 0.0006
## PP.Nat_4R_VB 0.0001 0.0000 0.4759 0.5536
## PP.Nat_2R_VB 0.0000 0.0000 0.6403 0.7751
## PP.Nat_3R_VB 0.0000 0.0000 0.5774 0.8438
## PP.BehavInt1_GFFB 0.0062 0.0000 0.0097 0.1949
## PP.BehavInt2_GFFB 0.0424 0.0005 0.0032 0.0957
## PP.BehavInt3_GFFB 0.0023 0.0000 0.0145 0.2588
## PP.BehavInt4_GFFB 0.0181 0.0000 0.0050 0.1675
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.5091 0.3064
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.3501 0.5338
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.5284 0.3225
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.8186 0.1499
## PP.BehavInt1_CBB 0.0000 0.0000 0.0568 0.2309
## PP.BehavInt2_CBB 0.0000 0.0000 0.0637 0.1704
## PP.BehavInt3_CBB 0.0000 0.0000 0.0691 0.2089
## PP.BehavInt4_CBB 0.0000 0.0000 0.0489 0.1902
## PP.BehavInt1_PBPB 0.0000 0.0000 0.5091 0.3064
## PP.BehavInt2_PBPB 0.0000 0.0000 0.3501 0.5338
## PP.BehavInt3_PBPB 0.0000 0.0000 0.5284 0.3225
## PP.BehavInt4_PBPB 0.0000 0.0000 0.8186 0.1499
## PP.BehavInt1_PBFB 0.0000 0.0000 0.4389 0.6407
## PP.BehavInt2_PBFB 0.0000 0.0000 0.2491 0.9360
## PP.BehavInt3_PBFB 0.0000 0.0000 0.5382 0.5527
## PP.BehavInt4_PBFB 0.0000 0.0000 0.3441 0.8124
## PP.BehavInt1_VB 0.0000 0.0012 0.1152 0.0010
## PP.BehavInt2_VB 0.0000 0.0003 0.2370 0.0097
## PP.BehavInt3_VB 0.0000 0.0027 0.0723 0.0003
## PP.BehavInt4_VB 0.0000 0.0016 0.1051 0.0011
## PP.CCB_48 0.0416 0.4049 0.0012 0.0000
## PP.CCB_49 0.0269 0.2777 0.0009 0.0000
## PP.CCB_50 0.0107 0.1500 0.0033 0.0000
## PP.CCB_51 0.0004 0.0051 0.0054 0.0000
## PP.CNS_1 0.0000 0.0000 0.0025 0.0002
## PP.CNS_2 0.0074 0.0299 0.0000 0.0000
## PP.CNS_3 0.0024 0.0133 0.0000 0.0000
## PP.ATNS_1 0.0772 0.0938 0.0000 0.0000
## PP.ATNS_2R 0.0000 0.0000 0.7531 0.6518
## PP.ATNS_3 0.0223 0.1135 0.0000 0.0000
## PP.ATNS_4 0.0218 0.1937 0.0000 0.0000
## PP.ATNS_5 0.3213 0.6879 0.0000 0.0000
## PP.Ind_3 0.0000 0.0000 0.0034 0.0093
## PP.Ind_4 0.2684 0.3737 0.0000 0.0000
## PP.Ind_7 0.0000 0.0001 0.0002 0.0007
## PP.Ind_8 0.1217 0.1332 0.0000 0.0000
## PP.Ind_1 0.6965 0.8438 0.0000 0.0000
## PP.Ind_2 0.5355 0.9307 0.0000 0.0000
## PP.Ind_5 0.0752 0.2848 0.0000 0.0000
## PP.Ind_6 0.5155 0.6812 0.0000 0.0000
## PP.Nat_3R_CBB PP.Nat_1_PBPB PP.Nat_4R_PBPB PP.Nat_2R_PBPB
## PP.Nat_1_GFFB 0.3601 0.7579 0.0000 0.0000
## PP.Nat_4R_GFFB 0.1873 0.0000 0.9611 0.9946
## PP.Nat_2R_GFFB 0.0076 0.0000 0.8901 0.7492
## PP.Nat_3R_GFFB 0.2164 0.0000 0.0632 0.0200
## PP.Nat_1_GFPRB 0.0002 0.0163 0.0091 0.0019
## PP.Nat_4R_GFPRB 0.9557 0.0000 0.1055 0.1197
## PP.Nat_2R_GFPRB 0.8117 0.0000 0.6681 0.5770
## PP.Nat_3R_GFPRB 0.7788 0.0000 0.6308 0.3508
## PP.Nat_1_CBB 0.5531 0.0000 0.0636 0.0219
## PP.Nat_4R_CBB 0.0000 0.4981 0.0015 0.0000
## PP.Nat_2R_CBB 0.0000 0.5982 0.0687 0.0003
## PP.Nat_3R_CBB 0.1734 0.1929 0.0007
## PP.Nat_1_PBPB 0.1734 0.0229 0.1988
## PP.Nat_4R_PBPB 0.1929 0.0229 0.0000
## PP.Nat_2R_PBPB 0.0007 0.1988 0.0000
## PP.Nat_3R_PBPB 0.0000 0.1029 0.0000 0.0000
## PP.Nat_1_PBFB 0.6233 0.0000 0.5607 0.8555
## PP.Nat_4R_PBFB 0.0086 0.0000 0.0000 0.0000
## PP.Nat_2R_PBFB 0.0000 0.4890 0.0000 0.0000
## PP.Nat_3R_PBFB 0.0000 0.8514 0.0000 0.0000
## PP.Nat_1_VB 0.0000 0.0000 0.0414 0.5126
## PP.Nat_4R_VB 0.6005 0.9911 0.0000 0.0000
## PP.Nat_2R_VB 0.8863 0.0246 0.0000 0.0000
## PP.Nat_3R_VB 0.7252 0.0013 0.0000 0.0000
## PP.BehavInt1_GFFB 0.1370 0.7074 0.0000 0.0000
## PP.BehavInt2_GFFB 0.0553 0.8096 0.0000 0.0000
## PP.BehavInt3_GFFB 0.1818 0.4798 0.0000 0.0000
## PP.BehavInt4_GFFB 0.1272 0.9063 0.0000 0.0000
## PP.BehavInt1_GFPRB 0.0378 0.0000 0.0068 0.0788
## PP.BehavInt2_GFPRB 0.1173 0.0000 0.0110 0.0945
## PP.BehavInt3_GFPRB 0.0549 0.0000 0.0154 0.1231
## PP.BehavInt4_GFPRB 0.0186 0.0000 0.0193 0.1761
## PP.BehavInt1_CBB 0.9713 0.0000 0.2162 0.1080
## PP.BehavInt2_CBB 0.8531 0.0000 0.1551 0.0624
## PP.BehavInt3_CBB 0.9601 0.0000 0.1858 0.0979
## PP.BehavInt4_CBB 0.9044 0.0000 0.2256 0.1088
## PP.BehavInt1_PBPB 0.0378 0.0000 0.0068 0.0788
## PP.BehavInt2_PBPB 0.1173 0.0000 0.0110 0.0945
## PP.BehavInt3_PBPB 0.0549 0.0000 0.0154 0.1231
## PP.BehavInt4_PBPB 0.0186 0.0000 0.0193 0.1761
## PP.BehavInt1_PBFB 0.1434 0.0000 0.1972 0.5137
## PP.BehavInt2_PBFB 0.4022 0.0000 0.2147 0.5560
## PP.BehavInt3_PBFB 0.1239 0.0000 0.3248 0.7166
## PP.BehavInt4_PBFB 0.2259 0.0000 0.2377 0.5291
## PP.BehavInt1_VB 0.0000 0.0000 0.0222 0.3927
## PP.BehavInt2_VB 0.0015 0.0000 0.0043 0.1284
## PP.BehavInt3_VB 0.0000 0.0000 0.0239 0.3608
## PP.BehavInt4_VB 0.0001 0.0000 0.0188 0.2822
## PP.CCB_48 0.0000 0.0013 0.9701 0.3137
## PP.CCB_49 0.0000 0.0014 0.7033 0.1682
## PP.CCB_50 0.0000 0.0002 0.8303 0.2353
## PP.CCB_51 0.0000 0.0000 0.5316 0.1070
## PP.CNS_1 0.0001 0.0004 0.0141 0.0005
## PP.CNS_2 0.0000 0.0181 0.0052 0.0001
## PP.CNS_3 0.0000 0.0121 0.0119 0.0005
## PP.ATNS_1 0.0000 0.8487 0.0000 0.0000
## PP.ATNS_2R 0.7356 0.0000 0.0227 0.0068
## PP.ATNS_3 0.0000 0.2018 0.0002 0.0000
## PP.ATNS_4 0.0000 0.0416 0.0095 0.0005
## PP.ATNS_5 0.0000 0.9729 0.0000 0.0000
## PP.Ind_3 0.0292 0.0043 0.0054 0.0003
## PP.Ind_4 0.0000 0.7243 0.0004 0.0000
## PP.Ind_7 0.0034 0.0029 0.0010 0.0000
## PP.Ind_8 0.0000 0.2272 0.0006 0.0000
## PP.Ind_1 0.0000 0.8164 0.0016 0.0000
## PP.Ind_2 0.0000 0.7555 0.0002 0.0000
## PP.Ind_5 0.0000 0.1826 0.0023 0.0000
## PP.Ind_6 0.0000 0.8031 0.0005 0.0000
## PP.Nat_3R_PBPB PP.Nat_1_PBFB PP.Nat_4R_PBFB PP.Nat_2R_PBFB
## PP.Nat_1_GFFB 0.0000 0.2575 0.0000 0.0000
## PP.Nat_4R_GFFB 0.1058 0.0000 0.0686 0.7049
## PP.Nat_2R_GFFB 0.0050 0.0000 0.0508 0.2470
## PP.Nat_3R_GFFB 0.0007 0.0000 0.9713 0.0305
## PP.Nat_1_GFPRB 0.0000 0.0042 0.0000 0.0000
## PP.Nat_4R_GFPRB 0.1549 0.0000 0.3579 0.2977
## PP.Nat_2R_GFPRB 0.4847 0.0000 0.0857 0.9140
## PP.Nat_3R_GFPRB 0.0348 0.0000 0.1575 0.5092
## PP.Nat_1_CBB 0.0029 0.0000 0.1825 0.4071
## PP.Nat_4R_CBB 0.0067 0.2264 0.0000 0.0000
## PP.Nat_2R_CBB 0.0003 0.7796 0.0011 0.0000
## PP.Nat_3R_CBB 0.0000 0.6233 0.0086 0.0000
## PP.Nat_1_PBPB 0.1029 0.0000 0.0000 0.4890
## PP.Nat_4R_PBPB 0.0000 0.5607 0.0000 0.0000
## PP.Nat_2R_PBPB 0.0000 0.8555 0.0000 0.0000
## PP.Nat_3R_PBPB 0.0245 0.0005 0.0000
## PP.Nat_1_PBFB 0.0245 0.0002 0.4891
## PP.Nat_4R_PBFB 0.0005 0.0002 0.0000
## PP.Nat_2R_PBFB 0.0000 0.4891 0.0000
## PP.Nat_3R_PBFB 0.0000 0.8390 0.0000 0.0000
## PP.Nat_1_VB 0.0349 0.0000 0.0008 0.7995
## PP.Nat_4R_VB 0.0000 0.1053 0.0000 0.0000
## PP.Nat_2R_VB 0.0000 0.0010 0.0040 0.0000
## PP.Nat_3R_VB 0.0000 0.0000 0.0148 0.0000
## PP.BehavInt1_GFFB 0.0000 0.2098 0.0000 0.0000
## PP.BehavInt2_GFFB 0.0000 0.5594 0.0000 0.0000
## PP.BehavInt3_GFFB 0.0000 0.1174 0.0000 0.0000
## PP.BehavInt4_GFFB 0.0000 0.3261 0.0000 0.0000
## PP.BehavInt1_GFPRB 0.0396 0.0000 0.0000 0.3069
## PP.BehavInt2_GFPRB 0.0698 0.0000 0.0000 0.3322
## PP.BehavInt3_GFPRB 0.0233 0.0000 0.0000 0.4639
## PP.BehavInt4_GFPRB 0.0184 0.0000 0.0001 0.6058
## PP.BehavInt1_CBB 0.0002 0.0000 0.0536 0.6444
## PP.BehavInt2_CBB 0.0003 0.0000 0.0869 0.5397
## PP.BehavInt3_CBB 0.0002 0.0000 0.0743 0.5727
## PP.BehavInt4_CBB 0.0003 0.0000 0.0569 0.6339
## PP.BehavInt1_PBPB 0.0396 0.0000 0.0000 0.3069
## PP.BehavInt2_PBPB 0.0698 0.0000 0.0000 0.3322
## PP.BehavInt3_PBPB 0.0233 0.0000 0.0000 0.4639
## PP.BehavInt4_PBPB 0.0184 0.0000 0.0001 0.6058
## PP.BehavInt1_PBFB 0.0129 0.0000 0.0002 0.5451
## PP.BehavInt2_PBFB 0.0284 0.0000 0.0003 0.4922
## PP.BehavInt3_PBFB 0.0064 0.0000 0.0005 0.6802
## PP.BehavInt4_PBFB 0.0111 0.0000 0.0003 0.5125
## PP.BehavInt1_VB 0.0166 0.0000 0.0005 0.8003
## PP.BehavInt2_VB 0.2263 0.0000 0.0004 0.7411
## PP.BehavInt3_VB 0.0211 0.0000 0.0009 0.8488
## PP.BehavInt4_VB 0.0286 0.0000 0.0008 0.8307
## PP.CCB_48 0.0000 0.0023 0.5318 0.0141
## PP.CCB_49 0.0000 0.0013 0.6659 0.0085
## PP.CCB_50 0.0000 0.0004 0.6150 0.0067
## PP.CCB_51 0.0000 0.0000 0.4664 0.0076
## PP.CNS_1 0.0000 0.0000 0.8426 0.0007
## PP.CNS_2 0.0000 0.0063 0.2630 0.0000
## PP.CNS_3 0.0000 0.0020 0.5629 0.0003
## PP.ATNS_1 0.0009 0.5788 0.0000 0.0000
## PP.ATNS_2R 0.0010 0.0000 0.9186 0.0673
## PP.ATNS_3 0.0028 0.1152 0.0145 0.0000
## PP.ATNS_4 0.0002 0.0304 0.0696 0.0000
## PP.ATNS_5 0.0007 0.7314 0.0003 0.0000
## PP.Ind_3 0.0051 0.0044 0.1558 0.0002
## PP.Ind_4 0.0000 0.7513 0.0101 0.0000
## PP.Ind_7 0.0005 0.0013 0.1838 0.0001
## PP.Ind_8 0.0000 0.3163 0.0405 0.0000
## PP.Ind_1 0.0000 0.8717 0.0182 0.0000
## PP.Ind_2 0.0002 0.9220 0.0178 0.0000
## PP.Ind_5 0.0000 0.2275 0.0808 0.0000
## PP.Ind_6 0.0007 0.8578 0.0137 0.0000
## PP.Nat_3R_PBFB PP.Nat_1_VB PP.Nat_4R_VB PP.Nat_2R_VB
## PP.Nat_1_GFFB 0.0000 0.4088 0.0000 0.0000
## PP.Nat_4R_GFFB 0.5294 0.0000 0.0209 0.0009
## PP.Nat_2R_GFFB 0.0953 0.0000 0.0985 0.0054
## PP.Nat_3R_GFFB 0.0130 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0000 0.4852 0.5047 0.9601
## PP.Nat_4R_GFPRB 0.4908 0.0000 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.8756 0.0000 0.0006 0.0000
## PP.Nat_3R_GFPRB 0.3336 0.0000 0.0001 0.0000
## PP.Nat_1_CBB 0.3766 0.0020 0.0000 0.0000
## PP.Nat_4R_CBB 0.0000 0.0426 0.4759 0.6403
## PP.Nat_2R_CBB 0.0000 0.0006 0.5536 0.7751
## PP.Nat_3R_CBB 0.0000 0.0000 0.6005 0.8863
## PP.Nat_1_PBPB 0.8514 0.0000 0.9911 0.0246
## PP.Nat_4R_PBPB 0.0000 0.0414 0.0000 0.0000
## PP.Nat_2R_PBPB 0.0000 0.5126 0.0000 0.0000
## PP.Nat_3R_PBPB 0.0000 0.0349 0.0000 0.0000
## PP.Nat_1_PBFB 0.8390 0.0000 0.1053 0.0010
## PP.Nat_4R_PBFB 0.0000 0.0008 0.0000 0.0040
## PP.Nat_2R_PBFB 0.0000 0.7995 0.0000 0.0000
## PP.Nat_3R_PBFB 0.2946 0.0001 0.0002
## PP.Nat_1_VB 0.2946 0.0385 0.8168
## PP.Nat_4R_VB 0.0001 0.0385 0.0000
## PP.Nat_2R_VB 0.0002 0.8168 0.0000
## PP.Nat_3R_VB 0.0000 0.3023 0.0000 0.0000
## PP.BehavInt1_GFFB 0.0000 0.6640 0.0000 0.0000
## PP.BehavInt2_GFFB 0.0000 0.4795 0.0000 0.0000
## PP.BehavInt3_GFFB 0.0001 0.7812 0.0000 0.0000
## PP.BehavInt4_GFFB 0.0000 0.4956 0.0000 0.0000
## PP.BehavInt1_GFPRB 0.7821 0.0000 0.2762 0.4225
## PP.BehavInt2_GFPRB 0.9536 0.0000 0.5107 0.2231
## PP.BehavInt3_GFPRB 0.5689 0.0000 0.5037 0.1925
## PP.BehavInt4_GFPRB 0.4068 0.0000 0.4147 0.2634
## PP.BehavInt1_CBB 0.3463 0.0001 0.0000 0.0000
## PP.BehavInt2_CBB 0.3348 0.0003 0.0000 0.0000
## PP.BehavInt3_CBB 0.3247 0.0002 0.0000 0.0000
## PP.BehavInt4_CBB 0.3518 0.0003 0.0000 0.0000
## PP.BehavInt1_PBPB 0.7821 0.0000 0.2762 0.4225
## PP.BehavInt2_PBPB 0.9536 0.0000 0.5107 0.2231
## PP.BehavInt3_PBPB 0.5689 0.0000 0.5037 0.1925
## PP.BehavInt4_PBPB 0.4068 0.0000 0.4147 0.2634
## PP.BehavInt1_PBFB 0.5976 0.0000 0.5388 0.0248
## PP.BehavInt2_PBFB 0.7570 0.0000 0.3384 0.0077
## PP.BehavInt3_PBFB 0.4411 0.0000 0.4616 0.0173
## PP.BehavInt4_PBFB 0.5755 0.0000 0.4858 0.0196
## PP.BehavInt1_VB 0.1772 0.0000 0.0872 0.8096
## PP.BehavInt2_VB 0.5317 0.0000 0.1168 0.5824
## PP.BehavInt3_VB 0.1873 0.0000 0.0572 0.9854
## PP.BehavInt4_VB 0.2192 0.0000 0.0900 0.7806
## PP.CCB_48 0.0001 0.0000 0.5742 0.9960
## PP.CCB_49 0.0000 0.0000 0.8025 0.8942
## PP.CCB_50 0.0000 0.0000 0.9716 0.4797
## PP.CCB_51 0.0000 0.0000 0.4994 0.1518
## PP.CNS_1 0.0010 0.0000 0.0034 0.0002
## PP.CNS_2 0.0000 0.0000 0.0735 0.0292
## PP.CNS_3 0.0000 0.0000 0.0443 0.0135
## PP.ATNS_1 0.0000 0.1299 0.0001 0.0001
## PP.ATNS_2R 0.1059 0.0010 0.0000 0.0000
## PP.ATNS_3 0.0000 0.0087 0.0075 0.0021
## PP.ATNS_4 0.0000 0.0001 0.0792 0.0179
## PP.ATNS_5 0.0000 0.0641 0.0124 0.0153
## PP.Ind_3 0.0060 0.0158 0.0003 0.0000
## PP.Ind_4 0.0000 0.0674 0.0213 0.0020
## PP.Ind_7 0.0018 0.0017 0.0006 0.0000
## PP.Ind_8 0.0000 0.0091 0.0312 0.0041
## PP.Ind_1 0.0000 0.0215 0.1741 0.1514
## PP.Ind_2 0.0000 0.0432 0.0788 0.1117
## PP.Ind_5 0.0000 0.0005 0.1253 0.0341
## PP.Ind_6 0.0000 0.1109 0.0343 0.0235
## PP.Nat_3R_VB PP.BehavInt1_GFFB PP.BehavInt2_GFFB
## PP.Nat_1_GFFB 0.0000 0.0000 0.0000
## PP.Nat_4R_GFFB 0.0007 0.6958 0.7999
## PP.Nat_2R_GFFB 0.0007 0.9854 0.6078
## PP.Nat_3R_GFFB 0.0000 0.0002 0.0039
## PP.Nat_1_GFPRB 0.7210 0.0017 0.0002
## PP.Nat_4R_GFPRB 0.0000 0.0142 0.1079
## PP.Nat_2R_GFPRB 0.0000 0.0546 0.2747
## PP.Nat_3R_GFPRB 0.0000 0.0062 0.0424
## PP.Nat_1_CBB 0.0000 0.0000 0.0005
## PP.Nat_4R_CBB 0.5774 0.0097 0.0032
## PP.Nat_2R_CBB 0.8438 0.1949 0.0957
## PP.Nat_3R_CBB 0.7252 0.1370 0.0553
## PP.Nat_1_PBPB 0.0013 0.7074 0.8096
## PP.Nat_4R_PBPB 0.0000 0.0000 0.0000
## PP.Nat_2R_PBPB 0.0000 0.0000 0.0000
## PP.Nat_3R_PBPB 0.0000 0.0000 0.0000
## PP.Nat_1_PBFB 0.0000 0.2098 0.5594
## PP.Nat_4R_PBFB 0.0148 0.0000 0.0000
## PP.Nat_2R_PBFB 0.0000 0.0000 0.0000
## PP.Nat_3R_PBFB 0.0000 0.0000 0.0000
## PP.Nat_1_VB 0.3023 0.6640 0.4795
## PP.Nat_4R_VB 0.0000 0.0000 0.0000
## PP.Nat_2R_VB 0.0000 0.0000 0.0000
## PP.Nat_3R_VB 0.0000 0.0000
## PP.BehavInt1_GFFB 0.0000 0.0000
## PP.BehavInt2_GFFB 0.0000 0.0000
## PP.BehavInt3_GFFB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFFB 0.0000 0.0000 0.0000
## PP.BehavInt1_GFPRB 0.0752 0.4678 0.2823
## PP.BehavInt2_GFPRB 0.0350 0.5077 0.2574
## PP.BehavInt3_GFPRB 0.0159 0.6042 0.3434
## PP.BehavInt4_GFPRB 0.0293 0.6208 0.3708
## PP.BehavInt1_CBB 0.0000 0.0010 0.0081
## PP.BehavInt2_CBB 0.0000 0.0002 0.0022
## PP.BehavInt3_CBB 0.0000 0.0006 0.0053
## PP.BehavInt4_CBB 0.0000 0.0006 0.0063
## PP.BehavInt1_PBPB 0.0752 0.4678 0.2823
## PP.BehavInt2_PBPB 0.0350 0.5077 0.2574
## PP.BehavInt3_PBPB 0.0159 0.6042 0.3434
## PP.BehavInt4_PBPB 0.0293 0.6208 0.3708
## PP.BehavInt1_PBFB 0.0032 0.7896 0.7934
## PP.BehavInt2_PBFB 0.0010 0.4489 0.8755
## PP.BehavInt3_PBFB 0.0014 0.5183 0.9012
## PP.BehavInt4_PBFB 0.0018 0.4849 0.8689
## PP.BehavInt1_VB 0.1363 0.4421 0.3103
## PP.BehavInt2_VB 0.1249 0.3915 0.2180
## PP.BehavInt3_VB 0.2100 0.4268 0.3195
## PP.BehavInt4_VB 0.1412 0.3789 0.2492
## PP.CCB_48 0.1082 0.2430 0.2231
## PP.CCB_49 0.0720 0.4182 0.4077
## PP.CCB_50 0.0154 0.3527 0.3066
## PP.CCB_51 0.0015 0.9205 0.9530
## PP.CNS_1 0.0000 0.0397 0.0706
## PP.CNS_2 0.0007 0.0456 0.0642
## PP.CNS_3 0.0002 0.0967 0.1444
## PP.ATNS_1 0.0001 0.0002 0.0003
## PP.ATNS_2R 0.0000 0.0000 0.0000
## PP.ATNS_3 0.0007 0.0290 0.0420
## PP.ATNS_4 0.0014 0.1226 0.1516
## PP.ATNS_5 0.0032 0.0344 0.0306
## PP.Ind_3 0.0000 0.0002 0.0009
## PP.Ind_4 0.0003 0.0007 0.0011
## PP.Ind_7 0.0000 0.0000 0.0000
## PP.Ind_8 0.0007 0.0000 0.0000
## PP.Ind_1 0.0344 0.0594 0.0389
## PP.Ind_2 0.0615 0.0572 0.0365
## PP.Ind_5 0.0039 0.0236 0.0217
## PP.Ind_6 0.0132 0.0090 0.0079
## PP.BehavInt3_GFFB PP.BehavInt4_GFFB PP.BehavInt1_GFPRB
## PP.Nat_1_GFFB 0.0000 0.0000 0.4558
## PP.Nat_4R_GFFB 0.4493 0.8577 0.0000
## PP.Nat_2R_GFFB 0.7700 0.8744 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0007 0.0000
## PP.Nat_1_GFPRB 0.0053 0.0017 0.1092
## PP.Nat_4R_GFPRB 0.0053 0.0204 0.0000
## PP.Nat_2R_GFPRB 0.0229 0.0740 0.0000
## PP.Nat_3R_GFPRB 0.0023 0.0181 0.0000
## PP.Nat_1_CBB 0.0000 0.0000 0.0000
## PP.Nat_4R_CBB 0.0145 0.0050 0.5091
## PP.Nat_2R_CBB 0.2588 0.1675 0.3064
## PP.Nat_3R_CBB 0.1818 0.1272 0.0378
## PP.Nat_1_PBPB 0.4798 0.9063 0.0000
## PP.Nat_4R_PBPB 0.0000 0.0000 0.0068
## PP.Nat_2R_PBPB 0.0000 0.0000 0.0788
## PP.Nat_3R_PBPB 0.0000 0.0000 0.0396
## PP.Nat_1_PBFB 0.1174 0.3261 0.0000
## PP.Nat_4R_PBFB 0.0000 0.0000 0.0000
## PP.Nat_2R_PBFB 0.0000 0.0000 0.3069
## PP.Nat_3R_PBFB 0.0001 0.0000 0.7821
## PP.Nat_1_VB 0.7812 0.4956 0.0000
## PP.Nat_4R_VB 0.0000 0.0000 0.2762
## PP.Nat_2R_VB 0.0000 0.0000 0.4225
## PP.Nat_3R_VB 0.0000 0.0000 0.0752
## PP.BehavInt1_GFFB 0.0000 0.0000 0.4678
## PP.BehavInt2_GFFB 0.0000 0.0000 0.2823
## PP.BehavInt3_GFFB 0.0000 0.6567
## PP.BehavInt4_GFFB 0.0000 0.2929
## PP.BehavInt1_GFPRB 0.6567 0.2929
## PP.BehavInt2_GFPRB 0.7465 0.3110 0.0000
## PP.BehavInt3_GFPRB 0.8299 0.3991 0.0000
## PP.BehavInt4_GFPRB 0.8350 0.4001 0.0000
## PP.BehavInt1_CBB 0.0003 0.0033 0.0000
## PP.BehavInt2_CBB 0.0000 0.0006 0.0000
## PP.BehavInt3_CBB 0.0001 0.0019 0.0000
## PP.BehavInt4_CBB 0.0002 0.0020 0.0000
## PP.BehavInt1_PBPB 0.6567 0.2929 0.0000
## PP.BehavInt2_PBPB 0.7465 0.3110 0.0000
## PP.BehavInt3_PBPB 0.8299 0.3991 0.0000
## PP.BehavInt4_PBPB 0.8350 0.4001 0.0000
## PP.BehavInt1_PBFB 0.5847 0.9681 0.0000
## PP.BehavInt2_PBFB 0.2873 0.6779 0.0000
## PP.BehavInt3_PBFB 0.3584 0.7547 0.0000
## PP.BehavInt4_PBFB 0.3251 0.7337 0.0000
## PP.BehavInt1_VB 0.5511 0.3057 0.0000
## PP.BehavInt2_VB 0.5461 0.2702 0.0000
## PP.BehavInt3_VB 0.5303 0.2965 0.0000
## PP.BehavInt4_VB 0.4883 0.2498 0.0000
## PP.CCB_48 0.2245 0.3019 0.0002
## PP.CCB_49 0.3818 0.4759 0.0002
## PP.CCB_50 0.3601 0.4214 0.0000
## PP.CCB_51 0.8813 0.8424 0.0000
## PP.CNS_1 0.0285 0.0248 0.0083
## PP.CNS_2 0.0501 0.0222 0.0541
## PP.CNS_3 0.1058 0.0558 0.0517
## PP.ATNS_1 0.0002 0.0000 0.3720
## PP.ATNS_2R 0.0000 0.0000 0.0000
## PP.ATNS_3 0.0223 0.0139 0.7787
## PP.ATNS_4 0.1028 0.0654 0.1281
## PP.ATNS_5 0.0347 0.0136 0.5459
## PP.Ind_3 0.0001 0.0002 0.1219
## PP.Ind_4 0.0019 0.0004 0.7716
## PP.Ind_7 0.0000 0.0000 0.0734
## PP.Ind_8 0.0002 0.0000 0.5186
## PP.Ind_1 0.1150 0.0403 0.7170
## PP.Ind_2 0.1088 0.0488 0.5226
## PP.Ind_5 0.0405 0.0194 0.3201
## PP.Ind_6 0.0164 0.0060 0.4200
## PP.BehavInt2_GFPRB PP.BehavInt3_GFPRB PP.BehavInt4_GFPRB
## PP.Nat_1_GFFB 0.4866 0.5389 0.5219
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0207 0.0642 0.0973
## PP.Nat_4R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0000 0.0000 0.0000
## PP.Nat_4R_CBB 0.3501 0.5284 0.8186
## PP.Nat_2R_CBB 0.5338 0.3225 0.1499
## PP.Nat_3R_CBB 0.1173 0.0549 0.0186
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.0110 0.0154 0.0193
## PP.Nat_2R_PBPB 0.0945 0.1231 0.1761
## PP.Nat_3R_PBPB 0.0698 0.0233 0.0184
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0000 0.0000 0.0001
## PP.Nat_2R_PBFB 0.3322 0.4639 0.6058
## PP.Nat_3R_PBFB 0.9536 0.5689 0.4068
## PP.Nat_1_VB 0.0000 0.0000 0.0000
## PP.Nat_4R_VB 0.5107 0.5037 0.4147
## PP.Nat_2R_VB 0.2231 0.1925 0.2634
## PP.Nat_3R_VB 0.0350 0.0159 0.0293
## PP.BehavInt1_GFFB 0.5077 0.6042 0.6208
## PP.BehavInt2_GFFB 0.2574 0.3434 0.3708
## PP.BehavInt3_GFFB 0.7465 0.8299 0.8350
## PP.BehavInt4_GFFB 0.3110 0.3991 0.4001
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.0000 0.0000
## PP.BehavInt2_CBB 0.0000 0.0000 0.0000
## PP.BehavInt3_CBB 0.0000 0.0000 0.0000
## PP.BehavInt4_CBB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.0000 0.0000 0.0000
## PP.BehavInt2_VB 0.0000 0.0000 0.0000
## PP.BehavInt3_VB 0.0000 0.0000 0.0000
## PP.BehavInt4_VB 0.0000 0.0000 0.0000
## PP.CCB_48 0.0007 0.0000 0.0000
## PP.CCB_49 0.0007 0.0000 0.0000
## PP.CCB_50 0.0001 0.0000 0.0000
## PP.CCB_51 0.0000 0.0000 0.0000
## PP.CNS_1 0.0065 0.0047 0.0040
## PP.CNS_2 0.0748 0.0448 0.0337
## PP.CNS_3 0.0521 0.0277 0.0232
## PP.ATNS_1 0.4942 0.5269 0.6322
## PP.ATNS_2R 0.0000 0.0000 0.0000
## PP.ATNS_3 0.6279 0.6312 0.5006
## PP.ATNS_4 0.1261 0.0895 0.0640
## PP.ATNS_5 0.5960 0.7192 0.8689
## PP.Ind_3 0.0712 0.0710 0.0692
## PP.Ind_4 0.6162 0.8857 0.9744
## PP.Ind_7 0.0612 0.0419 0.0382
## PP.Ind_8 0.7217 0.4904 0.3679
## PP.Ind_1 0.4727 0.7401 0.8765
## PP.Ind_2 0.3806 0.5288 0.6327
## PP.Ind_5 0.4729 0.2779 0.2253
## PP.Ind_6 0.3575 0.4722 0.5916
## PP.BehavInt1_CBB PP.BehavInt2_CBB PP.BehavInt3_CBB
## PP.Nat_1_GFFB 0.0011 0.0002 0.0006
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0449 0.0486 0.0381
## PP.Nat_4R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0000 0.0000 0.0000
## PP.Nat_4R_CBB 0.0568 0.0637 0.0691
## PP.Nat_2R_CBB 0.2309 0.1704 0.2089
## PP.Nat_3R_CBB 0.9713 0.8531 0.9601
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.2162 0.1551 0.1858
## PP.Nat_2R_PBPB 0.1080 0.0624 0.0979
## PP.Nat_3R_PBPB 0.0002 0.0003 0.0002
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0536 0.0869 0.0743
## PP.Nat_2R_PBFB 0.6444 0.5397 0.5727
## PP.Nat_3R_PBFB 0.3463 0.3348 0.3247
## PP.Nat_1_VB 0.0001 0.0003 0.0002
## PP.Nat_4R_VB 0.0000 0.0000 0.0000
## PP.Nat_2R_VB 0.0000 0.0000 0.0000
## PP.Nat_3R_VB 0.0000 0.0000 0.0000
## PP.BehavInt1_GFFB 0.0010 0.0002 0.0006
## PP.BehavInt2_GFFB 0.0081 0.0022 0.0053
## PP.BehavInt3_GFFB 0.0003 0.0000 0.0001
## PP.BehavInt4_GFFB 0.0033 0.0006 0.0019
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.0000
## PP.BehavInt2_CBB 0.0000 0.0000
## PP.BehavInt3_CBB 0.0000 0.0000
## PP.BehavInt4_CBB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.0000 0.0000 0.0000
## PP.BehavInt2_VB 0.0000 0.0000 0.0000
## PP.BehavInt3_VB 0.0000 0.0001 0.0000
## PP.BehavInt4_VB 0.0000 0.0000 0.0000
## PP.CCB_48 0.1039 0.1959 0.1100
## PP.CCB_49 0.0636 0.1247 0.0677
## PP.CCB_50 0.0254 0.0543 0.0268
## PP.CCB_51 0.0002 0.0006 0.0002
## PP.CNS_1 0.0002 0.0001 0.0002
## PP.CNS_2 0.0363 0.0414 0.0432
## PP.CNS_3 0.0175 0.0178 0.0205
## PP.ATNS_1 0.5605 0.3939 0.5134
## PP.ATNS_2R 0.0000 0.0000 0.0000
## PP.ATNS_3 0.5279 0.4236 0.4574
## PP.ATNS_4 0.2970 0.3082 0.2699
## PP.ATNS_5 0.6884 0.7899 0.7890
## PP.Ind_3 0.0025 0.0008 0.0016
## PP.Ind_4 0.8824 0.7066 0.8514
## PP.Ind_7 0.0028 0.0013 0.0015
## PP.Ind_8 0.3255 0.2416 0.3309
## PP.Ind_1 0.7604 0.7346 0.7288
## PP.Ind_2 0.7981 0.8079 0.7858
## PP.Ind_5 0.2901 0.3138 0.2844
## PP.Ind_6 0.8666 0.9528 0.8522
## PP.BehavInt4_CBB PP.BehavInt1_PBPB PP.BehavInt2_PBPB
## PP.Nat_1_GFFB 0.0006 0.4558 0.4866
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0447 0.1092 0.0207
## PP.Nat_4R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0000 0.0000 0.0000
## PP.Nat_4R_CBB 0.0489 0.5091 0.3501
## PP.Nat_2R_CBB 0.1902 0.3064 0.5338
## PP.Nat_3R_CBB 0.9044 0.0378 0.1173
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.2256 0.0068 0.0110
## PP.Nat_2R_PBPB 0.1088 0.0788 0.0945
## PP.Nat_3R_PBPB 0.0003 0.0396 0.0698
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0569 0.0000 0.0000
## PP.Nat_2R_PBFB 0.6339 0.3069 0.3322
## PP.Nat_3R_PBFB 0.3518 0.7821 0.9536
## PP.Nat_1_VB 0.0003 0.0000 0.0000
## PP.Nat_4R_VB 0.0000 0.2762 0.5107
## PP.Nat_2R_VB 0.0000 0.4225 0.2231
## PP.Nat_3R_VB 0.0000 0.0752 0.0350
## PP.BehavInt1_GFFB 0.0006 0.4678 0.5077
## PP.BehavInt2_GFFB 0.0063 0.2823 0.2574
## PP.BehavInt3_GFFB 0.0002 0.6567 0.7465
## PP.BehavInt4_GFFB 0.0020 0.2929 0.3110
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.0000 0.0000
## PP.BehavInt2_CBB 0.0000 0.0000 0.0000
## PP.BehavInt3_CBB 0.0000 0.0000 0.0000
## PP.BehavInt4_CBB 0.0000 0.0000
## PP.BehavInt1_PBPB 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.0000 0.0000 0.0000
## PP.BehavInt2_VB 0.0000 0.0000 0.0000
## PP.BehavInt3_VB 0.0000 0.0000 0.0000
## PP.BehavInt4_VB 0.0000 0.0000 0.0000
## PP.CCB_48 0.1212 0.0002 0.0007
## PP.CCB_49 0.0815 0.0002 0.0007
## PP.CCB_50 0.0303 0.0000 0.0001
## PP.CCB_51 0.0003 0.0000 0.0000
## PP.CNS_1 0.0002 0.0083 0.0065
## PP.CNS_2 0.0451 0.0541 0.0748
## PP.CNS_3 0.0203 0.0517 0.0521
## PP.ATNS_1 0.5740 0.3720 0.4942
## PP.ATNS_2R 0.0000 0.0000 0.0000
## PP.ATNS_3 0.5258 0.7787 0.6279
## PP.ATNS_4 0.3061 0.1281 0.1261
## PP.ATNS_5 0.7145 0.5459 0.5960
## PP.Ind_3 0.0021 0.1219 0.0712
## PP.Ind_4 0.8645 0.7716 0.6162
## PP.Ind_7 0.0025 0.0734 0.0612
## PP.Ind_8 0.3651 0.5186 0.7217
## PP.Ind_1 0.7020 0.7170 0.4727
## PP.Ind_2 0.7596 0.5226 0.3806
## PP.Ind_5 0.3060 0.3201 0.4729
## PP.Ind_6 0.8506 0.4200 0.3575
## PP.BehavInt3_PBPB PP.BehavInt4_PBPB PP.BehavInt1_PBFB
## PP.Nat_1_GFFB 0.5389 0.5219 0.9221
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0642 0.0973 0.0107
## PP.Nat_4R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0000 0.0000 0.0000
## PP.Nat_4R_CBB 0.5284 0.8186 0.4389
## PP.Nat_2R_CBB 0.3225 0.1499 0.6407
## PP.Nat_3R_CBB 0.0549 0.0186 0.1434
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.0154 0.0193 0.1972
## PP.Nat_2R_PBPB 0.1231 0.1761 0.5137
## PP.Nat_3R_PBPB 0.0233 0.0184 0.0129
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0000 0.0001 0.0002
## PP.Nat_2R_PBFB 0.4639 0.6058 0.5451
## PP.Nat_3R_PBFB 0.5689 0.4068 0.5976
## PP.Nat_1_VB 0.0000 0.0000 0.0000
## PP.Nat_4R_VB 0.5037 0.4147 0.5388
## PP.Nat_2R_VB 0.1925 0.2634 0.0248
## PP.Nat_3R_VB 0.0159 0.0293 0.0032
## PP.BehavInt1_GFFB 0.6042 0.6208 0.7896
## PP.BehavInt2_GFFB 0.3434 0.3708 0.7934
## PP.BehavInt3_GFFB 0.8299 0.8350 0.5847
## PP.BehavInt4_GFFB 0.3991 0.4001 0.9681
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.0000 0.0000
## PP.BehavInt2_CBB 0.0000 0.0000 0.0000
## PP.BehavInt3_CBB 0.0000 0.0000 0.0000
## PP.BehavInt4_CBB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.0000 0.0000 0.0000
## PP.BehavInt2_VB 0.0000 0.0000 0.0000
## PP.BehavInt3_VB 0.0000 0.0000 0.0000
## PP.BehavInt4_VB 0.0000 0.0000 0.0000
## PP.CCB_48 0.0000 0.0000 0.0001
## PP.CCB_49 0.0000 0.0000 0.0000
## PP.CCB_50 0.0000 0.0000 0.0000
## PP.CCB_51 0.0000 0.0000 0.0000
## PP.CNS_1 0.0047 0.0040 0.0004
## PP.CNS_2 0.0448 0.0337 0.0123
## PP.CNS_3 0.0277 0.0232 0.0050
## PP.ATNS_1 0.5269 0.6322 0.9126
## PP.ATNS_2R 0.0000 0.0000 0.0000
## PP.ATNS_3 0.6312 0.5006 0.3613
## PP.ATNS_4 0.0895 0.0640 0.0564
## PP.ATNS_5 0.7192 0.8689 0.9410
## PP.Ind_3 0.0710 0.0692 0.0376
## PP.Ind_4 0.8857 0.9744 0.9785
## PP.Ind_7 0.0419 0.0382 0.0099
## PP.Ind_8 0.4904 0.3679 0.4878
## PP.Ind_1 0.7401 0.8765 0.8368
## PP.Ind_2 0.5288 0.6327 0.7076
## PP.Ind_5 0.2779 0.2253 0.2813
## PP.Ind_6 0.4722 0.5916 0.6013
## PP.BehavInt2_PBFB PP.BehavInt3_PBFB PP.BehavInt4_PBFB
## PP.Nat_1_GFFB 0.4798 0.6266 0.5611
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0084 0.0267 0.0291
## PP.Nat_4R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0000 0.0000 0.0000
## PP.Nat_4R_CBB 0.2491 0.5382 0.3441
## PP.Nat_2R_CBB 0.9360 0.5527 0.8124
## PP.Nat_3R_CBB 0.4022 0.1239 0.2259
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.2147 0.3248 0.2377
## PP.Nat_2R_PBPB 0.5560 0.7166 0.5291
## PP.Nat_3R_PBPB 0.0284 0.0064 0.0111
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0003 0.0005 0.0003
## PP.Nat_2R_PBFB 0.4922 0.6802 0.5125
## PP.Nat_3R_PBFB 0.7570 0.4411 0.5755
## PP.Nat_1_VB 0.0000 0.0000 0.0000
## PP.Nat_4R_VB 0.3384 0.4616 0.4858
## PP.Nat_2R_VB 0.0077 0.0173 0.0196
## PP.Nat_3R_VB 0.0010 0.0014 0.0018
## PP.BehavInt1_GFFB 0.4489 0.5183 0.4849
## PP.BehavInt2_GFFB 0.8755 0.9012 0.8689
## PP.BehavInt3_GFFB 0.2873 0.3584 0.3251
## PP.BehavInt4_GFFB 0.6779 0.7547 0.7337
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.0000 0.0000
## PP.BehavInt2_CBB 0.0000 0.0000 0.0000
## PP.BehavInt3_CBB 0.0000 0.0000 0.0000
## PP.BehavInt4_CBB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000
## PP.BehavInt1_VB 0.0000 0.0000 0.0000
## PP.BehavInt2_VB 0.0000 0.0000 0.0000
## PP.BehavInt3_VB 0.0000 0.0000 0.0000
## PP.BehavInt4_VB 0.0000 0.0000 0.0000
## PP.CCB_48 0.0021 0.0002 0.0007
## PP.CCB_49 0.0017 0.0001 0.0005
## PP.CCB_50 0.0004 0.0000 0.0001
## PP.CCB_51 0.0000 0.0000 0.0000
## PP.CNS_1 0.0014 0.0003 0.0011
## PP.CNS_2 0.0431 0.0099 0.0264
## PP.CNS_3 0.0188 0.0041 0.0132
## PP.ATNS_1 0.8475 0.9246 0.8386
## PP.ATNS_2R 0.0000 0.0000 0.0000
## PP.ATNS_3 0.4259 0.2782 0.4693
## PP.ATNS_4 0.1141 0.0412 0.0931
## PP.ATNS_5 0.7678 0.9393 0.7664
## PP.Ind_3 0.0167 0.0313 0.0382
## PP.Ind_4 0.8681 0.8692 0.9129
## PP.Ind_7 0.0056 0.0059 0.0107
## PP.Ind_8 0.5845 0.4130 0.5571
## PP.Ind_1 0.4682 0.8318 0.6013
## PP.Ind_2 0.4219 0.7483 0.5272
## PP.Ind_5 0.5113 0.2552 0.3938
## PP.Ind_6 0.4090 0.6262 0.4196
## PP.BehavInt1_VB PP.BehavInt2_VB PP.BehavInt3_VB
## PP.Nat_1_GFFB 0.3418 0.2906 0.3024
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB 0.4447 0.1199 0.6061
## PP.Nat_4R_GFPRB 0.0000 0.0000 0.0003
## PP.Nat_2R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0012 0.0003 0.0027
## PP.Nat_4R_CBB 0.1152 0.2370 0.0723
## PP.Nat_2R_CBB 0.0010 0.0097 0.0003
## PP.Nat_3R_CBB 0.0000 0.0015 0.0000
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.0222 0.0043 0.0239
## PP.Nat_2R_PBPB 0.3927 0.1284 0.3608
## PP.Nat_3R_PBPB 0.0166 0.2263 0.0211
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0005 0.0004 0.0009
## PP.Nat_2R_PBFB 0.8003 0.7411 0.8488
## PP.Nat_3R_PBFB 0.1772 0.5317 0.1873
## PP.Nat_1_VB 0.0000 0.0000 0.0000
## PP.Nat_4R_VB 0.0872 0.1168 0.0572
## PP.Nat_2R_VB 0.8096 0.5824 0.9854
## PP.Nat_3R_VB 0.1363 0.1249 0.2100
## PP.BehavInt1_GFFB 0.4421 0.3915 0.4268
## PP.BehavInt2_GFFB 0.3103 0.2180 0.3195
## PP.BehavInt3_GFFB 0.5511 0.5461 0.5303
## PP.BehavInt4_GFFB 0.3057 0.2702 0.2965
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.0000 0.0000
## PP.BehavInt2_CBB 0.0000 0.0000 0.0001
## PP.BehavInt3_CBB 0.0000 0.0000 0.0000
## PP.BehavInt4_CBB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.0000 0.0000
## PP.BehavInt2_VB 0.0000 0.0000
## PP.BehavInt3_VB 0.0000 0.0000
## PP.BehavInt4_VB 0.0000 0.0000 0.0000
## PP.CCB_48 0.0000 0.0000 0.0000
## PP.CCB_49 0.0000 0.0000 0.0000
## PP.CCB_50 0.0000 0.0000 0.0000
## PP.CCB_51 0.0000 0.0000 0.0000
## PP.CNS_1 0.0000 0.0001 0.0000
## PP.CNS_2 0.0002 0.0017 0.0001
## PP.CNS_3 0.0000 0.0005 0.0000
## PP.ATNS_1 0.5499 0.5164 0.5079
## PP.ATNS_2R 0.0002 0.0000 0.0005
## PP.ATNS_3 0.0455 0.0520 0.0419
## PP.ATNS_4 0.0012 0.0025 0.0008
## PP.ATNS_5 0.2041 0.2513 0.1838
## PP.Ind_3 0.0110 0.0058 0.0203
## PP.Ind_4 0.0834 0.1760 0.0923
## PP.Ind_7 0.0010 0.0018 0.0020
## PP.Ind_8 0.0223 0.0588 0.0274
## PP.Ind_1 0.0871 0.3395 0.0835
## PP.Ind_2 0.1976 0.5038 0.1901
## PP.Ind_5 0.0030 0.0284 0.0032
## PP.Ind_6 0.2923 0.5868 0.3084
## PP.BehavInt4_VB PP.CCB_48 PP.CCB_49 PP.CCB_50 PP.CCB_51
## PP.Nat_1_GFFB 0.2989 0.1575 0.2762 0.3391 0.9993
## PP.Nat_4R_GFFB 0.0000 0.0008 0.0005 0.0002 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0351 0.0243 0.0095 0.0003
## PP.Nat_1_GFPRB 0.4630 0.7977 0.6970 0.9745 0.9558
## PP.Nat_4R_GFPRB 0.0000 0.0660 0.0458 0.0159 0.0009
## PP.Nat_2R_GFPRB 0.0000 0.0329 0.0308 0.0085 0.0010
## PP.Nat_3R_GFPRB 0.0000 0.0416 0.0269 0.0107 0.0004
## PP.Nat_1_CBB 0.0016 0.4049 0.2777 0.1500 0.0051
## PP.Nat_4R_CBB 0.1051 0.0012 0.0009 0.0033 0.0054
## PP.Nat_2R_CBB 0.0011 0.0000 0.0000 0.0000 0.0000
## PP.Nat_3R_CBB 0.0001 0.0000 0.0000 0.0000 0.0000
## PP.Nat_1_PBPB 0.0000 0.0013 0.0014 0.0002 0.0000
## PP.Nat_4R_PBPB 0.0188 0.9701 0.7033 0.8303 0.5316
## PP.Nat_2R_PBPB 0.2822 0.3137 0.1682 0.2353 0.1070
## PP.Nat_3R_PBPB 0.0286 0.0000 0.0000 0.0000 0.0000
## PP.Nat_1_PBFB 0.0000 0.0023 0.0013 0.0004 0.0000
## PP.Nat_4R_PBFB 0.0008 0.5318 0.6659 0.6150 0.4664
## PP.Nat_2R_PBFB 0.8307 0.0141 0.0085 0.0067 0.0076
## PP.Nat_3R_PBFB 0.2192 0.0001 0.0000 0.0000 0.0000
## PP.Nat_1_VB 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.Nat_4R_VB 0.0900 0.5742 0.8025 0.9716 0.4994
## PP.Nat_2R_VB 0.7806 0.9960 0.8942 0.4797 0.1518
## PP.Nat_3R_VB 0.1412 0.1082 0.0720 0.0154 0.0015
## PP.BehavInt1_GFFB 0.3789 0.2430 0.4182 0.3527 0.9205
## PP.BehavInt2_GFFB 0.2492 0.2231 0.4077 0.3066 0.9530
## PP.BehavInt3_GFFB 0.4883 0.2245 0.3818 0.3601 0.8813
## PP.BehavInt4_GFFB 0.2498 0.3019 0.4759 0.4214 0.8424
## PP.BehavInt1_GFPRB 0.0000 0.0002 0.0002 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0007 0.0007 0.0001 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.1039 0.0636 0.0254 0.0002
## PP.BehavInt2_CBB 0.0000 0.1959 0.1247 0.0543 0.0006
## PP.BehavInt3_CBB 0.0000 0.1100 0.0677 0.0268 0.0002
## PP.BehavInt4_CBB 0.0000 0.1212 0.0815 0.0303 0.0003
## PP.BehavInt1_PBPB 0.0000 0.0002 0.0002 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0007 0.0007 0.0001 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0001 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0021 0.0017 0.0004 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0002 0.0001 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0007 0.0005 0.0001 0.0000
## PP.BehavInt1_VB 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.BehavInt2_VB 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.BehavInt3_VB 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.BehavInt4_VB 0.0000 0.0000 0.0000 0.0000
## PP.CCB_48 0.0000 0.0000 0.0000 0.0000
## PP.CCB_49 0.0000 0.0000 0.0000 0.0000
## PP.CCB_50 0.0000 0.0000 0.0000 0.0000
## PP.CCB_51 0.0000 0.0000 0.0000 0.0000
## PP.CNS_1 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.CNS_2 0.0003 0.0000 0.0000 0.0000 0.0000
## PP.CNS_3 0.0001 0.0000 0.0000 0.0000 0.0000
## PP.ATNS_1 0.5795 0.0375 0.0208 0.0242 0.0258
## PP.ATNS_2R 0.0003 0.3555 0.2537 0.1264 0.0070
## PP.ATNS_3 0.0543 0.0014 0.0005 0.0005 0.0008
## PP.ATNS_4 0.0014 0.0000 0.0000 0.0000 0.0000
## PP.ATNS_5 0.2390 0.0005 0.0002 0.0003 0.0008
## PP.Ind_3 0.0109 0.1913 0.1541 0.0847 0.0343
## PP.Ind_4 0.0950 0.0036 0.0029 0.0032 0.0052
## PP.Ind_7 0.0016 0.0152 0.0102 0.0071 0.0021
## PP.Ind_8 0.0319 0.0030 0.0020 0.0026 0.0020
## PP.Ind_1 0.1202 0.0000 0.0000 0.0000 0.0000
## PP.Ind_2 0.2504 0.0000 0.0000 0.0001 0.0006
## PP.Ind_5 0.0054 0.0000 0.0000 0.0000 0.0000
## PP.Ind_6 0.3326 0.0006 0.0003 0.0009 0.0021
## PP.CNS_1 PP.CNS_2 PP.CNS_3 PP.ATNS_1 PP.ATNS_2R PP.ATNS_3
## PP.Nat_1_GFFB 0.0452 0.0636 0.1556 0.0004 0.0000 0.0531
## PP.Nat_4R_GFFB 0.0000 0.0025 0.0009 0.0398 0.0000 0.0039
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000 0.0348 0.0000 0.0035
## PP.Nat_3R_GFFB 0.0000 0.0008 0.0012 0.0021 0.0000 0.0015
## PP.Nat_1_GFPRB 0.5228 0.0208 0.2428 0.0316 0.1120 0.2982
## PP.Nat_4R_GFPRB 0.0000 0.0079 0.0010 0.0059 0.0000 0.0004
## PP.Nat_2R_GFPRB 0.0000 0.0132 0.0012 0.0250 0.0000 0.0049
## PP.Nat_3R_GFPRB 0.0000 0.0074 0.0024 0.0772 0.0000 0.0223
## PP.Nat_1_CBB 0.0000 0.0299 0.0133 0.0938 0.0000 0.1135
## PP.Nat_4R_CBB 0.0025 0.0000 0.0000 0.0000 0.7531 0.0000
## PP.Nat_2R_CBB 0.0002 0.0000 0.0000 0.0000 0.6518 0.0000
## PP.Nat_3R_CBB 0.0001 0.0000 0.0000 0.0000 0.7356 0.0000
## PP.Nat_1_PBPB 0.0004 0.0181 0.0121 0.8487 0.0000 0.2018
## PP.Nat_4R_PBPB 0.0141 0.0052 0.0119 0.0000 0.0227 0.0002
## PP.Nat_2R_PBPB 0.0005 0.0001 0.0005 0.0000 0.0068 0.0000
## PP.Nat_3R_PBPB 0.0000 0.0000 0.0000 0.0009 0.0010 0.0028
## PP.Nat_1_PBFB 0.0000 0.0063 0.0020 0.5788 0.0000 0.1152
## PP.Nat_4R_PBFB 0.8426 0.2630 0.5629 0.0000 0.9186 0.0145
## PP.Nat_2R_PBFB 0.0007 0.0000 0.0003 0.0000 0.0673 0.0000
## PP.Nat_3R_PBFB 0.0010 0.0000 0.0000 0.0000 0.1059 0.0000
## PP.Nat_1_VB 0.0000 0.0000 0.0000 0.1299 0.0010 0.0087
## PP.Nat_4R_VB 0.0034 0.0735 0.0443 0.0001 0.0000 0.0075
## PP.Nat_2R_VB 0.0002 0.0292 0.0135 0.0001 0.0000 0.0021
## PP.Nat_3R_VB 0.0000 0.0007 0.0002 0.0001 0.0000 0.0007
## PP.BehavInt1_GFFB 0.0397 0.0456 0.0967 0.0002 0.0000 0.0290
## PP.BehavInt2_GFFB 0.0706 0.0642 0.1444 0.0003 0.0000 0.0420
## PP.BehavInt3_GFFB 0.0285 0.0501 0.1058 0.0002 0.0000 0.0223
## PP.BehavInt4_GFFB 0.0248 0.0222 0.0558 0.0000 0.0000 0.0139
## PP.BehavInt1_GFPRB 0.0083 0.0541 0.0517 0.3720 0.0000 0.7787
## PP.BehavInt2_GFPRB 0.0065 0.0748 0.0521 0.4942 0.0000 0.6279
## PP.BehavInt3_GFPRB 0.0047 0.0448 0.0277 0.5269 0.0000 0.6312
## PP.BehavInt4_GFPRB 0.0040 0.0337 0.0232 0.6322 0.0000 0.5006
## PP.BehavInt1_CBB 0.0002 0.0363 0.0175 0.5605 0.0000 0.5279
## PP.BehavInt2_CBB 0.0001 0.0414 0.0178 0.3939 0.0000 0.4236
## PP.BehavInt3_CBB 0.0002 0.0432 0.0205 0.5134 0.0000 0.4574
## PP.BehavInt4_CBB 0.0002 0.0451 0.0203 0.5740 0.0000 0.5258
## PP.BehavInt1_PBPB 0.0083 0.0541 0.0517 0.3720 0.0000 0.7787
## PP.BehavInt2_PBPB 0.0065 0.0748 0.0521 0.4942 0.0000 0.6279
## PP.BehavInt3_PBPB 0.0047 0.0448 0.0277 0.5269 0.0000 0.6312
## PP.BehavInt4_PBPB 0.0040 0.0337 0.0232 0.6322 0.0000 0.5006
## PP.BehavInt1_PBFB 0.0004 0.0123 0.0050 0.9126 0.0000 0.3613
## PP.BehavInt2_PBFB 0.0014 0.0431 0.0188 0.8475 0.0000 0.4259
## PP.BehavInt3_PBFB 0.0003 0.0099 0.0041 0.9246 0.0000 0.2782
## PP.BehavInt4_PBFB 0.0011 0.0264 0.0132 0.8386 0.0000 0.4693
## PP.BehavInt1_VB 0.0000 0.0002 0.0000 0.5499 0.0002 0.0455
## PP.BehavInt2_VB 0.0001 0.0017 0.0005 0.5164 0.0000 0.0520
## PP.BehavInt3_VB 0.0000 0.0001 0.0000 0.5079 0.0005 0.0419
## PP.BehavInt4_VB 0.0000 0.0003 0.0001 0.5795 0.0003 0.0543
## PP.CCB_48 0.0000 0.0000 0.0000 0.0375 0.3555 0.0014
## PP.CCB_49 0.0000 0.0000 0.0000 0.0208 0.2537 0.0005
## PP.CCB_50 0.0000 0.0000 0.0000 0.0242 0.1264 0.0005
## PP.CCB_51 0.0000 0.0000 0.0000 0.0258 0.0070 0.0008
## PP.CNS_1 0.0000 0.0000 0.0000 0.0007 0.0000
## PP.CNS_2 0.0000 0.0000 0.0000 0.0547 0.0000
## PP.CNS_3 0.0000 0.0000 0.0000 0.0361 0.0000
## PP.ATNS_1 0.0000 0.0000 0.0000 0.0447 0.0000
## PP.ATNS_2R 0.0007 0.0547 0.0361 0.0447 0.1253
## PP.ATNS_3 0.0000 0.0000 0.0000 0.0000 0.1253
## PP.ATNS_4 0.0000 0.0000 0.0000 0.0000 0.1596 0.0000
## PP.ATNS_5 0.0000 0.0000 0.0000 0.0000 0.4737 0.0000
## PP.Ind_3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.Ind_4 0.0000 0.0000 0.0000 0.0000 0.2908 0.0000
## PP.Ind_7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.Ind_8 0.0000 0.0000 0.0000 0.0000 0.1037 0.0000
## PP.Ind_1 0.0000 0.0000 0.0000 0.0000 0.8249 0.0000
## PP.Ind_2 0.0000 0.0000 0.0000 0.0000 0.8826 0.0000
## PP.Ind_5 0.0000 0.0000 0.0000 0.0000 0.3117 0.0000
## PP.Ind_6 0.0000 0.0000 0.0000 0.0000 0.8007 0.0000
## PP.ATNS_4 PP.ATNS_5 PP.Ind_3 PP.Ind_4 PP.Ind_7 PP.Ind_8
## PP.Nat_1_GFFB 0.2079 0.0595 0.0001 0.0010 0.0002 0.0003
## PP.Nat_4R_GFFB 0.0040 0.0709 0.0002 0.4363 0.0001 0.2254
## PP.Nat_2R_GFFB 0.0007 0.0383 0.0008 0.1926 0.0005 0.0883
## PP.Nat_3R_GFFB 0.0024 0.0317 0.0000 0.0389 0.0000 0.0087
## PP.Nat_1_GFPRB 0.1755 0.0546 0.2126 0.0000 0.1717 0.0000
## PP.Nat_4R_GFPRB 0.0026 0.0261 0.0000 0.1399 0.0000 0.0829
## PP.Nat_2R_GFPRB 0.0118 0.1322 0.0000 0.2646 0.0000 0.1874
## PP.Nat_3R_GFPRB 0.0218 0.3213 0.0000 0.2684 0.0000 0.1217
## PP.Nat_1_CBB 0.1937 0.6879 0.0000 0.3737 0.0001 0.1332
## PP.Nat_4R_CBB 0.0000 0.0000 0.0034 0.0000 0.0002 0.0000
## PP.Nat_2R_CBB 0.0000 0.0000 0.0093 0.0000 0.0007 0.0000
## PP.Nat_3R_CBB 0.0000 0.0000 0.0292 0.0000 0.0034 0.0000
## PP.Nat_1_PBPB 0.0416 0.9729 0.0043 0.7243 0.0029 0.2272
## PP.Nat_4R_PBPB 0.0095 0.0000 0.0054 0.0004 0.0010 0.0006
## PP.Nat_2R_PBPB 0.0005 0.0000 0.0003 0.0000 0.0000 0.0000
## PP.Nat_3R_PBPB 0.0002 0.0007 0.0051 0.0000 0.0005 0.0000
## PP.Nat_1_PBFB 0.0304 0.7314 0.0044 0.7513 0.0013 0.3163
## PP.Nat_4R_PBFB 0.0696 0.0003 0.1558 0.0101 0.1838 0.0405
## PP.Nat_2R_PBFB 0.0000 0.0000 0.0002 0.0000 0.0001 0.0000
## PP.Nat_3R_PBFB 0.0000 0.0000 0.0060 0.0000 0.0018 0.0000
## PP.Nat_1_VB 0.0001 0.0641 0.0158 0.0674 0.0017 0.0091
## PP.Nat_4R_VB 0.0792 0.0124 0.0003 0.0213 0.0006 0.0312
## PP.Nat_2R_VB 0.0179 0.0153 0.0000 0.0020 0.0000 0.0041
## PP.Nat_3R_VB 0.0014 0.0032 0.0000 0.0003 0.0000 0.0007
## PP.BehavInt1_GFFB 0.1226 0.0344 0.0002 0.0007 0.0000 0.0000
## PP.BehavInt2_GFFB 0.1516 0.0306 0.0009 0.0011 0.0000 0.0000
## PP.BehavInt3_GFFB 0.1028 0.0347 0.0001 0.0019 0.0000 0.0002
## PP.BehavInt4_GFFB 0.0654 0.0136 0.0002 0.0004 0.0000 0.0000
## PP.BehavInt1_GFPRB 0.1281 0.5459 0.1219 0.7716 0.0734 0.5186
## PP.BehavInt2_GFPRB 0.1261 0.5960 0.0712 0.6162 0.0612 0.7217
## PP.BehavInt3_GFPRB 0.0895 0.7192 0.0710 0.8857 0.0419 0.4904
## PP.BehavInt4_GFPRB 0.0640 0.8689 0.0692 0.9744 0.0382 0.3679
## PP.BehavInt1_CBB 0.2970 0.6884 0.0025 0.8824 0.0028 0.3255
## PP.BehavInt2_CBB 0.3082 0.7899 0.0008 0.7066 0.0013 0.2416
## PP.BehavInt3_CBB 0.2699 0.7890 0.0016 0.8514 0.0015 0.3309
## PP.BehavInt4_CBB 0.3061 0.7145 0.0021 0.8645 0.0025 0.3651
## PP.BehavInt1_PBPB 0.1281 0.5459 0.1219 0.7716 0.0734 0.5186
## PP.BehavInt2_PBPB 0.1261 0.5960 0.0712 0.6162 0.0612 0.7217
## PP.BehavInt3_PBPB 0.0895 0.7192 0.0710 0.8857 0.0419 0.4904
## PP.BehavInt4_PBPB 0.0640 0.8689 0.0692 0.9744 0.0382 0.3679
## PP.BehavInt1_PBFB 0.0564 0.9410 0.0376 0.9785 0.0099 0.4878
## PP.BehavInt2_PBFB 0.1141 0.7678 0.0167 0.8681 0.0056 0.5845
## PP.BehavInt3_PBFB 0.0412 0.9393 0.0313 0.8692 0.0059 0.4130
## PP.BehavInt4_PBFB 0.0931 0.7664 0.0382 0.9129 0.0107 0.5571
## PP.BehavInt1_VB 0.0012 0.2041 0.0110 0.0834 0.0010 0.0223
## PP.BehavInt2_VB 0.0025 0.2513 0.0058 0.1760 0.0018 0.0588
## PP.BehavInt3_VB 0.0008 0.1838 0.0203 0.0923 0.0020 0.0274
## PP.BehavInt4_VB 0.0014 0.2390 0.0109 0.0950 0.0016 0.0319
## PP.CCB_48 0.0000 0.0005 0.1913 0.0036 0.0152 0.0030
## PP.CCB_49 0.0000 0.0002 0.1541 0.0029 0.0102 0.0020
## PP.CCB_50 0.0000 0.0003 0.0847 0.0032 0.0071 0.0026
## PP.CCB_51 0.0000 0.0008 0.0343 0.0052 0.0021 0.0020
## PP.CNS_1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.CNS_2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.CNS_3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.ATNS_1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.ATNS_2R 0.1596 0.4737 0.0000 0.2908 0.0000 0.1037
## PP.ATNS_3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.ATNS_4 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.ATNS_5 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.Ind_3 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.Ind_4 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.Ind_7 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.Ind_8 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.Ind_1 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000
## PP.Ind_2 0.0000 0.0000 0.0004 0.0000 0.0000 0.0000
## PP.Ind_5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.Ind_6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## PP.Ind_1 PP.Ind_2 PP.Ind_5 PP.Ind_6
## PP.Nat_1_GFFB 0.1021 0.0852 0.0512 0.0261
## PP.Nat_4R_GFFB 0.6618 0.5195 0.0719 0.4567
## PP.Nat_2R_GFFB 0.1830 0.1549 0.0051 0.2028
## PP.Nat_3R_GFFB 0.2610 0.2347 0.0122 0.1224
## PP.Nat_1_GFPRB 0.0000 0.0003 0.0009 0.0001
## PP.Nat_4R_GFPRB 0.6318 0.3962 0.0967 0.2829
## PP.Nat_2R_GFPRB 0.7991 0.5704 0.1752 0.4690
## PP.Nat_3R_GFPRB 0.6965 0.5355 0.0752 0.5155
## PP.Nat_1_CBB 0.8438 0.9307 0.2848 0.6812
## PP.Nat_4R_CBB 0.0000 0.0000 0.0000 0.0000
## PP.Nat_2R_CBB 0.0000 0.0000 0.0000 0.0000
## PP.Nat_3R_CBB 0.0000 0.0000 0.0000 0.0000
## PP.Nat_1_PBPB 0.8164 0.7555 0.1826 0.8031
## PP.Nat_4R_PBPB 0.0016 0.0002 0.0023 0.0005
## PP.Nat_2R_PBPB 0.0000 0.0000 0.0000 0.0000
## PP.Nat_3R_PBPB 0.0000 0.0002 0.0000 0.0007
## PP.Nat_1_PBFB 0.8717 0.9220 0.2275 0.8578
## PP.Nat_4R_PBFB 0.0182 0.0178 0.0808 0.0137
## PP.Nat_2R_PBFB 0.0000 0.0000 0.0000 0.0000
## PP.Nat_3R_PBFB 0.0000 0.0000 0.0000 0.0000
## PP.Nat_1_VB 0.0215 0.0432 0.0005 0.1109
## PP.Nat_4R_VB 0.1741 0.0788 0.1253 0.0343
## PP.Nat_2R_VB 0.1514 0.1117 0.0341 0.0235
## PP.Nat_3R_VB 0.0344 0.0615 0.0039 0.0132
## PP.BehavInt1_GFFB 0.0594 0.0572 0.0236 0.0090
## PP.BehavInt2_GFFB 0.0389 0.0365 0.0217 0.0079
## PP.BehavInt3_GFFB 0.1150 0.1088 0.0405 0.0164
## PP.BehavInt4_GFFB 0.0403 0.0488 0.0194 0.0060
## PP.BehavInt1_GFPRB 0.7170 0.5226 0.3201 0.4200
## PP.BehavInt2_GFPRB 0.4727 0.3806 0.4729 0.3575
## PP.BehavInt3_GFPRB 0.7401 0.5288 0.2779 0.4722
## PP.BehavInt4_GFPRB 0.8765 0.6327 0.2253 0.5916
## PP.BehavInt1_CBB 0.7604 0.7981 0.2901 0.8666
## PP.BehavInt2_CBB 0.7346 0.8079 0.3138 0.9528
## PP.BehavInt3_CBB 0.7288 0.7858 0.2844 0.8522
## PP.BehavInt4_CBB 0.7020 0.7596 0.3060 0.8506
## PP.BehavInt1_PBPB 0.7170 0.5226 0.3201 0.4200
## PP.BehavInt2_PBPB 0.4727 0.3806 0.4729 0.3575
## PP.BehavInt3_PBPB 0.7401 0.5288 0.2779 0.4722
## PP.BehavInt4_PBPB 0.8765 0.6327 0.2253 0.5916
## PP.BehavInt1_PBFB 0.8368 0.7076 0.2813 0.6013
## PP.BehavInt2_PBFB 0.4682 0.4219 0.5113 0.4090
## PP.BehavInt3_PBFB 0.8318 0.7483 0.2552 0.6262
## PP.BehavInt4_PBFB 0.6013 0.5272 0.3938 0.4196
## PP.BehavInt1_VB 0.0871 0.1976 0.0030 0.2923
## PP.BehavInt2_VB 0.3395 0.5038 0.0284 0.5868
## PP.BehavInt3_VB 0.0835 0.1901 0.0032 0.3084
## PP.BehavInt4_VB 0.1202 0.2504 0.0054 0.3326
## PP.CCB_48 0.0000 0.0000 0.0000 0.0006
## PP.CCB_49 0.0000 0.0000 0.0000 0.0003
## PP.CCB_50 0.0000 0.0001 0.0000 0.0009
## PP.CCB_51 0.0000 0.0006 0.0000 0.0021
## PP.CNS_1 0.0000 0.0000 0.0000 0.0000
## PP.CNS_2 0.0000 0.0000 0.0000 0.0000
## PP.CNS_3 0.0000 0.0000 0.0000 0.0000
## PP.ATNS_1 0.0000 0.0000 0.0000 0.0000
## PP.ATNS_2R 0.8249 0.8826 0.3117 0.8007
## PP.ATNS_3 0.0000 0.0000 0.0000 0.0000
## PP.ATNS_4 0.0000 0.0000 0.0000 0.0000
## PP.ATNS_5 0.0000 0.0000 0.0000 0.0000
## PP.Ind_3 0.0001 0.0004 0.0000 0.0000
## PP.Ind_4 0.0000 0.0000 0.0000 0.0000
## PP.Ind_7 0.0000 0.0000 0.0000 0.0000
## PP.Ind_8 0.0000 0.0000 0.0000 0.0000
## PP.Ind_1 0.0000 0.0000 0.0000
## PP.Ind_2 0.0000 0.0000 0.0000
## PP.Ind_5 0.0000 0.0000 0.0000
## PP.Ind_6 0.0000 0.0000 0.0000
library(corrplot)
corrplot(mydata.cor6, method="color")
corrplot(mydata.cor6, addCoef.col = 1, number.cex = 0.3, method = 'number')
#Naturalness, Risk, Benefit Perceptions and Willingness to Support Technology
PP$corGroup <- data.frame(PP$Risk_Score_GFFB, PP$Risk_Score_GFPRB, PP$Risk_Score_CBB, PP$Risk_Score_PBFB, PP$Risk_Score_PBPB, PP$Risk_Score_VB, PP$Ben_Score_GFFB, PP$Ben_Score_GFPRB, PP$Ben_Score_CBB, PP$Ben_Score_PBFB, PP$Ben_Score_PBPB, PP$Ben_Score_VB, PP$Behav_Scale_GFFB, PP$Behav_Scale_GFPRB, PP$Behav_Scale_CBB, PP$Behav_Scale_PBPB, PP$Behav_Scale_PBFB, PP$Behav_Scale_VB, PP$Naturalness_Scale_GFFB_Tot, PP$Naturalness_Scale_GFPRB_Tot, PP$Naturalness_Scale_CBB_Tot, PP$Naturalness_Scale_PBPB_Tot, PP$Naturalness_Scale_PBFB_Tot, PP$Naturalness_Scale_VB_Tot)
mydata.cor7 = cor(PP$corGroup, use = "pairwise.complete.obs")
head(round(mydata.cor7,2))
## PP.Risk_Score_GFFB PP.Risk_Score_GFPRB PP.Risk_Score_CBB
## PP.Risk_Score_GFFB 1.00 0.59 0.31
## PP.Risk_Score_GFPRB 0.59 1.00 0.35
## PP.Risk_Score_CBB 0.31 0.35 1.00
## PP.Risk_Score_PBFB 0.21 0.18 0.37
## PP.Risk_Score_PBPB 0.27 0.28 0.32
## PP.Risk_Score_VB 0.33 0.59 0.26
## PP.Risk_Score_PBFB PP.Risk_Score_PBPB PP.Risk_Score_VB
## PP.Risk_Score_GFFB 0.21 0.27 0.33
## PP.Risk_Score_GFPRB 0.18 0.28 0.59
## PP.Risk_Score_CBB 0.37 0.32 0.26
## PP.Risk_Score_PBFB 1.00 0.97 0.42
## PP.Risk_Score_PBPB 0.97 1.00 0.61
## PP.Risk_Score_VB 0.42 0.61 1.00
## PP.Ben_Score_GFFB PP.Ben_Score_GFPRB PP.Ben_Score_CBB
## PP.Risk_Score_GFFB -0.16 -0.16 0.28
## PP.Risk_Score_GFPRB 0.05 -0.21 0.36
## PP.Risk_Score_CBB 0.21 0.02 -0.17
## PP.Risk_Score_PBFB 0.23 0.20 0.03
## PP.Risk_Score_PBPB 0.33 0.13 0.22
## PP.Risk_Score_VB 0.28 0.11 0.39
## PP.Ben_Score_PBFB PP.Ben_Score_PBPB PP.Ben_Score_VB
## PP.Risk_Score_GFFB 0.32 0.30 0.15
## PP.Risk_Score_GFPRB 0.37 0.22 0.14
## PP.Risk_Score_CBB -0.07 -0.02 0.16
## PP.Risk_Score_PBFB -0.32 -0.25 -0.20
## PP.Risk_Score_PBPB -0.23 -0.28 -0.24
## PP.Risk_Score_VB 0.08 -0.13 -0.21
## PP.BehavInt1_GFFB PP.BehavInt2_GFFB PP.BehavInt3_GFFB
## PP.Risk_Score_GFFB -0.26 -0.24 -0.22
## PP.Risk_Score_GFPRB -0.06 -0.11 -0.02
## PP.Risk_Score_CBB 0.24 0.23 0.26
## PP.Risk_Score_PBFB 0.23 0.15 0.22
## PP.Risk_Score_PBPB 0.30 0.15 0.31
## PP.Risk_Score_VB 0.26 0.20 0.27
## PP.BehavInt4_GFFB PP.BehavInt1_GFPRB PP.BehavInt2_GFPRB
## PP.Risk_Score_GFFB -0.26 0.29 0.29
## PP.Risk_Score_GFPRB -0.08 0.21 0.27
## PP.Risk_Score_CBB 0.25 -0.04 0.02
## PP.Risk_Score_PBFB 0.22 -0.32 -0.22
## PP.Risk_Score_PBPB 0.27 -0.33 -0.24
## PP.Risk_Score_VB 0.26 -0.12 -0.06
## PP.BehavInt3_GFPRB PP.BehavInt4_GFPRB PP.BehavInt1_CBB
## PP.Risk_Score_GFFB 0.29 0.28 0.30
## PP.Risk_Score_GFPRB 0.25 0.20 0.29
## PP.Risk_Score_CBB -0.04 -0.02 -0.25
## PP.Risk_Score_PBFB -0.28 -0.27 0.00
## PP.Risk_Score_PBPB -0.31 -0.29 0.16
## PP.Risk_Score_VB -0.05 -0.07 0.30
## PP.BehavInt2_CBB PP.BehavInt3_CBB PP.BehavInt4_CBB
## PP.Risk_Score_GFFB 0.28 0.31 0.32
## PP.Risk_Score_GFPRB 0.30 0.35 0.30
## PP.Risk_Score_CBB -0.21 -0.24 -0.23
## PP.Risk_Score_PBFB 0.02 -0.01 0.00
## PP.Risk_Score_PBPB 0.14 0.15 0.17
## PP.Risk_Score_VB 0.40 0.34 0.31
## PP.BehavInt1_PBPB PP.BehavInt2_PBPB PP.BehavInt3_PBPB
## PP.Risk_Score_GFFB 0.29 0.29 0.29
## PP.Risk_Score_GFPRB 0.21 0.27 0.25
## PP.Risk_Score_CBB -0.04 0.02 -0.04
## PP.Risk_Score_PBFB -0.32 -0.22 -0.28
## PP.Risk_Score_PBPB -0.33 -0.24 -0.31
## PP.Risk_Score_VB -0.12 -0.06 -0.05
## PP.BehavInt4_PBPB PP.BehavInt1_PBFB PP.BehavInt2_PBFB
## PP.Risk_Score_GFFB 0.28 0.40 0.37
## PP.Risk_Score_GFPRB 0.20 0.47 0.45
## PP.Risk_Score_CBB -0.02 -0.04 -0.04
## PP.Risk_Score_PBFB -0.27 -0.31 -0.26
## PP.Risk_Score_PBPB -0.29 -0.14 -0.10
## PP.Risk_Score_VB -0.07 0.15 0.12
## PP.BehavInt3_PBFB PP.BehavInt4_PBFB PP.BehavInt1_VB
## PP.Risk_Score_GFFB 0.37 0.38 0.18
## PP.Risk_Score_GFPRB 0.35 0.37 0.20
## PP.Risk_Score_CBB -0.07 -0.08 0.09
## PP.Risk_Score_PBFB -0.30 -0.30 -0.22
## PP.Risk_Score_PBPB -0.11 -0.16 -0.30
## PP.Risk_Score_VB 0.06 0.11 -0.17
## PP.BehavInt2_VB PP.BehavInt3_VB PP.BehavInt4_VB
## PP.Risk_Score_GFFB 0.23 0.16 0.17
## PP.Risk_Score_GFPRB 0.31 0.13 0.19
## PP.Risk_Score_CBB 0.18 0.18 0.14
## PP.Risk_Score_PBFB -0.17 -0.26 -0.20
## PP.Risk_Score_PBPB -0.26 -0.33 -0.28
## PP.Risk_Score_VB -0.06 -0.21 -0.15
## PP.Nat_1_GFFB PP.Nat_4R_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB
## PP.Risk_Score_GFFB -0.20 -0.58 -0.54 -0.35
## PP.Risk_Score_GFPRB -0.10 -0.45 -0.31 -0.35
## PP.Risk_Score_CBB 0.14 -0.12 -0.09 -0.14
## PP.Risk_Score_PBFB 0.18 -0.07 -0.02 -0.12
## PP.Risk_Score_PBPB 0.25 -0.14 -0.10 -0.22
## PP.Risk_Score_VB 0.27 -0.32 -0.25 -0.39
## PP.Nat_1_GFPRB PP.Nat_4R_GFPRB PP.Nat_2R_GFPRB
## PP.Risk_Score_GFFB -0.17 -0.46 -0.50
## PP.Risk_Score_GFPRB -0.35 -0.64 -0.60
## PP.Risk_Score_CBB -0.04 -0.25 -0.27
## PP.Risk_Score_PBFB -0.07 -0.27 -0.18
## PP.Risk_Score_PBPB -0.26 -0.39 -0.33
## PP.Risk_Score_VB -0.16 -0.67 -0.48
## PP.Nat_3R_GFPRB PP.Nat_1_CBB PP.Nat_4R_CBB PP.Nat_2R_CBB
## PP.Risk_Score_GFFB -0.40 0.34 -0.02 -0.09
## PP.Risk_Score_GFPRB -0.43 0.33 -0.12 0.01
## PP.Risk_Score_CBB -0.13 -0.10 -0.48 -0.36
## PP.Risk_Score_PBFB -0.09 0.22 -0.19 -0.02
## PP.Risk_Score_PBPB -0.15 0.30 -0.12 0.05
## PP.Risk_Score_VB -0.45 0.45 0.00 0.16
## PP.Nat_3R_CBB PP.Nat_1_PBPB PP.Nat_4R_PBPB PP.Nat_2R_PBPB
## PP.Risk_Score_GFFB -0.08 0.24 -0.06 -0.03
## PP.Risk_Score_GFPRB -0.04 0.33 0.03 -0.02
## PP.Risk_Score_CBB -0.20 -0.05 -0.28 -0.23
## PP.Risk_Score_PBFB 0.07 -0.09 -0.38 -0.32
## PP.Risk_Score_PBPB 0.16 -0.12 -0.41 -0.36
## PP.Risk_Score_VB 0.15 0.02 -0.30 -0.27
## PP.Nat_3R_PBPB PP.Nat_1_PBFB PP.Nat_4R_PBFB PP.Nat_2R_PBFB
## PP.Risk_Score_GFFB -0.12 0.33 0.06 0.09
## PP.Risk_Score_GFPRB 0.08 0.42 0.00 0.10
## PP.Risk_Score_CBB -0.08 -0.10 0.27 0.24
## PP.Risk_Score_PBFB 0.05 -0.21 0.39 0.30
## PP.Risk_Score_PBPB 0.02 -0.10 0.29 0.12
## PP.Risk_Score_VB -0.04 0.22 0.17 0.25
## PP.Nat_3R_PBFB PP.Nat_1_VB PP.Nat_4R_VB PP.Nat_2R_VB
## PP.Risk_Score_GFFB 0.07 0.11 -0.21 -0.13
## PP.Risk_Score_GFPRB 0.04 0.14 -0.27 -0.21
## PP.Risk_Score_CBB 0.09 0.13 -0.12 -0.09
## PP.Risk_Score_PBFB 0.12 -0.13 -0.26 -0.24
## PP.Risk_Score_PBPB -0.05 -0.24 -0.44 -0.35
## PP.Risk_Score_VB 0.02 -0.11 -0.55 -0.47
## PP.Nat_3R_VB
## PP.Risk_Score_GFFB -0.07
## PP.Risk_Score_GFPRB -0.20
## PP.Risk_Score_CBB 0.00
## PP.Risk_Score_PBFB -0.05
## PP.Risk_Score_PBPB -0.07
## PP.Risk_Score_VB -0.23
library("Hmisc")
mydata.rcorr7 = rcorr(as.matrix(mydata.cor7))
mydata.rcorr7
## PP.Risk_Score_GFFB PP.Risk_Score_GFPRB PP.Risk_Score_CBB
## PP.Risk_Score_GFFB 1.00 0.92 0.22
## PP.Risk_Score_GFPRB 0.92 1.00 0.30
## PP.Risk_Score_CBB 0.22 0.30 1.00
## PP.Risk_Score_PBFB 0.00 0.09 0.57
## PP.Risk_Score_PBPB 0.15 0.27 0.48
## PP.Risk_Score_VB 0.51 0.67 0.39
## PP.Ben_Score_GFFB 0.05 0.23 0.35
## PP.Ben_Score_GFPRB -0.24 -0.19 0.32
## PP.Ben_Score_CBB 0.66 0.71 -0.06
## PP.Ben_Score_PBFB 0.69 0.67 -0.09
## PP.Ben_Score_PBPB 0.63 0.55 -0.09
## PP.Ben_Score_VB 0.46 0.39 0.14
## PP.BehavInt1_GFFB -0.16 0.01 0.37
## PP.BehavInt2_GFFB -0.23 -0.08 0.35
## PP.BehavInt3_GFFB -0.12 0.06 0.38
## PP.BehavInt4_GFFB -0.19 -0.01 0.37
## PP.BehavInt1_GFPRB 0.60 0.51 -0.15
## PP.BehavInt2_GFPRB 0.66 0.58 -0.13
## PP.BehavInt3_GFPRB 0.63 0.56 -0.13
## PP.BehavInt4_GFPRB 0.63 0.54 -0.10
## PP.BehavInt1_CBB 0.65 0.67 -0.15
## PP.BehavInt2_CBB 0.63 0.68 -0.11
## PP.BehavInt3_CBB 0.65 0.69 -0.13
## PP.BehavInt4_CBB 0.65 0.67 -0.14
## PP.BehavInt1_PBPB 0.60 0.51 -0.15
## PP.BehavInt2_PBPB 0.66 0.58 -0.13
## PP.BehavInt3_PBPB 0.63 0.56 -0.13
## PP.BehavInt4_PBPB 0.63 0.54 -0.10
## PP.BehavInt1_PBFB 0.75 0.72 -0.07
## PP.BehavInt2_PBFB 0.74 0.73 -0.07
## PP.BehavInt3_PBFB 0.72 0.69 -0.07
## PP.BehavInt4_PBFB 0.72 0.68 -0.09
## PP.BehavInt1_VB 0.52 0.45 0.05
## PP.BehavInt2_VB 0.58 0.55 0.09
## PP.BehavInt3_VB 0.49 0.41 0.05
## PP.BehavInt4_VB 0.52 0.45 0.06
## PP.Nat_1_GFFB -0.16 -0.03 0.27
## PP.Nat_4R_GFFB -0.94 -0.90 -0.20
## PP.Nat_2R_GFFB -0.90 -0.80 -0.13
## PP.Nat_3R_GFFB -0.77 -0.80 -0.26
## PP.Nat_1_GFPRB -0.49 -0.59 0.02
## PP.Nat_4R_GFPRB -0.81 -0.93 -0.35
## PP.Nat_2R_GFPRB -0.82 -0.92 -0.33
## PP.Nat_3R_GFPRB -0.79 -0.87 -0.19
## PP.Nat_1_CBB 0.64 0.71 0.01
## PP.Nat_4R_CBB -0.02 -0.07 -0.82
## PP.Nat_2R_CBB -0.10 -0.03 -0.60
## PP.Nat_3R_CBB -0.16 -0.08 -0.44
## PP.Nat_1_PBPB 0.67 0.66 -0.06
## PP.Nat_4R_PBPB -0.06 -0.12 -0.51
## PP.Nat_2R_PBPB -0.02 -0.10 -0.54
## PP.Nat_3R_PBPB -0.21 -0.14 -0.18
## PP.Nat_1_PBFB 0.73 0.75 -0.10
## PP.Nat_4R_PBFB -0.19 -0.16 0.57
## PP.Nat_2R_PBFB 0.07 0.10 0.59
## PP.Nat_3R_PBFB 0.08 0.06 0.40
## PP.Nat_1_VB 0.46 0.41 0.07
## PP.Nat_4R_VB -0.32 -0.43 -0.32
## PP.Nat_2R_VB -0.40 -0.53 -0.30
## PP.Nat_3R_VB -0.39 -0.50 -0.16
## PP.Risk_Score_PBFB PP.Risk_Score_PBPB PP.Risk_Score_VB
## PP.Risk_Score_GFFB 0.00 0.15 0.51
## PP.Risk_Score_GFPRB 0.09 0.27 0.67
## PP.Risk_Score_CBB 0.57 0.48 0.39
## PP.Risk_Score_PBFB 1.00 0.94 0.66
## PP.Risk_Score_PBPB 0.94 1.00 0.82
## PP.Risk_Score_VB 0.66 0.82 1.00
## PP.Ben_Score_GFFB 0.41 0.52 0.62
## PP.Ben_Score_GFPRB 0.36 0.31 0.25
## PP.Ben_Score_CBB -0.03 0.22 0.62
## PP.Ben_Score_PBFB -0.50 -0.31 0.17
## PP.Ben_Score_PBPB -0.60 -0.48 -0.05
## PP.Ben_Score_VB -0.55 -0.53 -0.21
## PP.BehavInt1_GFFB 0.48 0.53 0.52
## PP.BehavInt2_GFFB 0.41 0.45 0.42
## PP.BehavInt3_GFFB 0.48 0.54 0.55
## PP.BehavInt4_GFFB 0.47 0.53 0.51
## PP.BehavInt1_GFPRB -0.66 -0.54 -0.11
## PP.BehavInt2_GFPRB -0.59 -0.46 -0.03
## PP.BehavInt3_GFPRB -0.61 -0.49 -0.05
## PP.BehavInt4_GFPRB -0.61 -0.49 -0.07
## PP.BehavInt1_CBB -0.12 0.13 0.54
## PP.BehavInt2_CBB -0.06 0.19 0.60
## PP.BehavInt3_CBB -0.09 0.16 0.57
## PP.BehavInt4_CBB -0.09 0.16 0.56
## PP.BehavInt1_PBPB -0.66 -0.54 -0.11
## PP.BehavInt2_PBPB -0.59 -0.46 -0.03
## PP.BehavInt3_PBPB -0.61 -0.49 -0.05
## PP.BehavInt4_PBPB -0.61 -0.49 -0.07
## PP.BehavInt1_PBFB -0.49 -0.29 0.18
## PP.BehavInt2_PBFB -0.45 -0.24 0.23
## PP.BehavInt3_PBFB -0.48 -0.29 0.18
## PP.BehavInt4_PBFB -0.49 -0.30 0.18
## PP.BehavInt1_VB -0.60 -0.55 -0.19
## PP.BehavInt2_VB -0.56 -0.49 -0.11
## PP.BehavInt3_VB -0.63 -0.58 -0.23
## PP.BehavInt4_VB -0.59 -0.55 -0.19
## PP.Nat_1_GFFB 0.45 0.51 0.52
## PP.Nat_4R_GFFB 0.03 -0.15 -0.54
## PP.Nat_2R_GFFB 0.14 -0.01 -0.39
## PP.Nat_3R_GFFB -0.14 -0.32 -0.69
## PP.Nat_1_GFPRB -0.12 -0.27 -0.36
## PP.Nat_4R_GFPRB -0.32 -0.51 -0.83
## PP.Nat_2R_GFPRB -0.20 -0.39 -0.74
## PP.Nat_3R_GFPRB -0.09 -0.29 -0.71
## PP.Nat_1_CBB 0.15 0.38 0.73
## PP.Nat_4R_CBB -0.36 -0.21 -0.08
## PP.Nat_2R_CBB -0.01 0.14 0.18
## PP.Nat_3R_CBB 0.12 0.24 0.18
## PP.Nat_1_PBPB -0.47 -0.33 0.12
## PP.Nat_4R_PBPB -0.76 -0.79 -0.65
## PP.Nat_2R_PBPB -0.67 -0.68 -0.58
## PP.Nat_3R_PBPB -0.04 -0.06 -0.22
## PP.Nat_1_PBFB -0.38 -0.16 0.33
## PP.Nat_4R_PBFB 0.73 0.60 0.36
## PP.Nat_2R_PBFB 0.51 0.41 0.39
## PP.Nat_3R_PBFB 0.20 0.12 0.18
## PP.Nat_1_VB -0.56 -0.52 -0.19
## PP.Nat_4R_VB -0.68 -0.81 -0.89
## PP.Nat_2R_VB -0.56 -0.70 -0.88
## PP.Nat_3R_VB -0.27 -0.41 -0.67
## PP.Ben_Score_GFFB PP.Ben_Score_GFPRB PP.Ben_Score_CBB
## PP.Risk_Score_GFFB 0.05 -0.24 0.66
## PP.Risk_Score_GFPRB 0.23 -0.19 0.71
## PP.Risk_Score_CBB 0.35 0.32 -0.06
## PP.Risk_Score_PBFB 0.41 0.36 -0.03
## PP.Risk_Score_PBPB 0.52 0.31 0.22
## PP.Risk_Score_VB 0.62 0.25 0.62
## PP.Ben_Score_GFFB 1.00 0.72 0.60
## PP.Ben_Score_GFPRB 0.72 1.00 0.19
## PP.Ben_Score_CBB 0.60 0.19 1.00
## PP.Ben_Score_PBFB 0.24 -0.04 0.78
## PP.Ben_Score_PBPB 0.09 -0.07 0.63
## PP.Ben_Score_VB 0.06 0.08 0.36
## PP.BehavInt1_GFFB 0.96 0.78 0.42
## PP.BehavInt2_GFFB 0.92 0.78 0.35
## PP.BehavInt3_GFFB 0.97 0.77 0.45
## PP.BehavInt4_GFFB 0.95 0.78 0.39
## PP.BehavInt1_GFPRB 0.02 -0.13 0.59
## PP.BehavInt2_GFPRB 0.04 -0.15 0.63
## PP.BehavInt3_GFPRB 0.05 -0.11 0.63
## PP.BehavInt4_GFPRB 0.05 -0.10 0.60
## PP.BehavInt1_CBB 0.52 0.12 0.98
## PP.BehavInt2_CBB 0.58 0.16 0.98
## PP.BehavInt3_CBB 0.54 0.13 0.99
## PP.BehavInt4_CBB 0.54 0.14 0.99
## PP.BehavInt1_PBPB 0.02 -0.13 0.59
## PP.BehavInt2_PBPB 0.04 -0.15 0.63
## PP.BehavInt3_PBPB 0.05 -0.11 0.63
## PP.BehavInt4_PBPB 0.05 -0.10 0.60
## PP.BehavInt1_PBFB 0.17 -0.12 0.76
## PP.BehavInt2_PBFB 0.23 -0.09 0.79
## PP.BehavInt3_PBFB 0.23 -0.05 0.77
## PP.BehavInt4_PBFB 0.23 -0.06 0.78
## PP.BehavInt1_VB 0.00 -0.01 0.41
## PP.BehavInt2_VB 0.01 -0.07 0.43
## PP.BehavInt3_VB 0.00 0.00 0.40
## PP.BehavInt4_VB 0.00 -0.01 0.41
## PP.Nat_1_GFFB 0.89 0.77 0.41
## PP.Nat_4R_GFFB -0.20 0.07 -0.73
## PP.Nat_2R_GFFB -0.15 0.05 -0.72
## PP.Nat_3R_GFFB -0.56 -0.24 -0.84
## PP.Nat_1_GFPRB 0.23 0.63 -0.20
## PP.Nat_4R_GFPRB -0.41 0.00 -0.72
## PP.Nat_2R_GFPRB -0.37 0.01 -0.70
## PP.Nat_3R_GFPRB -0.46 -0.09 -0.84
## PP.Nat_1_CBB 0.64 0.21 0.94
## PP.Nat_4R_CBB -0.31 -0.41 0.15
## PP.Nat_2R_CBB -0.13 -0.34 0.10
## PP.Nat_3R_CBB -0.16 -0.31 -0.06
## PP.Nat_1_PBPB 0.18 -0.06 0.70
## PP.Nat_4R_PBPB -0.60 -0.44 -0.23
## PP.Nat_2R_PBPB -0.73 -0.60 -0.28
## PP.Nat_3R_PBPB -0.52 -0.45 -0.48
## PP.Nat_1_PBFB 0.32 -0.04 0.85
## PP.Nat_4R_PBFB 0.41 0.50 -0.16
## PP.Nat_2R_PBFB 0.52 0.52 0.15
## PP.Nat_3R_PBFB 0.48 0.51 0.21
## PP.Nat_1_VB 0.04 0.02 0.38
## PP.Nat_4R_VB -0.63 -0.35 -0.54
## PP.Nat_2R_VB -0.71 -0.39 -0.67
## PP.Nat_3R_VB -0.71 -0.37 -0.74
## PP.Ben_Score_PBFB PP.Ben_Score_PBPB PP.Ben_Score_VB
## PP.Risk_Score_GFFB 0.69 0.63 0.46
## PP.Risk_Score_GFPRB 0.67 0.55 0.39
## PP.Risk_Score_CBB -0.09 -0.09 0.14
## PP.Risk_Score_PBFB -0.50 -0.60 -0.55
## PP.Risk_Score_PBPB -0.31 -0.48 -0.53
## PP.Risk_Score_VB 0.17 -0.05 -0.21
## PP.Ben_Score_GFFB 0.24 0.09 0.06
## PP.Ben_Score_GFPRB -0.04 -0.07 0.08
## PP.Ben_Score_CBB 0.78 0.63 0.36
## PP.Ben_Score_PBFB 1.00 0.95 0.79
## PP.Ben_Score_PBPB 0.95 1.00 0.89
## PP.Ben_Score_VB 0.79 0.89 1.00
## PP.BehavInt1_GFFB 0.04 -0.10 -0.08
## PP.BehavInt2_GFFB 0.00 -0.11 -0.07
## PP.BehavInt3_GFFB 0.07 -0.07 -0.06
## PP.BehavInt4_GFFB 0.01 -0.12 -0.09
## PP.BehavInt1_GFPRB 0.94 0.98 0.86
## PP.BehavInt2_GFPRB 0.94 0.98 0.84
## PP.BehavInt3_GFPRB 0.95 0.99 0.86
## PP.BehavInt4_GFPRB 0.94 0.99 0.88
## PP.BehavInt1_CBB 0.81 0.67 0.39
## PP.BehavInt2_CBB 0.77 0.62 0.34
## PP.BehavInt3_CBB 0.80 0.65 0.37
## PP.BehavInt4_CBB 0.79 0.65 0.37
## PP.BehavInt1_PBPB 0.94 0.98 0.86
## PP.BehavInt2_PBPB 0.94 0.98 0.84
## PP.BehavInt3_PBPB 0.95 0.99 0.86
## PP.BehavInt4_PBPB 0.94 0.99 0.88
## PP.BehavInt1_PBFB 0.99 0.94 0.78
## PP.BehavInt2_PBFB 0.98 0.91 0.75
## PP.BehavInt3_PBFB 0.99 0.94 0.79
## PP.BehavInt4_PBFB 0.99 0.94 0.78
## PP.BehavInt1_VB 0.84 0.93 0.98
## PP.BehavInt2_VB 0.85 0.92 0.93
## PP.BehavInt3_VB 0.84 0.93 0.98
## PP.BehavInt4_VB 0.85 0.93 0.98
## PP.Nat_1_GFFB 0.02 -0.12 -0.12
## PP.Nat_4R_GFFB -0.75 -0.66 -0.49
## PP.Nat_2R_GFFB -0.80 -0.76 -0.59
## PP.Nat_3R_GFFB -0.71 -0.58 -0.38
## PP.Nat_1_GFPRB -0.14 -0.06 0.11
## PP.Nat_4R_GFPRB -0.53 -0.37 -0.21
## PP.Nat_2R_GFPRB -0.59 -0.43 -0.31
## PP.Nat_3R_GFPRB -0.69 -0.55 -0.36
## PP.Nat_1_CBB 0.66 0.49 0.22
## PP.Nat_4R_CBB 0.08 0.02 -0.27
## PP.Nat_2R_CBB -0.13 -0.27 -0.55
## PP.Nat_3R_CBB -0.27 -0.40 -0.62
## PP.Nat_1_PBPB 0.94 0.94 0.82
## PP.Nat_4R_PBPB 0.19 0.34 0.34
## PP.Nat_2R_PBPB 0.09 0.20 0.12
## PP.Nat_3R_PBPB -0.39 -0.36 -0.35
## PP.Nat_1_PBFB 0.96 0.87 0.67
## PP.Nat_4R_PBFB -0.48 -0.50 -0.40
## PP.Nat_2R_PBFB -0.06 -0.05 0.06
## PP.Nat_3R_PBFB 0.15 0.18 0.26
## PP.Nat_1_VB 0.78 0.88 0.93
## PP.Nat_4R_VB -0.03 0.17 0.33
## PP.Nat_2R_VB -0.23 -0.06 0.11
## PP.Nat_3R_VB -0.42 -0.30 -0.13
## PP.BehavInt1_GFFB PP.BehavInt2_GFFB PP.BehavInt3_GFFB
## PP.Risk_Score_GFFB -0.16 -0.23 -0.12
## PP.Risk_Score_GFPRB 0.01 -0.08 0.06
## PP.Risk_Score_CBB 0.37 0.35 0.38
## PP.Risk_Score_PBFB 0.48 0.41 0.48
## PP.Risk_Score_PBPB 0.53 0.45 0.54
## PP.Risk_Score_VB 0.52 0.42 0.55
## PP.Ben_Score_GFFB 0.96 0.92 0.97
## PP.Ben_Score_GFPRB 0.78 0.78 0.77
## PP.Ben_Score_CBB 0.42 0.35 0.45
## PP.Ben_Score_PBFB 0.04 0.00 0.07
## PP.Ben_Score_PBPB -0.10 -0.11 -0.07
## PP.Ben_Score_VB -0.08 -0.07 -0.06
## PP.BehavInt1_GFFB 1.00 0.98 0.99
## PP.BehavInt2_GFFB 0.98 1.00 0.97
## PP.BehavInt3_GFFB 0.99 0.97 1.00
## PP.BehavInt4_GFFB 0.99 0.97 0.99
## PP.BehavInt1_GFPRB -0.16 -0.17 -0.14
## PP.BehavInt2_GFPRB -0.16 -0.19 -0.13
## PP.BehavInt3_GFPRB -0.14 -0.15 -0.10
## PP.BehavInt4_GFPRB -0.13 -0.15 -0.10
## PP.BehavInt1_CBB 0.34 0.28 0.38
## PP.BehavInt2_CBB 0.40 0.33 0.43
## PP.BehavInt3_CBB 0.36 0.30 0.39
## PP.BehavInt4_CBB 0.36 0.29 0.39
## PP.BehavInt1_PBPB -0.16 -0.17 -0.14
## PP.BehavInt2_PBPB -0.16 -0.19 -0.13
## PP.BehavInt3_PBPB -0.14 -0.15 -0.10
## PP.BehavInt4_PBPB -0.13 -0.15 -0.10
## PP.BehavInt1_PBFB -0.04 -0.08 -0.01
## PP.BehavInt2_PBFB 0.01 -0.04 0.05
## PP.BehavInt3_PBFB 0.01 -0.03 0.04
## PP.BehavInt4_PBFB 0.01 -0.03 0.04
## PP.BehavInt1_VB -0.16 -0.15 -0.14
## PP.BehavInt2_VB -0.17 -0.19 -0.14
## PP.BehavInt3_VB -0.15 -0.14 -0.13
## PP.BehavInt4_VB -0.16 -0.16 -0.14
## PP.Nat_1_GFFB 0.92 0.90 0.92
## PP.Nat_4R_GFFB 0.02 0.10 -0.03
## PP.Nat_2R_GFFB 0.06 0.12 0.01
## PP.Nat_3R_GFFB -0.38 -0.29 -0.41
## PP.Nat_1_GFPRB 0.36 0.45 0.33
## PP.Nat_4R_GFPRB -0.22 -0.11 -0.26
## PP.Nat_2R_GFPRB -0.16 -0.06 -0.20
## PP.Nat_3R_GFPRB -0.26 -0.18 -0.30
## PP.Nat_1_CBB 0.46 0.37 0.50
## PP.Nat_4R_CBB -0.35 -0.37 -0.35
## PP.Nat_2R_CBB -0.16 -0.21 -0.15
## PP.Nat_3R_CBB -0.16 -0.23 -0.16
## PP.Nat_1_PBPB -0.03 -0.08 0.01
## PP.Nat_4R_PBPB -0.64 -0.60 -0.63
## PP.Nat_2R_PBPB -0.78 -0.77 -0.77
## PP.Nat_3R_PBPB -0.51 -0.54 -0.50
## PP.Nat_1_PBFB 0.09 0.03 0.12
## PP.Nat_4R_PBFB 0.53 0.54 0.52
## PP.Nat_2R_PBFB 0.57 0.59 0.56
## PP.Nat_3R_PBFB 0.51 0.54 0.49
## PP.Nat_1_VB -0.10 -0.10 -0.08
## PP.Nat_4R_VB -0.60 -0.54 -0.62
## PP.Nat_2R_VB -0.63 -0.54 -0.66
## PP.Nat_3R_VB -0.61 -0.55 -0.63
## PP.BehavInt4_GFFB PP.BehavInt1_GFPRB PP.BehavInt2_GFPRB
## PP.Risk_Score_GFFB -0.19 0.60 0.66
## PP.Risk_Score_GFPRB -0.01 0.51 0.58
## PP.Risk_Score_CBB 0.37 -0.15 -0.13
## PP.Risk_Score_PBFB 0.47 -0.66 -0.59
## PP.Risk_Score_PBPB 0.53 -0.54 -0.46
## PP.Risk_Score_VB 0.51 -0.11 -0.03
## PP.Ben_Score_GFFB 0.95 0.02 0.04
## PP.Ben_Score_GFPRB 0.78 -0.13 -0.15
## PP.Ben_Score_CBB 0.39 0.59 0.63
## PP.Ben_Score_PBFB 0.01 0.94 0.94
## PP.Ben_Score_PBPB -0.12 0.98 0.98
## PP.Ben_Score_VB -0.09 0.86 0.84
## PP.BehavInt1_GFFB 0.99 -0.16 -0.16
## PP.BehavInt2_GFFB 0.97 -0.17 -0.19
## PP.BehavInt3_GFFB 0.99 -0.14 -0.13
## PP.BehavInt4_GFFB 1.00 -0.18 -0.18
## PP.BehavInt1_GFPRB -0.18 1.00 0.98
## PP.BehavInt2_GFPRB -0.18 0.98 1.00
## PP.BehavInt3_GFPRB -0.15 0.99 0.98
## PP.BehavInt4_GFPRB -0.15 0.99 0.98
## PP.BehavInt1_CBB 0.31 0.65 0.69
## PP.BehavInt2_CBB 0.37 0.60 0.65
## PP.BehavInt3_CBB 0.33 0.63 0.66
## PP.BehavInt4_CBB 0.33 0.62 0.67
## PP.BehavInt1_PBPB -0.18 1.00 0.98
## PP.BehavInt2_PBPB -0.18 0.98 1.00
## PP.BehavInt3_PBPB -0.15 0.99 0.98
## PP.BehavInt4_PBPB -0.15 0.99 0.98
## PP.BehavInt1_PBFB -0.07 0.94 0.95
## PP.BehavInt2_PBFB -0.01 0.91 0.94
## PP.BehavInt3_PBFB -0.01 0.93 0.94
## PP.BehavInt4_PBFB -0.01 0.93 0.94
## PP.BehavInt1_VB -0.17 0.92 0.91
## PP.BehavInt2_VB -0.19 0.91 0.91
## PP.BehavInt3_VB -0.17 0.92 0.89
## PP.BehavInt4_VB -0.18 0.92 0.91
## PP.Nat_1_GFFB 0.92 -0.17 -0.17
## PP.Nat_4R_GFFB 0.04 -0.63 -0.69
## PP.Nat_2R_GFFB 0.08 -0.73 -0.77
## PP.Nat_3R_GFFB -0.35 -0.52 -0.57
## PP.Nat_1_GFPRB 0.37 -0.05 -0.14
## PP.Nat_4R_GFPRB -0.20 -0.31 -0.40
## PP.Nat_2R_GFPRB -0.15 -0.38 -0.46
## PP.Nat_3R_GFPRB -0.23 -0.50 -0.56
## PP.Nat_1_CBB 0.44 0.45 0.51
## PP.Nat_4R_CBB -0.35 0.07 0.09
## PP.Nat_2R_CBB -0.15 -0.23 -0.19
## PP.Nat_3R_CBB -0.15 -0.37 -0.32
## PP.Nat_1_PBPB -0.05 0.92 0.93
## PP.Nat_4R_PBPB -0.63 0.40 0.37
## PP.Nat_2R_PBPB -0.77 0.27 0.25
## PP.Nat_3R_PBPB -0.48 -0.31 -0.29
## PP.Nat_1_PBFB 0.07 0.85 0.87
## PP.Nat_4R_PBFB 0.52 -0.57 -0.56
## PP.Nat_2R_PBFB 0.55 -0.14 -0.12
## PP.Nat_3R_PBFB 0.49 0.10 0.08
## PP.Nat_1_VB -0.12 0.85 0.84
## PP.Nat_4R_VB -0.59 0.23 0.17
## PP.Nat_2R_VB -0.62 0.01 -0.05
## PP.Nat_3R_VB -0.59 -0.22 -0.26
## PP.BehavInt3_GFPRB PP.BehavInt4_GFPRB PP.BehavInt1_CBB
## PP.Risk_Score_GFFB 0.63 0.63 0.65
## PP.Risk_Score_GFPRB 0.56 0.54 0.67
## PP.Risk_Score_CBB -0.13 -0.10 -0.15
## PP.Risk_Score_PBFB -0.61 -0.61 -0.12
## PP.Risk_Score_PBPB -0.49 -0.49 0.13
## PP.Risk_Score_VB -0.05 -0.07 0.54
## PP.Ben_Score_GFFB 0.05 0.05 0.52
## PP.Ben_Score_GFPRB -0.11 -0.10 0.12
## PP.Ben_Score_CBB 0.63 0.60 0.98
## PP.Ben_Score_PBFB 0.95 0.94 0.81
## PP.Ben_Score_PBPB 0.99 0.99 0.67
## PP.Ben_Score_VB 0.86 0.88 0.39
## PP.BehavInt1_GFFB -0.14 -0.13 0.34
## PP.BehavInt2_GFFB -0.15 -0.15 0.28
## PP.BehavInt3_GFFB -0.10 -0.10 0.38
## PP.BehavInt4_GFFB -0.15 -0.15 0.31
## PP.BehavInt1_GFPRB 0.99 0.99 0.65
## PP.BehavInt2_GFPRB 0.98 0.98 0.69
## PP.BehavInt3_GFPRB 1.00 0.99 0.68
## PP.BehavInt4_GFPRB 0.99 1.00 0.66
## PP.BehavInt1_CBB 0.68 0.66 1.00
## PP.BehavInt2_CBB 0.63 0.61 0.99
## PP.BehavInt3_CBB 0.66 0.63 0.99
## PP.BehavInt4_CBB 0.66 0.63 0.99
## PP.BehavInt1_PBPB 0.99 0.99 0.65
## PP.BehavInt2_PBPB 0.98 0.98 0.69
## PP.BehavInt3_PBPB 1.00 0.99 0.68
## PP.BehavInt4_PBPB 0.99 1.00 0.66
## PP.BehavInt1_PBFB 0.95 0.94 0.79
## PP.BehavInt2_PBFB 0.92 0.91 0.82
## PP.BehavInt3_PBFB 0.94 0.94 0.80
## PP.BehavInt4_PBFB 0.95 0.94 0.81
## PP.BehavInt1_VB 0.92 0.93 0.45
## PP.BehavInt2_VB 0.91 0.92 0.47
## PP.BehavInt3_VB 0.92 0.93 0.43
## PP.BehavInt4_VB 0.92 0.93 0.45
## PP.Nat_1_GFFB -0.15 -0.15 0.34
## PP.Nat_4R_GFFB -0.66 -0.66 -0.71
## PP.Nat_2R_GFFB -0.76 -0.76 -0.71
## PP.Nat_3R_GFFB -0.56 -0.56 -0.79
## PP.Nat_1_GFPRB -0.08 -0.06 -0.20
## PP.Nat_4R_GFPRB -0.37 -0.35 -0.66
## PP.Nat_2R_GFPRB -0.44 -0.41 -0.64
## PP.Nat_3R_GFPRB -0.54 -0.52 -0.79
## PP.Nat_1_CBB 0.49 0.47 0.92
## PP.Nat_4R_CBB 0.07 0.02 0.23
## PP.Nat_2R_CBB -0.22 -0.27 0.13
## PP.Nat_3R_CBB -0.34 -0.39 -0.04
## PP.Nat_1_PBPB 0.94 0.93 0.72
## PP.Nat_4R_PBPB 0.36 0.35 -0.15
## PP.Nat_2R_PBPB 0.24 0.22 -0.21
## PP.Nat_3R_PBPB -0.33 -0.34 -0.48
## PP.Nat_1_PBFB 0.87 0.85 0.87
## PP.Nat_4R_PBFB -0.54 -0.51 -0.24
## PP.Nat_2R_PBFB -0.10 -0.08 0.07
## PP.Nat_3R_PBFB 0.13 0.16 0.16
## PP.Nat_1_VB 0.86 0.87 0.42
## PP.Nat_4R_VB 0.18 0.20 -0.46
## PP.Nat_2R_VB -0.06 -0.04 -0.59
## PP.Nat_3R_VB -0.29 -0.26 -0.70
## PP.BehavInt2_CBB PP.BehavInt3_CBB PP.BehavInt4_CBB
## PP.Risk_Score_GFFB 0.63 0.65 0.65
## PP.Risk_Score_GFPRB 0.68 0.69 0.67
## PP.Risk_Score_CBB -0.11 -0.13 -0.14
## PP.Risk_Score_PBFB -0.06 -0.09 -0.09
## PP.Risk_Score_PBPB 0.19 0.16 0.16
## PP.Risk_Score_VB 0.60 0.57 0.56
## PP.Ben_Score_GFFB 0.58 0.54 0.54
## PP.Ben_Score_GFPRB 0.16 0.13 0.14
## PP.Ben_Score_CBB 0.98 0.99 0.99
## PP.Ben_Score_PBFB 0.77 0.80 0.79
## PP.Ben_Score_PBPB 0.62 0.65 0.65
## PP.Ben_Score_VB 0.34 0.37 0.37
## PP.BehavInt1_GFFB 0.40 0.36 0.36
## PP.BehavInt2_GFFB 0.33 0.30 0.29
## PP.BehavInt3_GFFB 0.43 0.39 0.39
## PP.BehavInt4_GFFB 0.37 0.33 0.33
## PP.BehavInt1_GFPRB 0.60 0.63 0.62
## PP.BehavInt2_GFPRB 0.65 0.66 0.67
## PP.BehavInt3_GFPRB 0.63 0.66 0.66
## PP.BehavInt4_GFPRB 0.61 0.63 0.63
## PP.BehavInt1_CBB 0.99 0.99 0.99
## PP.BehavInt2_CBB 1.00 0.99 0.99
## PP.BehavInt3_CBB 0.99 1.00 0.99
## PP.BehavInt4_CBB 0.99 0.99 1.00
## PP.BehavInt1_PBPB 0.60 0.63 0.62
## PP.BehavInt2_PBPB 0.65 0.66 0.67
## PP.BehavInt3_PBPB 0.63 0.66 0.66
## PP.BehavInt4_PBPB 0.61 0.63 0.63
## PP.BehavInt1_PBFB 0.76 0.78 0.77
## PP.BehavInt2_PBFB 0.79 0.81 0.80
## PP.BehavInt3_PBFB 0.76 0.79 0.78
## PP.BehavInt4_PBFB 0.77 0.79 0.79
## PP.BehavInt1_VB 0.40 0.43 0.43
## PP.BehavInt2_VB 0.43 0.45 0.44
## PP.BehavInt3_VB 0.38 0.41 0.41
## PP.BehavInt4_VB 0.40 0.43 0.43
## PP.Nat_1_GFFB 0.40 0.36 0.36
## PP.Nat_4R_GFFB -0.70 -0.72 -0.71
## PP.Nat_2R_GFFB -0.69 -0.71 -0.71
## PP.Nat_3R_GFFB -0.81 -0.81 -0.81
## PP.Nat_1_GFPRB -0.21 -0.22 -0.21
## PP.Nat_4R_GFPRB -0.70 -0.69 -0.68
## PP.Nat_2R_GFPRB -0.67 -0.66 -0.65
## PP.Nat_3R_GFPRB -0.81 -0.81 -0.80
## PP.Nat_1_CBB 0.95 0.93 0.93
## PP.Nat_4R_CBB 0.22 0.22 0.23
## PP.Nat_2R_CBB 0.16 0.14 0.14
## PP.Nat_3R_CBB -0.01 -0.02 -0.02
## PP.Nat_1_PBPB 0.70 0.71 0.72
## PP.Nat_4R_PBPB -0.19 -0.17 -0.16
## PP.Nat_2R_PBPB -0.25 -0.22 -0.22
## PP.Nat_3R_PBPB -0.46 -0.47 -0.47
## PP.Nat_1_PBFB 0.85 0.86 0.85
## PP.Nat_4R_PBFB -0.21 -0.22 -0.23
## PP.Nat_2R_PBFB 0.10 0.09 0.08
## PP.Nat_3R_PBFB 0.16 0.16 0.16
## PP.Nat_1_VB 0.38 0.39 0.39
## PP.Nat_4R_VB -0.51 -0.50 -0.48
## PP.Nat_2R_VB -0.65 -0.63 -0.63
## PP.Nat_3R_VB -0.73 -0.72 -0.72
## PP.BehavInt1_PBPB PP.BehavInt2_PBPB PP.BehavInt3_PBPB
## PP.Risk_Score_GFFB 0.60 0.66 0.63
## PP.Risk_Score_GFPRB 0.51 0.58 0.56
## PP.Risk_Score_CBB -0.15 -0.13 -0.13
## PP.Risk_Score_PBFB -0.66 -0.59 -0.61
## PP.Risk_Score_PBPB -0.54 -0.46 -0.49
## PP.Risk_Score_VB -0.11 -0.03 -0.05
## PP.Ben_Score_GFFB 0.02 0.04 0.05
## PP.Ben_Score_GFPRB -0.13 -0.15 -0.11
## PP.Ben_Score_CBB 0.59 0.63 0.63
## PP.Ben_Score_PBFB 0.94 0.94 0.95
## PP.Ben_Score_PBPB 0.98 0.98 0.99
## PP.Ben_Score_VB 0.86 0.84 0.86
## PP.BehavInt1_GFFB -0.16 -0.16 -0.14
## PP.BehavInt2_GFFB -0.17 -0.19 -0.15
## PP.BehavInt3_GFFB -0.14 -0.13 -0.10
## PP.BehavInt4_GFFB -0.18 -0.18 -0.15
## PP.BehavInt1_GFPRB 1.00 0.98 0.99
## PP.BehavInt2_GFPRB 0.98 1.00 0.98
## PP.BehavInt3_GFPRB 0.99 0.98 1.00
## PP.BehavInt4_GFPRB 0.99 0.98 0.99
## PP.BehavInt1_CBB 0.65 0.69 0.68
## PP.BehavInt2_CBB 0.60 0.65 0.63
## PP.BehavInt3_CBB 0.63 0.66 0.66
## PP.BehavInt4_CBB 0.62 0.67 0.66
## PP.BehavInt1_PBPB 1.00 0.98 0.99
## PP.BehavInt2_PBPB 0.98 1.00 0.98
## PP.BehavInt3_PBPB 0.99 0.98 1.00
## PP.BehavInt4_PBPB 0.99 0.98 0.99
## PP.BehavInt1_PBFB 0.94 0.95 0.95
## PP.BehavInt2_PBFB 0.91 0.94 0.92
## PP.BehavInt3_PBFB 0.93 0.94 0.94
## PP.BehavInt4_PBFB 0.93 0.94 0.95
## PP.BehavInt1_VB 0.92 0.91 0.92
## PP.BehavInt2_VB 0.91 0.91 0.91
## PP.BehavInt3_VB 0.92 0.89 0.92
## PP.BehavInt4_VB 0.92 0.91 0.92
## PP.Nat_1_GFFB -0.17 -0.17 -0.15
## PP.Nat_4R_GFFB -0.63 -0.69 -0.66
## PP.Nat_2R_GFFB -0.73 -0.77 -0.76
## PP.Nat_3R_GFFB -0.52 -0.57 -0.56
## PP.Nat_1_GFPRB -0.05 -0.14 -0.08
## PP.Nat_4R_GFPRB -0.31 -0.40 -0.37
## PP.Nat_2R_GFPRB -0.38 -0.46 -0.44
## PP.Nat_3R_GFPRB -0.50 -0.56 -0.54
## PP.Nat_1_CBB 0.45 0.51 0.49
## PP.Nat_4R_CBB 0.07 0.09 0.07
## PP.Nat_2R_CBB -0.23 -0.19 -0.22
## PP.Nat_3R_CBB -0.37 -0.32 -0.34
## PP.Nat_1_PBPB 0.92 0.93 0.94
## PP.Nat_4R_PBPB 0.40 0.37 0.36
## PP.Nat_2R_PBPB 0.27 0.25 0.24
## PP.Nat_3R_PBPB -0.31 -0.29 -0.33
## PP.Nat_1_PBFB 0.85 0.87 0.87
## PP.Nat_4R_PBFB -0.57 -0.56 -0.54
## PP.Nat_2R_PBFB -0.14 -0.12 -0.10
## PP.Nat_3R_PBFB 0.10 0.08 0.13
## PP.Nat_1_VB 0.85 0.84 0.86
## PP.Nat_4R_VB 0.23 0.17 0.18
## PP.Nat_2R_VB 0.01 -0.05 -0.06
## PP.Nat_3R_VB -0.22 -0.26 -0.29
## PP.BehavInt4_PBPB PP.BehavInt1_PBFB PP.BehavInt2_PBFB
## PP.Risk_Score_GFFB 0.63 0.75 0.74
## PP.Risk_Score_GFPRB 0.54 0.72 0.73
## PP.Risk_Score_CBB -0.10 -0.07 -0.07
## PP.Risk_Score_PBFB -0.61 -0.49 -0.45
## PP.Risk_Score_PBPB -0.49 -0.29 -0.24
## PP.Risk_Score_VB -0.07 0.18 0.23
## PP.Ben_Score_GFFB 0.05 0.17 0.23
## PP.Ben_Score_GFPRB -0.10 -0.12 -0.09
## PP.Ben_Score_CBB 0.60 0.76 0.79
## PP.Ben_Score_PBFB 0.94 0.99 0.98
## PP.Ben_Score_PBPB 0.99 0.94 0.91
## PP.Ben_Score_VB 0.88 0.78 0.75
## PP.BehavInt1_GFFB -0.13 -0.04 0.01
## PP.BehavInt2_GFFB -0.15 -0.08 -0.04
## PP.BehavInt3_GFFB -0.10 -0.01 0.05
## PP.BehavInt4_GFFB -0.15 -0.07 -0.01
## PP.BehavInt1_GFPRB 0.99 0.94 0.91
## PP.BehavInt2_GFPRB 0.98 0.95 0.94
## PP.BehavInt3_GFPRB 0.99 0.95 0.92
## PP.BehavInt4_GFPRB 1.00 0.94 0.91
## PP.BehavInt1_CBB 0.66 0.79 0.82
## PP.BehavInt2_CBB 0.61 0.76 0.79
## PP.BehavInt3_CBB 0.63 0.78 0.81
## PP.BehavInt4_CBB 0.63 0.77 0.80
## PP.BehavInt1_PBPB 0.99 0.94 0.91
## PP.BehavInt2_PBPB 0.98 0.95 0.94
## PP.BehavInt3_PBPB 0.99 0.95 0.92
## PP.BehavInt4_PBPB 1.00 0.94 0.91
## PP.BehavInt1_PBFB 0.94 1.00 0.99
## PP.BehavInt2_PBFB 0.91 0.99 1.00
## PP.BehavInt3_PBFB 0.94 0.99 0.98
## PP.BehavInt4_PBFB 0.94 0.99 0.98
## PP.BehavInt1_VB 0.93 0.84 0.81
## PP.BehavInt2_VB 0.92 0.86 0.84
## PP.BehavInt3_VB 0.93 0.83 0.80
## PP.BehavInt4_VB 0.93 0.84 0.81
## PP.Nat_1_GFFB -0.15 -0.06 0.00
## PP.Nat_4R_GFFB -0.66 -0.79 -0.79
## PP.Nat_2R_GFFB -0.76 -0.83 -0.80
## PP.Nat_3R_GFFB -0.56 -0.71 -0.74
## PP.Nat_1_GFPRB -0.06 -0.23 -0.23
## PP.Nat_4R_GFPRB -0.35 -0.56 -0.60
## PP.Nat_2R_GFPRB -0.41 -0.62 -0.66
## PP.Nat_3R_GFPRB -0.52 -0.70 -0.74
## PP.Nat_1_CBB 0.47 0.64 0.69
## PP.Nat_4R_CBB 0.02 0.08 0.11
## PP.Nat_2R_CBB -0.27 -0.13 -0.07
## PP.Nat_3R_CBB -0.39 -0.26 -0.20
## PP.Nat_1_PBPB 0.93 0.93 0.93
## PP.Nat_4R_PBPB 0.35 0.21 0.19
## PP.Nat_2R_PBPB 0.22 0.12 0.09
## PP.Nat_3R_PBPB -0.34 -0.34 -0.32
## PP.Nat_1_PBFB 0.85 0.95 0.96
## PP.Nat_4R_PBFB -0.51 -0.49 -0.48
## PP.Nat_2R_PBFB -0.08 -0.09 -0.08
## PP.Nat_3R_PBFB 0.16 0.10 0.09
## PP.Nat_1_VB 0.87 0.77 0.74
## PP.Nat_4R_VB 0.20 -0.02 -0.06
## PP.Nat_2R_VB -0.04 -0.21 -0.26
## PP.Nat_3R_VB -0.26 -0.37 -0.42
## PP.BehavInt3_PBFB PP.BehavInt4_PBFB PP.BehavInt1_VB
## PP.Risk_Score_GFFB 0.72 0.72 0.52
## PP.Risk_Score_GFPRB 0.69 0.68 0.45
## PP.Risk_Score_CBB -0.07 -0.09 0.05
## PP.Risk_Score_PBFB -0.48 -0.49 -0.60
## PP.Risk_Score_PBPB -0.29 -0.30 -0.55
## PP.Risk_Score_VB 0.18 0.18 -0.19
## PP.Ben_Score_GFFB 0.23 0.23 0.00
## PP.Ben_Score_GFPRB -0.05 -0.06 -0.01
## PP.Ben_Score_CBB 0.77 0.78 0.41
## PP.Ben_Score_PBFB 0.99 0.99 0.84
## PP.Ben_Score_PBPB 0.94 0.94 0.93
## PP.Ben_Score_VB 0.79 0.78 0.98
## PP.BehavInt1_GFFB 0.01 0.01 -0.16
## PP.BehavInt2_GFFB -0.03 -0.03 -0.15
## PP.BehavInt3_GFFB 0.04 0.04 -0.14
## PP.BehavInt4_GFFB -0.01 -0.01 -0.17
## PP.BehavInt1_GFPRB 0.93 0.93 0.92
## PP.BehavInt2_GFPRB 0.94 0.94 0.91
## PP.BehavInt3_GFPRB 0.94 0.95 0.92
## PP.BehavInt4_GFPRB 0.94 0.94 0.93
## PP.BehavInt1_CBB 0.80 0.81 0.45
## PP.BehavInt2_CBB 0.76 0.77 0.40
## PP.BehavInt3_CBB 0.79 0.79 0.43
## PP.BehavInt4_CBB 0.78 0.79 0.43
## PP.BehavInt1_PBPB 0.93 0.93 0.92
## PP.BehavInt2_PBPB 0.94 0.94 0.91
## PP.BehavInt3_PBPB 0.94 0.95 0.92
## PP.BehavInt4_PBPB 0.94 0.94 0.93
## PP.BehavInt1_PBFB 0.99 0.99 0.84
## PP.BehavInt2_PBFB 0.98 0.98 0.81
## PP.BehavInt3_PBFB 1.00 1.00 0.85
## PP.BehavInt4_PBFB 1.00 1.00 0.84
## PP.BehavInt1_VB 0.85 0.84 1.00
## PP.BehavInt2_VB 0.86 0.85 0.97
## PP.BehavInt3_VB 0.84 0.84 0.99
## PP.BehavInt4_VB 0.85 0.84 0.99
## PP.Nat_1_GFFB -0.01 0.00 -0.18
## PP.Nat_4R_GFFB -0.78 -0.77 -0.54
## PP.Nat_2R_GFFB -0.81 -0.80 -0.63
## PP.Nat_3R_GFFB -0.72 -0.72 -0.42
## PP.Nat_1_GFPRB -0.17 -0.16 0.03
## PP.Nat_4R_GFPRB -0.54 -0.54 -0.26
## PP.Nat_2R_GFPRB -0.61 -0.61 -0.35
## PP.Nat_3R_GFPRB -0.70 -0.71 -0.42
## PP.Nat_1_CBB 0.65 0.66 0.27
## PP.Nat_4R_CBB 0.07 0.09 -0.15
## PP.Nat_2R_CBB -0.14 -0.12 -0.44
## PP.Nat_3R_CBB -0.28 -0.25 -0.51
## PP.Nat_1_PBPB 0.93 0.93 0.86
## PP.Nat_4R_PBPB 0.17 0.19 0.40
## PP.Nat_2R_PBPB 0.08 0.10 0.21
## PP.Nat_3R_PBPB -0.38 -0.37 -0.30
## PP.Nat_1_PBFB 0.95 0.96 0.73
## PP.Nat_4R_PBFB -0.47 -0.48 -0.49
## PP.Nat_2R_PBFB -0.06 -0.08 -0.04
## PP.Nat_3R_PBFB 0.14 0.13 0.18
## PP.Nat_1_VB 0.78 0.78 0.93
## PP.Nat_4R_VB -0.02 -0.02 0.33
## PP.Nat_2R_VB -0.22 -0.22 0.10
## PP.Nat_3R_VB -0.40 -0.40 -0.13
## PP.BehavInt2_VB PP.BehavInt3_VB PP.BehavInt4_VB
## PP.Risk_Score_GFFB 0.58 0.49 0.52
## PP.Risk_Score_GFPRB 0.55 0.41 0.45
## PP.Risk_Score_CBB 0.09 0.05 0.06
## PP.Risk_Score_PBFB -0.56 -0.63 -0.59
## PP.Risk_Score_PBPB -0.49 -0.58 -0.55
## PP.Risk_Score_VB -0.11 -0.23 -0.19
## PP.Ben_Score_GFFB 0.01 0.00 0.00
## PP.Ben_Score_GFPRB -0.07 0.00 -0.01
## PP.Ben_Score_CBB 0.43 0.40 0.41
## PP.Ben_Score_PBFB 0.85 0.84 0.85
## PP.Ben_Score_PBPB 0.92 0.93 0.93
## PP.Ben_Score_VB 0.93 0.98 0.98
## PP.BehavInt1_GFFB -0.17 -0.15 -0.16
## PP.BehavInt2_GFFB -0.19 -0.14 -0.16
## PP.BehavInt3_GFFB -0.14 -0.13 -0.14
## PP.BehavInt4_GFFB -0.19 -0.17 -0.18
## PP.BehavInt1_GFPRB 0.91 0.92 0.92
## PP.BehavInt2_GFPRB 0.91 0.89 0.91
## PP.BehavInt3_GFPRB 0.91 0.92 0.92
## PP.BehavInt4_GFPRB 0.92 0.93 0.93
## PP.BehavInt1_CBB 0.47 0.43 0.45
## PP.BehavInt2_CBB 0.43 0.38 0.40
## PP.BehavInt3_CBB 0.45 0.41 0.43
## PP.BehavInt4_CBB 0.44 0.41 0.43
## PP.BehavInt1_PBPB 0.91 0.92 0.92
## PP.BehavInt2_PBPB 0.91 0.89 0.91
## PP.BehavInt3_PBPB 0.91 0.92 0.92
## PP.BehavInt4_PBPB 0.92 0.93 0.93
## PP.BehavInt1_PBFB 0.86 0.83 0.84
## PP.BehavInt2_PBFB 0.84 0.80 0.81
## PP.BehavInt3_PBFB 0.86 0.84 0.85
## PP.BehavInt4_PBFB 0.85 0.84 0.84
## PP.BehavInt1_VB 0.97 0.99 0.99
## PP.BehavInt2_VB 1.00 0.95 0.97
## PP.BehavInt3_VB 0.95 1.00 0.99
## PP.BehavInt4_VB 0.97 0.99 1.00
## PP.Nat_1_GFFB -0.20 -0.18 -0.18
## PP.Nat_4R_GFFB -0.61 -0.53 -0.56
## PP.Nat_2R_GFFB -0.66 -0.63 -0.64
## PP.Nat_3R_GFFB -0.47 -0.40 -0.42
## PP.Nat_1_GFPRB -0.08 0.07 0.03
## PP.Nat_4R_GFPRB -0.37 -0.22 -0.27
## PP.Nat_2R_GFPRB -0.47 -0.32 -0.36
## PP.Nat_3R_GFPRB -0.51 -0.38 -0.42
## PP.Nat_1_CBB 0.32 0.25 0.27
## PP.Nat_4R_CBB -0.13 -0.17 -0.17
## PP.Nat_2R_CBB -0.38 -0.47 -0.45
## PP.Nat_3R_CBB -0.46 -0.55 -0.52
## PP.Nat_1_PBPB 0.88 0.85 0.86
## PP.Nat_4R_PBPB 0.43 0.40 0.39
## PP.Nat_2R_PBPB 0.26 0.22 0.22
## PP.Nat_3R_PBPB -0.18 -0.29 -0.28
## PP.Nat_1_PBFB 0.76 0.72 0.72
## PP.Nat_4R_PBFB -0.48 -0.48 -0.47
## PP.Nat_2R_PBFB -0.09 -0.05 -0.03
## PP.Nat_3R_PBFB 0.11 0.17 0.17
## PP.Nat_1_VB 0.91 0.93 0.93
## PP.Nat_4R_VB 0.29 0.35 0.32
## PP.Nat_2R_VB 0.05 0.13 0.09
## PP.Nat_3R_VB -0.15 -0.10 -0.13
## PP.Nat_1_GFFB PP.Nat_4R_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB
## PP.Risk_Score_GFFB -0.16 -0.94 -0.90 -0.77
## PP.Risk_Score_GFPRB -0.03 -0.90 -0.80 -0.80
## PP.Risk_Score_CBB 0.27 -0.20 -0.13 -0.26
## PP.Risk_Score_PBFB 0.45 0.03 0.14 -0.14
## PP.Risk_Score_PBPB 0.51 -0.15 -0.01 -0.32
## PP.Risk_Score_VB 0.52 -0.54 -0.39 -0.69
## PP.Ben_Score_GFFB 0.89 -0.20 -0.15 -0.56
## PP.Ben_Score_GFPRB 0.77 0.07 0.05 -0.24
## PP.Ben_Score_CBB 0.41 -0.73 -0.72 -0.84
## PP.Ben_Score_PBFB 0.02 -0.75 -0.80 -0.71
## PP.Ben_Score_PBPB -0.12 -0.66 -0.76 -0.58
## PP.Ben_Score_VB -0.12 -0.49 -0.59 -0.38
## PP.BehavInt1_GFFB 0.92 0.02 0.06 -0.38
## PP.BehavInt2_GFFB 0.90 0.10 0.12 -0.29
## PP.BehavInt3_GFFB 0.92 -0.03 0.01 -0.41
## PP.BehavInt4_GFFB 0.92 0.04 0.08 -0.35
## PP.BehavInt1_GFPRB -0.17 -0.63 -0.73 -0.52
## PP.BehavInt2_GFPRB -0.17 -0.69 -0.77 -0.57
## PP.BehavInt3_GFPRB -0.15 -0.66 -0.76 -0.56
## PP.BehavInt4_GFPRB -0.15 -0.66 -0.76 -0.56
## PP.BehavInt1_CBB 0.34 -0.71 -0.71 -0.79
## PP.BehavInt2_CBB 0.40 -0.70 -0.69 -0.81
## PP.BehavInt3_CBB 0.36 -0.72 -0.71 -0.81
## PP.BehavInt4_CBB 0.36 -0.71 -0.71 -0.81
## PP.BehavInt1_PBPB -0.17 -0.63 -0.73 -0.52
## PP.BehavInt2_PBPB -0.17 -0.69 -0.77 -0.57
## PP.BehavInt3_PBPB -0.15 -0.66 -0.76 -0.56
## PP.BehavInt4_PBPB -0.15 -0.66 -0.76 -0.56
## PP.BehavInt1_PBFB -0.06 -0.79 -0.83 -0.71
## PP.BehavInt2_PBFB 0.00 -0.79 -0.80 -0.74
## PP.BehavInt3_PBFB -0.01 -0.78 -0.81 -0.72
## PP.BehavInt4_PBFB 0.00 -0.77 -0.80 -0.72
## PP.BehavInt1_VB -0.18 -0.54 -0.63 -0.42
## PP.BehavInt2_VB -0.20 -0.61 -0.66 -0.47
## PP.BehavInt3_VB -0.18 -0.53 -0.63 -0.40
## PP.BehavInt4_VB -0.18 -0.56 -0.64 -0.42
## PP.Nat_1_GFFB 1.00 0.05 0.07 -0.36
## PP.Nat_4R_GFFB 0.05 1.00 0.93 0.85
## PP.Nat_2R_GFFB 0.07 0.93 1.00 0.80
## PP.Nat_3R_GFFB -0.36 0.85 0.80 1.00
## PP.Nat_1_GFPRB 0.45 0.41 0.28 0.19
## PP.Nat_4R_GFPRB -0.18 0.82 0.66 0.79
## PP.Nat_2R_GFPRB -0.13 0.84 0.69 0.79
## PP.Nat_3R_GFPRB -0.24 0.83 0.71 0.88
## PP.Nat_1_CBB 0.45 -0.72 -0.67 -0.85
## PP.Nat_4R_CBB -0.24 0.07 0.08 0.10
## PP.Nat_2R_CBB -0.08 0.11 0.23 0.09
## PP.Nat_3R_CBB -0.10 0.16 0.30 0.14
## PP.Nat_1_PBPB -0.04 -0.72 -0.77 -0.68
## PP.Nat_4R_PBPB -0.65 0.06 0.03 0.27
## PP.Nat_2R_PBPB -0.74 0.03 0.03 0.31
## PP.Nat_3R_PBPB -0.54 0.19 0.32 0.40
## PP.Nat_1_PBFB 0.07 -0.80 -0.81 -0.78
## PP.Nat_4R_PBFB 0.53 0.19 0.23 -0.03
## PP.Nat_2R_PBFB 0.58 -0.05 -0.12 -0.28
## PP.Nat_3R_PBFB 0.54 -0.06 -0.17 -0.31
## PP.Nat_1_VB -0.15 -0.51 -0.57 -0.39
## PP.Nat_4R_VB -0.63 0.34 0.24 0.54
## PP.Nat_2R_VB -0.66 0.42 0.35 0.65
## PP.Nat_3R_VB -0.64 0.41 0.40 0.65
## PP.Nat_1_GFPRB PP.Nat_4R_GFPRB PP.Nat_2R_GFPRB
## PP.Risk_Score_GFFB -0.49 -0.81 -0.82
## PP.Risk_Score_GFPRB -0.59 -0.93 -0.92
## PP.Risk_Score_CBB 0.02 -0.35 -0.33
## PP.Risk_Score_PBFB -0.12 -0.32 -0.20
## PP.Risk_Score_PBPB -0.27 -0.51 -0.39
## PP.Risk_Score_VB -0.36 -0.83 -0.74
## PP.Ben_Score_GFFB 0.23 -0.41 -0.37
## PP.Ben_Score_GFPRB 0.63 0.00 0.01
## PP.Ben_Score_CBB -0.20 -0.72 -0.70
## PP.Ben_Score_PBFB -0.14 -0.53 -0.59
## PP.Ben_Score_PBPB -0.06 -0.37 -0.43
## PP.Ben_Score_VB 0.11 -0.21 -0.31
## PP.BehavInt1_GFFB 0.36 -0.22 -0.16
## PP.BehavInt2_GFFB 0.45 -0.11 -0.06
## PP.BehavInt3_GFFB 0.33 -0.26 -0.20
## PP.BehavInt4_GFFB 0.37 -0.20 -0.15
## PP.BehavInt1_GFPRB -0.05 -0.31 -0.38
## PP.BehavInt2_GFPRB -0.14 -0.40 -0.46
## PP.BehavInt3_GFPRB -0.08 -0.37 -0.44
## PP.BehavInt4_GFPRB -0.06 -0.35 -0.41
## PP.BehavInt1_CBB -0.20 -0.66 -0.64
## PP.BehavInt2_CBB -0.21 -0.70 -0.67
## PP.BehavInt3_CBB -0.22 -0.69 -0.66
## PP.BehavInt4_CBB -0.21 -0.68 -0.65
## PP.BehavInt1_PBPB -0.05 -0.31 -0.38
## PP.BehavInt2_PBPB -0.14 -0.40 -0.46
## PP.BehavInt3_PBPB -0.08 -0.37 -0.44
## PP.BehavInt4_PBPB -0.06 -0.35 -0.41
## PP.BehavInt1_PBFB -0.23 -0.56 -0.62
## PP.BehavInt2_PBFB -0.23 -0.60 -0.66
## PP.BehavInt3_PBFB -0.17 -0.54 -0.61
## PP.BehavInt4_PBFB -0.16 -0.54 -0.61
## PP.BehavInt1_VB 0.03 -0.26 -0.35
## PP.BehavInt2_VB -0.08 -0.37 -0.47
## PP.BehavInt3_VB 0.07 -0.22 -0.32
## PP.BehavInt4_VB 0.03 -0.27 -0.36
## PP.Nat_1_GFFB 0.45 -0.18 -0.13
## PP.Nat_4R_GFFB 0.41 0.82 0.84
## PP.Nat_2R_GFFB 0.28 0.66 0.69
## PP.Nat_3R_GFFB 0.19 0.79 0.79
## PP.Nat_1_GFPRB 1.00 0.57 0.53
## PP.Nat_4R_GFPRB 0.57 1.00 0.95
## PP.Nat_2R_GFPRB 0.53 0.95 1.00
## PP.Nat_3R_GFPRB 0.38 0.89 0.90
## PP.Nat_1_CBB -0.28 -0.77 -0.74
## PP.Nat_4R_CBB -0.29 0.07 0.03
## PP.Nat_2R_CBB -0.39 -0.07 -0.06
## PP.Nat_3R_CBB -0.39 -0.05 -0.04
## PP.Nat_1_PBPB -0.19 -0.52 -0.60
## PP.Nat_4R_PBPB -0.08 0.31 0.18
## PP.Nat_2R_PBPB -0.19 0.26 0.15
## PP.Nat_3R_PBPB -0.45 0.12 0.06
## PP.Nat_1_PBFB -0.26 -0.65 -0.70
## PP.Nat_4R_PBFB 0.36 0.01 0.11
## PP.Nat_2R_PBFB 0.37 -0.16 -0.06
## PP.Nat_3R_PBFB 0.51 -0.05 0.00
## PP.Nat_1_VB 0.04 -0.25 -0.34
## PP.Nat_4R_VB 0.12 0.60 0.49
## PP.Nat_2R_VB 0.14 0.70 0.61
## PP.Nat_3R_VB 0.02 0.59 0.54
## PP.Nat_3R_GFPRB PP.Nat_1_CBB PP.Nat_4R_CBB PP.Nat_2R_CBB
## PP.Risk_Score_GFFB -0.79 0.64 -0.02 -0.10
## PP.Risk_Score_GFPRB -0.87 0.71 -0.07 -0.03
## PP.Risk_Score_CBB -0.19 0.01 -0.82 -0.60
## PP.Risk_Score_PBFB -0.09 0.15 -0.36 -0.01
## PP.Risk_Score_PBPB -0.29 0.38 -0.21 0.14
## PP.Risk_Score_VB -0.71 0.73 -0.08 0.18
## PP.Ben_Score_GFFB -0.46 0.64 -0.31 -0.13
## PP.Ben_Score_GFPRB -0.09 0.21 -0.41 -0.34
## PP.Ben_Score_CBB -0.84 0.94 0.15 0.10
## PP.Ben_Score_PBFB -0.69 0.66 0.08 -0.13
## PP.Ben_Score_PBPB -0.55 0.49 0.02 -0.27
## PP.Ben_Score_VB -0.36 0.22 -0.27 -0.55
## PP.BehavInt1_GFFB -0.26 0.46 -0.35 -0.16
## PP.BehavInt2_GFFB -0.18 0.37 -0.37 -0.21
## PP.BehavInt3_GFFB -0.30 0.50 -0.35 -0.15
## PP.BehavInt4_GFFB -0.23 0.44 -0.35 -0.15
## PP.BehavInt1_GFPRB -0.50 0.45 0.07 -0.23
## PP.BehavInt2_GFPRB -0.56 0.51 0.09 -0.19
## PP.BehavInt3_GFPRB -0.54 0.49 0.07 -0.22
## PP.BehavInt4_GFPRB -0.52 0.47 0.02 -0.27
## PP.BehavInt1_CBB -0.79 0.92 0.23 0.13
## PP.BehavInt2_CBB -0.81 0.95 0.22 0.16
## PP.BehavInt3_CBB -0.81 0.93 0.22 0.14
## PP.BehavInt4_CBB -0.80 0.93 0.23 0.14
## PP.BehavInt1_PBPB -0.50 0.45 0.07 -0.23
## PP.BehavInt2_PBPB -0.56 0.51 0.09 -0.19
## PP.BehavInt3_PBPB -0.54 0.49 0.07 -0.22
## PP.BehavInt4_PBPB -0.52 0.47 0.02 -0.27
## PP.BehavInt1_PBFB -0.70 0.64 0.08 -0.13
## PP.BehavInt2_PBFB -0.74 0.69 0.11 -0.07
## PP.BehavInt3_PBFB -0.70 0.65 0.07 -0.14
## PP.BehavInt4_PBFB -0.71 0.66 0.09 -0.12
## PP.BehavInt1_VB -0.42 0.27 -0.15 -0.44
## PP.BehavInt2_VB -0.51 0.32 -0.13 -0.38
## PP.BehavInt3_VB -0.38 0.25 -0.17 -0.47
## PP.BehavInt4_VB -0.42 0.27 -0.17 -0.45
## PP.Nat_1_GFFB -0.24 0.45 -0.24 -0.08
## PP.Nat_4R_GFFB 0.83 -0.72 0.07 0.11
## PP.Nat_2R_GFFB 0.71 -0.67 0.08 0.23
## PP.Nat_3R_GFFB 0.88 -0.85 0.10 0.09
## PP.Nat_1_GFPRB 0.38 -0.28 -0.29 -0.39
## PP.Nat_4R_GFPRB 0.89 -0.77 0.07 -0.07
## PP.Nat_2R_GFPRB 0.90 -0.74 0.03 -0.06
## PP.Nat_3R_GFPRB 1.00 -0.84 -0.03 -0.06
## PP.Nat_1_CBB -0.84 1.00 0.18 0.19
## PP.Nat_4R_CBB -0.03 0.18 1.00 0.85
## PP.Nat_2R_CBB -0.06 0.19 0.85 1.00
## PP.Nat_3R_CBB 0.04 0.07 0.73 0.91
## PP.Nat_1_PBPB -0.68 0.62 0.07 -0.15
## PP.Nat_4R_PBPB 0.14 -0.29 0.36 0.10
## PP.Nat_2R_PBPB 0.17 -0.33 0.47 0.33
## PP.Nat_3R_PBPB 0.25 -0.37 0.24 0.38
## PP.Nat_1_PBFB -0.78 0.78 0.16 0.00
## PP.Nat_4R_PBFB 0.12 -0.12 -0.56 -0.33
## PP.Nat_2R_PBFB -0.12 0.14 -0.65 -0.58
## PP.Nat_3R_PBFB -0.12 0.14 -0.49 -0.56
## PP.Nat_1_VB -0.41 0.28 -0.17 -0.42
## PP.Nat_4R_VB 0.50 -0.61 0.10 -0.15
## PP.Nat_2R_VB 0.63 -0.74 0.07 -0.10
## PP.Nat_3R_VB 0.63 -0.74 0.01 -0.06
## PP.Nat_3R_CBB PP.Nat_1_PBPB PP.Nat_4R_PBPB PP.Nat_2R_PBPB
## PP.Risk_Score_GFFB -0.16 0.67 -0.06 -0.02
## PP.Risk_Score_GFPRB -0.08 0.66 -0.12 -0.10
## PP.Risk_Score_CBB -0.44 -0.06 -0.51 -0.54
## PP.Risk_Score_PBFB 0.12 -0.47 -0.76 -0.67
## PP.Risk_Score_PBPB 0.24 -0.33 -0.79 -0.68
## PP.Risk_Score_VB 0.18 0.12 -0.65 -0.58
## PP.Ben_Score_GFFB -0.16 0.18 -0.60 -0.73
## PP.Ben_Score_GFPRB -0.31 -0.06 -0.44 -0.60
## PP.Ben_Score_CBB -0.06 0.70 -0.23 -0.28
## PP.Ben_Score_PBFB -0.27 0.94 0.19 0.09
## PP.Ben_Score_PBPB -0.40 0.94 0.34 0.20
## PP.Ben_Score_VB -0.62 0.82 0.34 0.12
## PP.BehavInt1_GFFB -0.16 -0.03 -0.64 -0.78
## PP.BehavInt2_GFFB -0.23 -0.08 -0.60 -0.77
## PP.BehavInt3_GFFB -0.16 0.01 -0.63 -0.77
## PP.BehavInt4_GFFB -0.15 -0.05 -0.63 -0.77
## PP.BehavInt1_GFPRB -0.37 0.92 0.40 0.27
## PP.BehavInt2_GFPRB -0.32 0.93 0.37 0.25
## PP.BehavInt3_GFPRB -0.34 0.94 0.36 0.24
## PP.BehavInt4_GFPRB -0.39 0.93 0.35 0.22
## PP.BehavInt1_CBB -0.04 0.72 -0.15 -0.21
## PP.BehavInt2_CBB -0.01 0.70 -0.19 -0.25
## PP.BehavInt3_CBB -0.02 0.71 -0.17 -0.22
## PP.BehavInt4_CBB -0.02 0.72 -0.16 -0.22
## PP.BehavInt1_PBPB -0.37 0.92 0.40 0.27
## PP.BehavInt2_PBPB -0.32 0.93 0.37 0.25
## PP.BehavInt3_PBPB -0.34 0.94 0.36 0.24
## PP.BehavInt4_PBPB -0.39 0.93 0.35 0.22
## PP.BehavInt1_PBFB -0.26 0.93 0.21 0.12
## PP.BehavInt2_PBFB -0.20 0.93 0.19 0.09
## PP.BehavInt3_PBFB -0.28 0.93 0.17 0.08
## PP.BehavInt4_PBFB -0.25 0.93 0.19 0.10
## PP.BehavInt1_VB -0.51 0.86 0.40 0.21
## PP.BehavInt2_VB -0.46 0.88 0.43 0.26
## PP.BehavInt3_VB -0.55 0.85 0.40 0.22
## PP.BehavInt4_VB -0.52 0.86 0.39 0.22
## PP.Nat_1_GFFB -0.10 -0.04 -0.65 -0.74
## PP.Nat_4R_GFFB 0.16 -0.72 0.06 0.03
## PP.Nat_2R_GFFB 0.30 -0.77 0.03 0.03
## PP.Nat_3R_GFFB 0.14 -0.68 0.27 0.31
## PP.Nat_1_GFPRB -0.39 -0.19 -0.08 -0.19
## PP.Nat_4R_GFPRB -0.05 -0.52 0.31 0.26
## PP.Nat_2R_GFPRB -0.04 -0.60 0.18 0.15
## PP.Nat_3R_GFPRB 0.04 -0.68 0.14 0.17
## PP.Nat_1_CBB 0.07 0.62 -0.29 -0.33
## PP.Nat_4R_CBB 0.73 0.07 0.36 0.47
## PP.Nat_2R_CBB 0.91 -0.15 0.10 0.33
## PP.Nat_3R_CBB 1.00 -0.27 0.01 0.28
## PP.Nat_1_PBPB -0.27 1.00 0.33 0.19
## PP.Nat_4R_PBPB 0.01 0.33 1.00 0.85
## PP.Nat_2R_PBPB 0.28 0.19 0.85 1.00
## PP.Nat_3R_PBPB 0.44 -0.25 0.49 0.63
## PP.Nat_1_PBFB -0.12 0.93 0.13 0.06
## PP.Nat_4R_PBFB -0.22 -0.54 -0.71 -0.67
## PP.Nat_2R_PBFB -0.54 -0.09 -0.63 -0.78
## PP.Nat_3R_PBFB -0.54 0.09 -0.45 -0.62
## PP.Nat_1_VB -0.50 0.84 0.39 0.20
## PP.Nat_4R_VB -0.16 0.08 0.79 0.69
## PP.Nat_2R_VB -0.09 -0.18 0.63 0.63
## PP.Nat_3R_VB -0.01 -0.39 0.47 0.51
## PP.Nat_3R_PBPB PP.Nat_1_PBFB PP.Nat_4R_PBFB PP.Nat_2R_PBFB
## PP.Risk_Score_GFFB -0.21 0.73 -0.19 0.07
## PP.Risk_Score_GFPRB -0.14 0.75 -0.16 0.10
## PP.Risk_Score_CBB -0.18 -0.10 0.57 0.59
## PP.Risk_Score_PBFB -0.04 -0.38 0.73 0.51
## PP.Risk_Score_PBPB -0.06 -0.16 0.60 0.41
## PP.Risk_Score_VB -0.22 0.33 0.36 0.39
## PP.Ben_Score_GFFB -0.52 0.32 0.41 0.52
## PP.Ben_Score_GFPRB -0.45 -0.04 0.50 0.52
## PP.Ben_Score_CBB -0.48 0.85 -0.16 0.15
## PP.Ben_Score_PBFB -0.39 0.96 -0.48 -0.06
## PP.Ben_Score_PBPB -0.36 0.87 -0.50 -0.05
## PP.Ben_Score_VB -0.35 0.67 -0.40 0.06
## PP.BehavInt1_GFFB -0.51 0.09 0.53 0.57
## PP.BehavInt2_GFFB -0.54 0.03 0.54 0.59
## PP.BehavInt3_GFFB -0.50 0.12 0.52 0.56
## PP.BehavInt4_GFFB -0.48 0.07 0.52 0.55
## PP.BehavInt1_GFPRB -0.31 0.85 -0.57 -0.14
## PP.BehavInt2_GFPRB -0.29 0.87 -0.56 -0.12
## PP.BehavInt3_GFPRB -0.33 0.87 -0.54 -0.10
## PP.BehavInt4_GFPRB -0.34 0.85 -0.51 -0.08
## PP.BehavInt1_CBB -0.48 0.87 -0.24 0.07
## PP.BehavInt2_CBB -0.46 0.85 -0.21 0.10
## PP.BehavInt3_CBB -0.47 0.86 -0.22 0.09
## PP.BehavInt4_CBB -0.47 0.85 -0.23 0.08
## PP.BehavInt1_PBPB -0.31 0.85 -0.57 -0.14
## PP.BehavInt2_PBPB -0.29 0.87 -0.56 -0.12
## PP.BehavInt3_PBPB -0.33 0.87 -0.54 -0.10
## PP.BehavInt4_PBPB -0.34 0.85 -0.51 -0.08
## PP.BehavInt1_PBFB -0.34 0.95 -0.49 -0.09
## PP.BehavInt2_PBFB -0.32 0.96 -0.48 -0.08
## PP.BehavInt3_PBFB -0.38 0.95 -0.47 -0.06
## PP.BehavInt4_PBFB -0.37 0.96 -0.48 -0.08
## PP.BehavInt1_VB -0.30 0.73 -0.49 -0.04
## PP.BehavInt2_VB -0.18 0.76 -0.48 -0.09
## PP.BehavInt3_VB -0.29 0.72 -0.48 -0.05
## PP.BehavInt4_VB -0.28 0.72 -0.47 -0.03
## PP.Nat_1_GFFB -0.54 0.07 0.53 0.58
## PP.Nat_4R_GFFB 0.19 -0.80 0.19 -0.05
## PP.Nat_2R_GFFB 0.32 -0.81 0.23 -0.12
## PP.Nat_3R_GFFB 0.40 -0.78 -0.03 -0.28
## PP.Nat_1_GFPRB -0.45 -0.26 0.36 0.37
## PP.Nat_4R_GFPRB 0.12 -0.65 0.01 -0.16
## PP.Nat_2R_GFPRB 0.06 -0.70 0.11 -0.06
## PP.Nat_3R_GFPRB 0.25 -0.78 0.12 -0.12
## PP.Nat_1_CBB -0.37 0.78 -0.12 0.14
## PP.Nat_4R_CBB 0.24 0.16 -0.56 -0.65
## PP.Nat_2R_CBB 0.38 0.00 -0.33 -0.58
## PP.Nat_3R_CBB 0.44 -0.12 -0.22 -0.54
## PP.Nat_1_PBPB -0.25 0.93 -0.54 -0.09
## PP.Nat_4R_PBPB 0.49 0.13 -0.71 -0.63
## PP.Nat_2R_PBPB 0.63 0.06 -0.67 -0.78
## PP.Nat_3R_PBPB 1.00 -0.31 -0.33 -0.66
## PP.Nat_1_PBFB -0.31 1.00 -0.49 -0.10
## PP.Nat_4R_PBFB -0.33 -0.49 1.00 0.78
## PP.Nat_2R_PBFB -0.66 -0.10 0.78 1.00
## PP.Nat_3R_PBFB -0.80 0.06 0.62 0.84
## PP.Nat_1_VB -0.26 0.72 -0.49 -0.05
## PP.Nat_4R_VB 0.40 -0.14 -0.56 -0.54
## PP.Nat_2R_VB 0.43 -0.33 -0.40 -0.52
## PP.Nat_3R_VB 0.62 -0.49 -0.27 -0.49
## PP.Nat_3R_PBFB PP.Nat_1_VB PP.Nat_4R_VB PP.Nat_2R_VB
## PP.Risk_Score_GFFB 0.08 0.46 -0.32 -0.40
## PP.Risk_Score_GFPRB 0.06 0.41 -0.43 -0.53
## PP.Risk_Score_CBB 0.40 0.07 -0.32 -0.30
## PP.Risk_Score_PBFB 0.20 -0.56 -0.68 -0.56
## PP.Risk_Score_PBPB 0.12 -0.52 -0.81 -0.70
## PP.Risk_Score_VB 0.18 -0.19 -0.89 -0.88
## PP.Ben_Score_GFFB 0.48 0.04 -0.63 -0.71
## PP.Ben_Score_GFPRB 0.51 0.02 -0.35 -0.39
## PP.Ben_Score_CBB 0.21 0.38 -0.54 -0.67
## PP.Ben_Score_PBFB 0.15 0.78 -0.03 -0.23
## PP.Ben_Score_PBPB 0.18 0.88 0.17 -0.06
## PP.Ben_Score_VB 0.26 0.93 0.33 0.11
## PP.BehavInt1_GFFB 0.51 -0.10 -0.60 -0.63
## PP.BehavInt2_GFFB 0.54 -0.10 -0.54 -0.54
## PP.BehavInt3_GFFB 0.49 -0.08 -0.62 -0.66
## PP.BehavInt4_GFFB 0.49 -0.12 -0.59 -0.62
## PP.BehavInt1_GFPRB 0.10 0.85 0.23 0.01
## PP.BehavInt2_GFPRB 0.08 0.84 0.17 -0.05
## PP.BehavInt3_GFPRB 0.13 0.86 0.18 -0.06
## PP.BehavInt4_GFPRB 0.16 0.87 0.20 -0.04
## PP.BehavInt1_CBB 0.16 0.42 -0.46 -0.59
## PP.BehavInt2_CBB 0.16 0.38 -0.51 -0.65
## PP.BehavInt3_CBB 0.16 0.39 -0.50 -0.63
## PP.BehavInt4_CBB 0.16 0.39 -0.48 -0.63
## PP.BehavInt1_PBPB 0.10 0.85 0.23 0.01
## PP.BehavInt2_PBPB 0.08 0.84 0.17 -0.05
## PP.BehavInt3_PBPB 0.13 0.86 0.18 -0.06
## PP.BehavInt4_PBPB 0.16 0.87 0.20 -0.04
## PP.BehavInt1_PBFB 0.10 0.77 -0.02 -0.21
## PP.BehavInt2_PBFB 0.09 0.74 -0.06 -0.26
## PP.BehavInt3_PBFB 0.14 0.78 -0.02 -0.22
## PP.BehavInt4_PBFB 0.13 0.78 -0.02 -0.22
## PP.BehavInt1_VB 0.18 0.93 0.33 0.10
## PP.BehavInt2_VB 0.11 0.91 0.29 0.05
## PP.BehavInt3_VB 0.17 0.93 0.35 0.13
## PP.BehavInt4_VB 0.17 0.93 0.32 0.09
## PP.Nat_1_GFFB 0.54 -0.15 -0.63 -0.66
## PP.Nat_4R_GFFB -0.06 -0.51 0.34 0.42
## PP.Nat_2R_GFFB -0.17 -0.57 0.24 0.35
## PP.Nat_3R_GFFB -0.31 -0.39 0.54 0.65
## PP.Nat_1_GFPRB 0.51 0.04 0.12 0.14
## PP.Nat_4R_GFPRB -0.05 -0.25 0.60 0.70
## PP.Nat_2R_GFPRB 0.00 -0.34 0.49 0.61
## PP.Nat_3R_GFPRB -0.12 -0.41 0.50 0.63
## PP.Nat_1_CBB 0.14 0.28 -0.61 -0.74
## PP.Nat_4R_CBB -0.49 -0.17 0.10 0.07
## PP.Nat_2R_CBB -0.56 -0.42 -0.15 -0.10
## PP.Nat_3R_CBB -0.54 -0.50 -0.16 -0.09
## PP.Nat_1_PBPB 0.09 0.84 0.08 -0.18
## PP.Nat_4R_PBPB -0.45 0.39 0.79 0.63
## PP.Nat_2R_PBPB -0.62 0.20 0.69 0.63
## PP.Nat_3R_PBPB -0.80 -0.26 0.40 0.43
## PP.Nat_1_PBFB 0.06 0.72 -0.14 -0.33
## PP.Nat_4R_PBFB 0.62 -0.49 -0.56 -0.40
## PP.Nat_2R_PBFB 0.84 -0.05 -0.54 -0.52
## PP.Nat_3R_PBFB 1.00 0.13 -0.36 -0.40
## PP.Nat_1_VB 0.13 1.00 0.38 0.16
## PP.Nat_4R_VB -0.36 0.38 1.00 0.91
## PP.Nat_2R_VB -0.40 0.16 0.91 1.00
## PP.Nat_3R_VB -0.54 -0.08 0.73 0.85
## PP.Nat_3R_VB
## PP.Risk_Score_GFFB -0.39
## PP.Risk_Score_GFPRB -0.50
## PP.Risk_Score_CBB -0.16
## PP.Risk_Score_PBFB -0.27
## PP.Risk_Score_PBPB -0.41
## PP.Risk_Score_VB -0.67
## PP.Ben_Score_GFFB -0.71
## PP.Ben_Score_GFPRB -0.37
## PP.Ben_Score_CBB -0.74
## PP.Ben_Score_PBFB -0.42
## PP.Ben_Score_PBPB -0.30
## PP.Ben_Score_VB -0.13
## PP.BehavInt1_GFFB -0.61
## PP.BehavInt2_GFFB -0.55
## PP.BehavInt3_GFFB -0.63
## PP.BehavInt4_GFFB -0.59
## PP.BehavInt1_GFPRB -0.22
## PP.BehavInt2_GFPRB -0.26
## PP.BehavInt3_GFPRB -0.29
## PP.BehavInt4_GFPRB -0.26
## PP.BehavInt1_CBB -0.70
## PP.BehavInt2_CBB -0.73
## PP.BehavInt3_CBB -0.72
## PP.BehavInt4_CBB -0.72
## PP.BehavInt1_PBPB -0.22
## PP.BehavInt2_PBPB -0.26
## PP.BehavInt3_PBPB -0.29
## PP.BehavInt4_PBPB -0.26
## PP.BehavInt1_PBFB -0.37
## PP.BehavInt2_PBFB -0.42
## PP.BehavInt3_PBFB -0.40
## PP.BehavInt4_PBFB -0.40
## PP.BehavInt1_VB -0.13
## PP.BehavInt2_VB -0.15
## PP.BehavInt3_VB -0.10
## PP.BehavInt4_VB -0.13
## PP.Nat_1_GFFB -0.64
## PP.Nat_4R_GFFB 0.41
## PP.Nat_2R_GFFB 0.40
## PP.Nat_3R_GFFB 0.65
## PP.Nat_1_GFPRB 0.02
## PP.Nat_4R_GFPRB 0.59
## PP.Nat_2R_GFPRB 0.54
## PP.Nat_3R_GFPRB 0.63
## PP.Nat_1_CBB -0.74
## PP.Nat_4R_CBB 0.01
## PP.Nat_2R_CBB -0.06
## PP.Nat_3R_CBB -0.01
## PP.Nat_1_PBPB -0.39
## PP.Nat_4R_PBPB 0.47
## PP.Nat_2R_PBPB 0.51
## PP.Nat_3R_PBPB 0.62
## PP.Nat_1_PBFB -0.49
## PP.Nat_4R_PBFB -0.27
## PP.Nat_2R_PBFB -0.49
## PP.Nat_3R_PBFB -0.54
## PP.Nat_1_VB -0.08
## PP.Nat_4R_VB 0.73
## PP.Nat_2R_VB 0.85
## PP.Nat_3R_VB 1.00
##
## n= 60
##
##
## P
## PP.Risk_Score_GFFB PP.Risk_Score_GFPRB PP.Risk_Score_CBB
## PP.Risk_Score_GFFB 0.0000 0.0850
## PP.Risk_Score_GFPRB 0.0000 0.0182
## PP.Risk_Score_CBB 0.0850 0.0182
## PP.Risk_Score_PBFB 0.9821 0.5112 0.0000
## PP.Risk_Score_PBPB 0.2574 0.0351 0.0001
## PP.Risk_Score_VB 0.0000 0.0000 0.0020
## PP.Ben_Score_GFFB 0.7029 0.0810 0.0056
## PP.Ben_Score_GFPRB 0.0669 0.1499 0.0138
## PP.Ben_Score_CBB 0.0000 0.0000 0.6545
## PP.Ben_Score_PBFB 0.0000 0.0000 0.5142
## PP.Ben_Score_PBPB 0.0000 0.0000 0.4770
## PP.Ben_Score_VB 0.0003 0.0021 0.3022
## PP.BehavInt1_GFFB 0.2286 0.9218 0.0035
## PP.BehavInt2_GFFB 0.0769 0.5498 0.0059
## PP.BehavInt3_GFFB 0.3799 0.6576 0.0026
## PP.BehavInt4_GFFB 0.1559 0.9468 0.0038
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.2457
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.3409
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.3261
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.4484
## PP.BehavInt1_CBB 0.0000 0.0000 0.2472
## PP.BehavInt2_CBB 0.0000 0.0000 0.3981
## PP.BehavInt3_CBB 0.0000 0.0000 0.3185
## PP.BehavInt4_CBB 0.0000 0.0000 0.2825
## PP.BehavInt1_PBPB 0.0000 0.0000 0.2457
## PP.BehavInt2_PBPB 0.0000 0.0000 0.3409
## PP.BehavInt3_PBPB 0.0000 0.0000 0.3261
## PP.BehavInt4_PBPB 0.0000 0.0000 0.4484
## PP.BehavInt1_PBFB 0.0000 0.0000 0.6023
## PP.BehavInt2_PBFB 0.0000 0.0000 0.6184
## PP.BehavInt3_PBFB 0.0000 0.0000 0.6188
## PP.BehavInt4_PBFB 0.0000 0.0000 0.5135
## PP.BehavInt1_VB 0.0000 0.0004 0.7257
## PP.BehavInt2_VB 0.0000 0.0000 0.5083
## PP.BehavInt3_VB 0.0000 0.0011 0.7201
## PP.BehavInt4_VB 0.0000 0.0003 0.6442
## PP.Nat_1_GFFB 0.2088 0.8478 0.0353
## PP.Nat_4R_GFFB 0.0000 0.0000 0.1352
## PP.Nat_2R_GFFB 0.0000 0.0000 0.3218
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0484
## PP.Nat_1_GFPRB 0.0000 0.0000 0.8521
## PP.Nat_4R_GFPRB 0.0000 0.0000 0.0057
## PP.Nat_2R_GFPRB 0.0000 0.0000 0.0108
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.1453
## PP.Nat_1_CBB 0.0000 0.0000 0.9157
## PP.Nat_4R_CBB 0.8636 0.6037 0.0000
## PP.Nat_2R_CBB 0.4251 0.8339 0.0000
## PP.Nat_3R_CBB 0.2271 0.5230 0.0004
## PP.Nat_1_PBPB 0.0000 0.0000 0.6335
## PP.Nat_4R_PBPB 0.6265 0.3733 0.0000
## PP.Nat_2R_PBPB 0.8776 0.4392 0.0000
## PP.Nat_3R_PBPB 0.1019 0.2990 0.1800
## PP.Nat_1_PBFB 0.0000 0.0000 0.4682
## PP.Nat_4R_PBFB 0.1378 0.2253 0.0000
## PP.Nat_2R_PBFB 0.5756 0.4337 0.0000
## PP.Nat_3R_PBFB 0.5479 0.6713 0.0017
## PP.Nat_1_VB 0.0002 0.0013 0.5774
## PP.Nat_4R_VB 0.0125 0.0005 0.0137
## PP.Nat_2R_VB 0.0016 0.0000 0.0219
## PP.Nat_3R_VB 0.0022 0.0000 0.2097
## PP.Risk_Score_PBFB PP.Risk_Score_PBPB PP.Risk_Score_VB
## PP.Risk_Score_GFFB 0.9821 0.2574 0.0000
## PP.Risk_Score_GFPRB 0.5112 0.0351 0.0000
## PP.Risk_Score_CBB 0.0000 0.0001 0.0020
## PP.Risk_Score_PBFB 0.0000 0.0000
## PP.Risk_Score_PBPB 0.0000 0.0000
## PP.Risk_Score_VB 0.0000 0.0000
## PP.Ben_Score_GFFB 0.0010 0.0000 0.0000
## PP.Ben_Score_GFPRB 0.0046 0.0146 0.0557
## PP.Ben_Score_CBB 0.8295 0.0913 0.0000
## PP.Ben_Score_PBFB 0.0000 0.0161 0.2005
## PP.Ben_Score_PBPB 0.0000 0.0001 0.7114
## PP.Ben_Score_VB 0.0000 0.0000 0.0999
## PP.BehavInt1_GFFB 0.0001 0.0000 0.0000
## PP.BehavInt2_GFFB 0.0011 0.0003 0.0007
## PP.BehavInt3_GFFB 0.0001 0.0000 0.0000
## PP.BehavInt4_GFFB 0.0001 0.0000 0.0000
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.4229
## PP.BehavInt2_GFPRB 0.0000 0.0002 0.8407
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.7309
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.6202
## PP.BehavInt1_CBB 0.3667 0.3304 0.0000
## PP.BehavInt2_CBB 0.6533 0.1449 0.0000
## PP.BehavInt3_CBB 0.4927 0.2182 0.0000
## PP.BehavInt4_CBB 0.4877 0.2278 0.0000
## PP.BehavInt1_PBPB 0.0000 0.0000 0.4229
## PP.BehavInt2_PBPB 0.0000 0.0002 0.8407
## PP.BehavInt3_PBPB 0.0000 0.0000 0.7309
## PP.BehavInt4_PBPB 0.0000 0.0000 0.6202
## PP.BehavInt1_PBFB 0.0000 0.0227 0.1635
## PP.BehavInt2_PBFB 0.0003 0.0593 0.0744
## PP.BehavInt3_PBFB 0.0001 0.0244 0.1804
## PP.BehavInt4_PBFB 0.0000 0.0200 0.1759
## PP.BehavInt1_VB 0.0000 0.0000 0.1356
## PP.BehavInt2_VB 0.0000 0.0000 0.4135
## PP.BehavInt3_VB 0.0000 0.0000 0.0771
## PP.BehavInt4_VB 0.0000 0.0000 0.1527
## PP.Nat_1_GFFB 0.0003 0.0000 0.0000
## PP.Nat_4R_GFFB 0.8430 0.2627 0.0000
## PP.Nat_2R_GFFB 0.2865 0.9675 0.0020
## PP.Nat_3R_GFFB 0.3020 0.0127 0.0000
## PP.Nat_1_GFPRB 0.3628 0.0403 0.0052
## PP.Nat_4R_GFPRB 0.0131 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.1221 0.0019 0.0000
## PP.Nat_3R_GFPRB 0.4855 0.0225 0.0000
## PP.Nat_1_CBB 0.2620 0.0025 0.0000
## PP.Nat_4R_CBB 0.0053 0.1092 0.5515
## PP.Nat_2R_CBB 0.9177 0.2782 0.1624
## PP.Nat_3R_CBB 0.3603 0.0706 0.1652
## PP.Nat_1_PBPB 0.0001 0.0107 0.3741
## PP.Nat_4R_PBPB 0.0000 0.0000 0.0000
## PP.Nat_2R_PBPB 0.0000 0.0000 0.0000
## PP.Nat_3R_PBPB 0.7587 0.6297 0.0845
## PP.Nat_1_PBFB 0.0025 0.2233 0.0113
## PP.Nat_4R_PBFB 0.0000 0.0000 0.0049
## PP.Nat_2R_PBFB 0.0000 0.0011 0.0021
## PP.Nat_3R_PBFB 0.1244 0.3723 0.1618
## PP.Nat_1_VB 0.0000 0.0000 0.1547
## PP.Nat_4R_VB 0.0000 0.0000 0.0000
## PP.Nat_2R_VB 0.0000 0.0000 0.0000
## PP.Nat_3R_VB 0.0347 0.0011 0.0000
## PP.Ben_Score_GFFB PP.Ben_Score_GFPRB PP.Ben_Score_CBB
## PP.Risk_Score_GFFB 0.7029 0.0669 0.0000
## PP.Risk_Score_GFPRB 0.0810 0.1499 0.0000
## PP.Risk_Score_CBB 0.0056 0.0138 0.6545
## PP.Risk_Score_PBFB 0.0010 0.0046 0.8295
## PP.Risk_Score_PBPB 0.0000 0.0146 0.0913
## PP.Risk_Score_VB 0.0000 0.0557 0.0000
## PP.Ben_Score_GFFB 0.0000 0.0000
## PP.Ben_Score_GFPRB 0.0000 0.1485
## PP.Ben_Score_CBB 0.0000 0.1485
## PP.Ben_Score_PBFB 0.0596 0.7790 0.0000
## PP.Ben_Score_PBPB 0.5108 0.6169 0.0000
## PP.Ben_Score_VB 0.6509 0.5244 0.0045
## PP.BehavInt1_GFFB 0.0000 0.0000 0.0009
## PP.BehavInt2_GFFB 0.0000 0.0000 0.0057
## PP.BehavInt3_GFFB 0.0000 0.0000 0.0003
## PP.BehavInt4_GFFB 0.0000 0.0000 0.0020
## PP.BehavInt1_GFPRB 0.9020 0.3180 0.0000
## PP.BehavInt2_GFPRB 0.7788 0.2634 0.0000
## PP.BehavInt3_GFPRB 0.6865 0.3986 0.0000
## PP.BehavInt4_GFPRB 0.6972 0.4528 0.0000
## PP.BehavInt1_CBB 0.0000 0.3743 0.0000
## PP.BehavInt2_CBB 0.0000 0.2289 0.0000
## PP.BehavInt3_CBB 0.0000 0.3160 0.0000
## PP.BehavInt4_CBB 0.0000 0.2794 0.0000
## PP.BehavInt1_PBPB 0.9020 0.3180 0.0000
## PP.BehavInt2_PBPB 0.7788 0.2634 0.0000
## PP.BehavInt3_PBPB 0.6865 0.3986 0.0000
## PP.BehavInt4_PBPB 0.6972 0.4528 0.0000
## PP.BehavInt1_PBFB 0.1836 0.3730 0.0000
## PP.BehavInt2_PBFB 0.0733 0.4840 0.0000
## PP.BehavInt3_PBFB 0.0828 0.6822 0.0000
## PP.BehavInt4_PBFB 0.0810 0.6609 0.0000
## PP.BehavInt1_VB 0.9987 0.9208 0.0013
## PP.BehavInt2_VB 0.9566 0.6204 0.0006
## PP.BehavInt3_VB 0.9799 0.9790 0.0017
## PP.BehavInt4_VB 0.9818 0.9238 0.0011
## PP.Nat_1_GFFB 0.0000 0.0000 0.0011
## PP.Nat_4R_GFFB 0.1226 0.6213 0.0000
## PP.Nat_2R_GFFB 0.2595 0.7109 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0675 0.0000
## PP.Nat_1_GFPRB 0.0812 0.0000 0.1332
## PP.Nat_4R_GFPRB 0.0011 0.9838 0.0000
## PP.Nat_2R_GFPRB 0.0037 0.9652 0.0000
## PP.Nat_3R_GFPRB 0.0002 0.5055 0.0000
## PP.Nat_1_CBB 0.0000 0.1103 0.0000
## PP.Nat_4R_CBB 0.0170 0.0010 0.2598
## PP.Nat_2R_CBB 0.3101 0.0073 0.4670
## PP.Nat_3R_CBB 0.2343 0.0172 0.6493
## PP.Nat_1_PBPB 0.1599 0.6674 0.0000
## PP.Nat_4R_PBPB 0.0000 0.0005 0.0818
## PP.Nat_2R_PBPB 0.0000 0.0000 0.0301
## PP.Nat_3R_PBPB 0.0000 0.0003 0.0000
## PP.Nat_1_PBFB 0.0139 0.7514 0.0000
## PP.Nat_4R_PBFB 0.0012 0.0000 0.2333
## PP.Nat_2R_PBFB 0.0000 0.0000 0.2638
## PP.Nat_3R_PBFB 0.0001 0.0000 0.1156
## PP.Nat_1_VB 0.7350 0.8506 0.0024
## PP.Nat_4R_VB 0.0000 0.0067 0.0000
## PP.Nat_2R_VB 0.0000 0.0021 0.0000
## PP.Nat_3R_VB 0.0000 0.0032 0.0000
## PP.Ben_Score_PBFB PP.Ben_Score_PBPB PP.Ben_Score_VB
## PP.Risk_Score_GFFB 0.0000 0.0000 0.0003
## PP.Risk_Score_GFPRB 0.0000 0.0000 0.0021
## PP.Risk_Score_CBB 0.5142 0.4770 0.3022
## PP.Risk_Score_PBFB 0.0000 0.0000 0.0000
## PP.Risk_Score_PBPB 0.0161 0.0001 0.0000
## PP.Risk_Score_VB 0.2005 0.7114 0.0999
## PP.Ben_Score_GFFB 0.0596 0.5108 0.6509
## PP.Ben_Score_GFPRB 0.7790 0.6169 0.5244
## PP.Ben_Score_CBB 0.0000 0.0000 0.0045
## PP.Ben_Score_PBFB 0.0000 0.0000
## PP.Ben_Score_PBPB 0.0000 0.0000
## PP.Ben_Score_VB 0.0000 0.0000
## PP.BehavInt1_GFFB 0.7878 0.4463 0.5565
## PP.BehavInt2_GFFB 0.9941 0.3899 0.6206
## PP.BehavInt3_GFFB 0.6174 0.6117 0.6441
## PP.BehavInt4_GFFB 0.9165 0.3658 0.4877
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.0000 0.0024
## PP.BehavInt2_CBB 0.0000 0.0000 0.0074
## PP.BehavInt3_CBB 0.0000 0.0000 0.0041
## PP.BehavInt4_CBB 0.0000 0.0000 0.0038
## PP.BehavInt1_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.0000 0.0000 0.0000
## PP.BehavInt2_VB 0.0000 0.0000 0.0000
## PP.BehavInt3_VB 0.0000 0.0000 0.0000
## PP.BehavInt4_VB 0.0000 0.0000 0.0000
## PP.Nat_1_GFFB 0.8793 0.3782 0.3730
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0024
## PP.Nat_1_GFPRB 0.2850 0.6691 0.3935
## PP.Nat_4R_GFPRB 0.0000 0.0039 0.1014
## PP.Nat_2R_GFPRB 0.0000 0.0005 0.0163
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0046
## PP.Nat_1_CBB 0.0000 0.0000 0.0909
## PP.Nat_4R_CBB 0.5185 0.8768 0.0358
## PP.Nat_2R_CBB 0.3302 0.0368 0.0000
## PP.Nat_3R_CBB 0.0403 0.0017 0.0000
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.1504 0.0070 0.0087
## PP.Nat_2R_PBPB 0.5027 0.1216 0.3696
## PP.Nat_3R_PBPB 0.0023 0.0044 0.0054
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0001 0.0000 0.0017
## PP.Nat_2R_PBFB 0.6257 0.6953 0.6752
## PP.Nat_3R_PBFB 0.2406 0.1721 0.0429
## PP.Nat_1_VB 0.0000 0.0000 0.0000
## PP.Nat_4R_VB 0.8458 0.1904 0.0103
## PP.Nat_2R_VB 0.0745 0.6529 0.4038
## PP.Nat_3R_VB 0.0008 0.0191 0.3392
## PP.BehavInt1_GFFB PP.BehavInt2_GFFB PP.BehavInt3_GFFB
## PP.Risk_Score_GFFB 0.2286 0.0769 0.3799
## PP.Risk_Score_GFPRB 0.9218 0.5498 0.6576
## PP.Risk_Score_CBB 0.0035 0.0059 0.0026
## PP.Risk_Score_PBFB 0.0001 0.0011 0.0001
## PP.Risk_Score_PBPB 0.0000 0.0003 0.0000
## PP.Risk_Score_VB 0.0000 0.0007 0.0000
## PP.Ben_Score_GFFB 0.0000 0.0000 0.0000
## PP.Ben_Score_GFPRB 0.0000 0.0000 0.0000
## PP.Ben_Score_CBB 0.0009 0.0057 0.0003
## PP.Ben_Score_PBFB 0.7878 0.9941 0.6174
## PP.Ben_Score_PBPB 0.4463 0.3899 0.6117
## PP.Ben_Score_VB 0.5565 0.6206 0.6441
## PP.BehavInt1_GFFB 0.0000 0.0000
## PP.BehavInt2_GFFB 0.0000 0.0000
## PP.BehavInt3_GFFB 0.0000 0.0000
## PP.BehavInt4_GFFB 0.0000 0.0000 0.0000
## PP.BehavInt1_GFPRB 0.2090 0.1871 0.3010
## PP.BehavInt2_GFPRB 0.2228 0.1568 0.3410
## PP.BehavInt3_GFPRB 0.3022 0.2398 0.4331
## PP.BehavInt4_GFPRB 0.3149 0.2603 0.4390
## PP.BehavInt1_CBB 0.0079 0.0304 0.0031
## PP.BehavInt2_CBB 0.0017 0.0100 0.0006
## PP.BehavInt3_CBB 0.0051 0.0215 0.0018
## PP.BehavInt4_CBB 0.0051 0.0233 0.0019
## PP.BehavInt1_PBPB 0.2090 0.1871 0.3010
## PP.BehavInt2_PBPB 0.2228 0.1568 0.3410
## PP.BehavInt3_PBPB 0.3022 0.2398 0.4331
## PP.BehavInt4_PBPB 0.3149 0.2603 0.4390
## PP.BehavInt1_PBFB 0.7510 0.5318 0.9436
## PP.BehavInt2_PBFB 0.9283 0.7740 0.7280
## PP.BehavInt3_PBFB 0.9262 0.8388 0.7525
## PP.BehavInt4_PBFB 0.9185 0.8476 0.7381
## PP.BehavInt1_VB 0.2341 0.2450 0.3031
## PP.BehavInt2_VB 0.1880 0.1495 0.2718
## PP.BehavInt3_VB 0.2598 0.2946 0.3244
## PP.BehavInt4_VB 0.2163 0.2161 0.2845
## PP.Nat_1_GFFB 0.0000 0.0000 0.0000
## PP.Nat_4R_GFFB 0.8948 0.4505 0.8385
## PP.Nat_2R_GFFB 0.6689 0.3811 0.9097
## PP.Nat_3R_GFFB 0.0029 0.0248 0.0010
## PP.Nat_1_GFPRB 0.0042 0.0003 0.0101
## PP.Nat_4R_GFPRB 0.0953 0.4118 0.0471
## PP.Nat_2R_GFPRB 0.2157 0.6737 0.1164
## PP.Nat_3R_GFPRB 0.0416 0.1654 0.0195
## PP.Nat_1_CBB 0.0002 0.0035 0.0000
## PP.Nat_4R_CBB 0.0066 0.0034 0.0069
## PP.Nat_2R_CBB 0.2326 0.1122 0.2550
## PP.Nat_3R_CBB 0.2136 0.0809 0.2281
## PP.Nat_1_PBPB 0.8175 0.5478 0.9598
## PP.Nat_4R_PBPB 0.0000 0.0000 0.0000
## PP.Nat_2R_PBPB 0.0000 0.0000 0.0000
## PP.Nat_3R_PBPB 0.0000 0.0000 0.0000
## PP.Nat_1_PBFB 0.4976 0.8139 0.3449
## PP.Nat_4R_PBFB 0.0000 0.0000 0.0000
## PP.Nat_2R_PBFB 0.0000 0.0000 0.0000
## PP.Nat_3R_PBFB 0.0000 0.0000 0.0000
## PP.Nat_1_VB 0.4431 0.4383 0.5397
## PP.Nat_4R_VB 0.0000 0.0000 0.0000
## PP.Nat_2R_VB 0.0000 0.0000 0.0000
## PP.Nat_3R_VB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFFB PP.BehavInt1_GFPRB PP.BehavInt2_GFPRB
## PP.Risk_Score_GFFB 0.1559 0.0000 0.0000
## PP.Risk_Score_GFPRB 0.9468 0.0000 0.0000
## PP.Risk_Score_CBB 0.0038 0.2457 0.3409
## PP.Risk_Score_PBFB 0.0001 0.0000 0.0000
## PP.Risk_Score_PBPB 0.0000 0.0000 0.0002
## PP.Risk_Score_VB 0.0000 0.4229 0.8407
## PP.Ben_Score_GFFB 0.0000 0.9020 0.7788
## PP.Ben_Score_GFPRB 0.0000 0.3180 0.2634
## PP.Ben_Score_CBB 0.0020 0.0000 0.0000
## PP.Ben_Score_PBFB 0.9165 0.0000 0.0000
## PP.Ben_Score_PBPB 0.3658 0.0000 0.0000
## PP.Ben_Score_VB 0.4877 0.0000 0.0000
## PP.BehavInt1_GFFB 0.0000 0.2090 0.2228
## PP.BehavInt2_GFFB 0.0000 0.1871 0.1568
## PP.BehavInt3_GFFB 0.0000 0.3010 0.3410
## PP.BehavInt4_GFFB 0.1617 0.1642
## PP.BehavInt1_GFPRB 0.1617 0.0000
## PP.BehavInt2_GFPRB 0.1642 0.0000
## PP.BehavInt3_GFPRB 0.2370 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.2391 0.0000 0.0000
## PP.BehavInt1_CBB 0.0154 0.0000 0.0000
## PP.BehavInt2_CBB 0.0036 0.0000 0.0000
## PP.BehavInt3_CBB 0.0098 0.0000 0.0000
## PP.BehavInt4_CBB 0.0097 0.0000 0.0000
## PP.BehavInt1_PBPB 0.1617 0.0000 0.0000
## PP.BehavInt2_PBPB 0.1642 0.0000 0.0000
## PP.BehavInt3_PBPB 0.2370 0.0000 0.0000
## PP.BehavInt4_PBPB 0.2391 0.0000 0.0000
## PP.BehavInt1_PBFB 0.6208 0.0000 0.0000
## PP.BehavInt2_PBFB 0.9204 0.0000 0.0000
## PP.BehavInt3_PBFB 0.9174 0.0000 0.0000
## PP.BehavInt4_PBFB 0.9253 0.0000 0.0000
## PP.BehavInt1_VB 0.1829 0.0000 0.0000
## PP.BehavInt2_VB 0.1472 0.0000 0.0000
## PP.BehavInt3_VB 0.2063 0.0000 0.0000
## PP.BehavInt4_VB 0.1664 0.0000 0.0000
## PP.Nat_1_GFFB 0.0000 0.2043 0.2038
## PP.Nat_4R_GFFB 0.7437 0.0000 0.0000
## PP.Nat_2R_GFFB 0.5602 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0059 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0041 0.7029 0.2913
## PP.Nat_4R_GFPRB 0.1290 0.0156 0.0016
## PP.Nat_2R_GFPRB 0.2664 0.0029 0.0002
## PP.Nat_3R_GFPRB 0.0820 0.0000 0.0000
## PP.Nat_1_CBB 0.0005 0.0003 0.0000
## PP.Nat_4R_CBB 0.0062 0.5735 0.4954
## PP.Nat_2R_CBB 0.2592 0.0832 0.1512
## PP.Nat_3R_CBB 0.2408 0.0041 0.0137
## PP.Nat_1_PBPB 0.7319 0.0000 0.0000
## PP.Nat_4R_PBPB 0.0000 0.0014 0.0036
## PP.Nat_2R_PBPB 0.0000 0.0346 0.0536
## PP.Nat_3R_PBPB 0.0001 0.0164 0.0257
## PP.Nat_1_PBFB 0.6127 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0000 0.0000 0.0000
## PP.Nat_2R_PBFB 0.0000 0.2879 0.3486
## PP.Nat_3R_PBFB 0.0000 0.4519 0.5515
## PP.Nat_1_VB 0.3530 0.0000 0.0000
## PP.Nat_4R_VB 0.0000 0.0725 0.1831
## PP.Nat_2R_VB 0.0000 0.9355 0.7131
## PP.Nat_3R_VB 0.0000 0.0951 0.0421
## PP.BehavInt3_GFPRB PP.BehavInt4_GFPRB PP.BehavInt1_CBB
## PP.Risk_Score_GFFB 0.0000 0.0000 0.0000
## PP.Risk_Score_GFPRB 0.0000 0.0000 0.0000
## PP.Risk_Score_CBB 0.3261 0.4484 0.2472
## PP.Risk_Score_PBFB 0.0000 0.0000 0.3667
## PP.Risk_Score_PBPB 0.0000 0.0000 0.3304
## PP.Risk_Score_VB 0.7309 0.6202 0.0000
## PP.Ben_Score_GFFB 0.6865 0.6972 0.0000
## PP.Ben_Score_GFPRB 0.3986 0.4528 0.3743
## PP.Ben_Score_CBB 0.0000 0.0000 0.0000
## PP.Ben_Score_PBFB 0.0000 0.0000 0.0000
## PP.Ben_Score_PBPB 0.0000 0.0000 0.0000
## PP.Ben_Score_VB 0.0000 0.0000 0.0024
## PP.BehavInt1_GFFB 0.3022 0.3149 0.0079
## PP.BehavInt2_GFFB 0.2398 0.2603 0.0304
## PP.BehavInt3_GFFB 0.4331 0.4390 0.0031
## PP.BehavInt4_GFFB 0.2370 0.2391 0.0154
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.0000
## PP.BehavInt2_CBB 0.0000 0.0000 0.0000
## PP.BehavInt3_CBB 0.0000 0.0000 0.0000
## PP.BehavInt4_CBB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.0000 0.0000 0.0003
## PP.BehavInt2_VB 0.0000 0.0000 0.0002
## PP.BehavInt3_VB 0.0000 0.0000 0.0006
## PP.BehavInt4_VB 0.0000 0.0000 0.0004
## PP.Nat_1_GFFB 0.2665 0.2605 0.0079
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB 0.5228 0.6308 0.1183
## PP.Nat_4R_GFPRB 0.0035 0.0063 0.0000
## PP.Nat_2R_GFPRB 0.0005 0.0010 0.0000
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0000 0.0001 0.0000
## PP.Nat_4R_CBB 0.5976 0.8537 0.0770
## PP.Nat_2R_CBB 0.0938 0.0372 0.3182
## PP.Nat_3R_CBB 0.0070 0.0020 0.7783
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.0044 0.0054 0.2491
## PP.Nat_2R_PBPB 0.0636 0.0870 0.1132
## PP.Nat_3R_PBPB 0.0095 0.0078 0.0001
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0000 0.0000 0.0604
## PP.Nat_2R_PBFB 0.4354 0.5432 0.5720
## PP.Nat_3R_PBFB 0.3199 0.2242 0.2249
## PP.Nat_1_VB 0.0000 0.0000 0.0009
## PP.Nat_4R_VB 0.1789 0.1348 0.0002
## PP.Nat_2R_VB 0.6584 0.7905 0.0000
## PP.Nat_3R_VB 0.0224 0.0419 0.0000
## PP.BehavInt2_CBB PP.BehavInt3_CBB PP.BehavInt4_CBB
## PP.Risk_Score_GFFB 0.0000 0.0000 0.0000
## PP.Risk_Score_GFPRB 0.0000 0.0000 0.0000
## PP.Risk_Score_CBB 0.3981 0.3185 0.2825
## PP.Risk_Score_PBFB 0.6533 0.4927 0.4877
## PP.Risk_Score_PBPB 0.1449 0.2182 0.2278
## PP.Risk_Score_VB 0.0000 0.0000 0.0000
## PP.Ben_Score_GFFB 0.0000 0.0000 0.0000
## PP.Ben_Score_GFPRB 0.2289 0.3160 0.2794
## PP.Ben_Score_CBB 0.0000 0.0000 0.0000
## PP.Ben_Score_PBFB 0.0000 0.0000 0.0000
## PP.Ben_Score_PBPB 0.0000 0.0000 0.0000
## PP.Ben_Score_VB 0.0074 0.0041 0.0038
## PP.BehavInt1_GFFB 0.0017 0.0051 0.0051
## PP.BehavInt2_GFFB 0.0100 0.0215 0.0233
## PP.BehavInt3_GFFB 0.0006 0.0018 0.0019
## PP.BehavInt4_GFFB 0.0036 0.0098 0.0097
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.0000 0.0000
## PP.BehavInt2_CBB 0.0000 0.0000
## PP.BehavInt3_CBB 0.0000 0.0000
## PP.BehavInt4_CBB 0.0000 0.0000
## PP.BehavInt1_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.0013 0.0007 0.0006
## PP.BehavInt2_VB 0.0005 0.0004 0.0004
## PP.BehavInt3_VB 0.0026 0.0011 0.0010
## PP.BehavInt4_VB 0.0015 0.0007 0.0006
## PP.Nat_1_GFFB 0.0016 0.0051 0.0044
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB 0.1092 0.0969 0.1140
## PP.Nat_4R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0000 0.0000 0.0000
## PP.Nat_4R_CBB 0.0955 0.0973 0.0780
## PP.Nat_2R_CBB 0.2337 0.2849 0.2842
## PP.Nat_3R_CBB 0.9660 0.8506 0.8796
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.1566 0.2007 0.2233
## PP.Nat_2R_PBPB 0.0572 0.0940 0.0972
## PP.Nat_3R_PBPB 0.0002 0.0002 0.0002
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.1103 0.0891 0.0727
## PP.Nat_2R_PBFB 0.4418 0.4966 0.5380
## PP.Nat_3R_PBFB 0.2120 0.2171 0.2291
## PP.Nat_1_VB 0.0026 0.0019 0.0022
## PP.Nat_4R_VB 0.0000 0.0000 0.0000
## PP.Nat_2R_VB 0.0000 0.0000 0.0000
## PP.Nat_3R_VB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBPB PP.BehavInt2_PBPB PP.BehavInt3_PBPB
## PP.Risk_Score_GFFB 0.0000 0.0000 0.0000
## PP.Risk_Score_GFPRB 0.0000 0.0000 0.0000
## PP.Risk_Score_CBB 0.2457 0.3409 0.3261
## PP.Risk_Score_PBFB 0.0000 0.0000 0.0000
## PP.Risk_Score_PBPB 0.0000 0.0002 0.0000
## PP.Risk_Score_VB 0.4229 0.8407 0.7309
## PP.Ben_Score_GFFB 0.9020 0.7788 0.6865
## PP.Ben_Score_GFPRB 0.3180 0.2634 0.3986
## PP.Ben_Score_CBB 0.0000 0.0000 0.0000
## PP.Ben_Score_PBFB 0.0000 0.0000 0.0000
## PP.Ben_Score_PBPB 0.0000 0.0000 0.0000
## PP.Ben_Score_VB 0.0000 0.0000 0.0000
## PP.BehavInt1_GFFB 0.2090 0.2228 0.3022
## PP.BehavInt2_GFFB 0.1871 0.1568 0.2398
## PP.BehavInt3_GFFB 0.3010 0.3410 0.4331
## PP.BehavInt4_GFFB 0.1617 0.1642 0.2370
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.0000 0.0000
## PP.BehavInt2_CBB 0.0000 0.0000 0.0000
## PP.BehavInt3_CBB 0.0000 0.0000 0.0000
## PP.BehavInt4_CBB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBPB 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.0000 0.0000 0.0000
## PP.BehavInt2_VB 0.0000 0.0000 0.0000
## PP.BehavInt3_VB 0.0000 0.0000 0.0000
## PP.BehavInt4_VB 0.0000 0.0000 0.0000
## PP.Nat_1_GFFB 0.2043 0.2038 0.2665
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB 0.7029 0.2913 0.5228
## PP.Nat_4R_GFPRB 0.0156 0.0016 0.0035
## PP.Nat_2R_GFPRB 0.0029 0.0002 0.0005
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0003 0.0000 0.0000
## PP.Nat_4R_CBB 0.5735 0.4954 0.5976
## PP.Nat_2R_CBB 0.0832 0.1512 0.0938
## PP.Nat_3R_CBB 0.0041 0.0137 0.0070
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.0014 0.0036 0.0044
## PP.Nat_2R_PBPB 0.0346 0.0536 0.0636
## PP.Nat_3R_PBPB 0.0164 0.0257 0.0095
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0000 0.0000 0.0000
## PP.Nat_2R_PBFB 0.2879 0.3486 0.4354
## PP.Nat_3R_PBFB 0.4519 0.5515 0.3199
## PP.Nat_1_VB 0.0000 0.0000 0.0000
## PP.Nat_4R_VB 0.0725 0.1831 0.1789
## PP.Nat_2R_VB 0.9355 0.7131 0.6584
## PP.Nat_3R_VB 0.0951 0.0421 0.0224
## PP.BehavInt4_PBPB PP.BehavInt1_PBFB PP.BehavInt2_PBFB
## PP.Risk_Score_GFFB 0.0000 0.0000 0.0000
## PP.Risk_Score_GFPRB 0.0000 0.0000 0.0000
## PP.Risk_Score_CBB 0.4484 0.6023 0.6184
## PP.Risk_Score_PBFB 0.0000 0.0000 0.0003
## PP.Risk_Score_PBPB 0.0000 0.0227 0.0593
## PP.Risk_Score_VB 0.6202 0.1635 0.0744
## PP.Ben_Score_GFFB 0.6972 0.1836 0.0733
## PP.Ben_Score_GFPRB 0.4528 0.3730 0.4840
## PP.Ben_Score_CBB 0.0000 0.0000 0.0000
## PP.Ben_Score_PBFB 0.0000 0.0000 0.0000
## PP.Ben_Score_PBPB 0.0000 0.0000 0.0000
## PP.Ben_Score_VB 0.0000 0.0000 0.0000
## PP.BehavInt1_GFFB 0.3149 0.7510 0.9283
## PP.BehavInt2_GFFB 0.2603 0.5318 0.7740
## PP.BehavInt3_GFFB 0.4390 0.9436 0.7280
## PP.BehavInt4_GFFB 0.2391 0.6208 0.9204
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.0000 0.0000
## PP.BehavInt2_CBB 0.0000 0.0000 0.0000
## PP.BehavInt3_CBB 0.0000 0.0000 0.0000
## PP.BehavInt4_CBB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.0000 0.0000 0.0000
## PP.BehavInt2_VB 0.0000 0.0000 0.0000
## PP.BehavInt3_VB 0.0000 0.0000 0.0000
## PP.BehavInt4_VB 0.0000 0.0000 0.0000
## PP.Nat_1_GFFB 0.2605 0.6248 0.9935
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB 0.6308 0.0820 0.0736
## PP.Nat_4R_GFPRB 0.0063 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.0010 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0001 0.0000 0.0000
## PP.Nat_4R_CBB 0.8537 0.5238 0.3935
## PP.Nat_2R_CBB 0.0372 0.3391 0.5701
## PP.Nat_3R_CBB 0.0020 0.0435 0.1175
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.0054 0.1156 0.1529
## PP.Nat_2R_PBPB 0.0870 0.3742 0.4743
## PP.Nat_3R_PBPB 0.0078 0.0081 0.0122
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0000 0.0000 0.0001
## PP.Nat_2R_PBFB 0.5432 0.5157 0.5244
## PP.Nat_3R_PBFB 0.2242 0.4289 0.4733
## PP.Nat_1_VB 0.0000 0.0000 0.0000
## PP.Nat_4R_VB 0.1348 0.8756 0.6219
## PP.Nat_2R_VB 0.7905 0.1024 0.0431
## PP.Nat_3R_VB 0.0419 0.0032 0.0008
## PP.BehavInt3_PBFB PP.BehavInt4_PBFB PP.BehavInt1_VB
## PP.Risk_Score_GFFB 0.0000 0.0000 0.0000
## PP.Risk_Score_GFPRB 0.0000 0.0000 0.0004
## PP.Risk_Score_CBB 0.6188 0.5135 0.7257
## PP.Risk_Score_PBFB 0.0001 0.0000 0.0000
## PP.Risk_Score_PBPB 0.0244 0.0200 0.0000
## PP.Risk_Score_VB 0.1804 0.1759 0.1356
## PP.Ben_Score_GFFB 0.0828 0.0810 0.9987
## PP.Ben_Score_GFPRB 0.6822 0.6609 0.9208
## PP.Ben_Score_CBB 0.0000 0.0000 0.0013
## PP.Ben_Score_PBFB 0.0000 0.0000 0.0000
## PP.Ben_Score_PBPB 0.0000 0.0000 0.0000
## PP.Ben_Score_VB 0.0000 0.0000 0.0000
## PP.BehavInt1_GFFB 0.9262 0.9185 0.2341
## PP.BehavInt2_GFFB 0.8388 0.8476 0.2450
## PP.BehavInt3_GFFB 0.7525 0.7381 0.3031
## PP.BehavInt4_GFFB 0.9174 0.9253 0.1829
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0000 0.0000 0.0003
## PP.BehavInt2_CBB 0.0000 0.0000 0.0013
## PP.BehavInt3_CBB 0.0000 0.0000 0.0007
## PP.BehavInt4_CBB 0.0000 0.0000 0.0006
## PP.BehavInt1_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000
## PP.BehavInt1_VB 0.0000 0.0000
## PP.BehavInt2_VB 0.0000 0.0000 0.0000
## PP.BehavInt3_VB 0.0000 0.0000 0.0000
## PP.BehavInt4_VB 0.0000 0.0000 0.0000
## PP.Nat_1_GFFB 0.9479 0.9800 0.1772
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0000 0.0000 0.0009
## PP.Nat_1_GFPRB 0.1965 0.2226 0.8204
## PP.Nat_4R_GFPRB 0.0000 0.0000 0.0472
## PP.Nat_2R_GFPRB 0.0000 0.0000 0.0055
## PP.Nat_3R_GFPRB 0.0000 0.0000 0.0009
## PP.Nat_1_CBB 0.0000 0.0000 0.0344
## PP.Nat_4R_CBB 0.6149 0.4770 0.2576
## PP.Nat_2R_CBB 0.2702 0.3768 0.0005
## PP.Nat_3R_CBB 0.0332 0.0531 0.0000
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.1862 0.1454 0.0016
## PP.Nat_2R_PBPB 0.5406 0.4251 0.1046
## PP.Nat_3R_PBPB 0.0030 0.0040 0.0211
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0002 0.0001 0.0000
## PP.Nat_2R_PBFB 0.6281 0.5338 0.7690
## PP.Nat_3R_PBFB 0.2791 0.3244 0.1786
## PP.Nat_1_VB 0.0000 0.0000 0.0000
## PP.Nat_4R_VB 0.8524 0.8594 0.0097
## PP.Nat_2R_VB 0.0899 0.0928 0.4262
## PP.Nat_3R_VB 0.0015 0.0014 0.3345
## PP.BehavInt2_VB PP.BehavInt3_VB PP.BehavInt4_VB
## PP.Risk_Score_GFFB 0.0000 0.0000 0.0000
## PP.Risk_Score_GFPRB 0.0000 0.0011 0.0003
## PP.Risk_Score_CBB 0.5083 0.7201 0.6442
## PP.Risk_Score_PBFB 0.0000 0.0000 0.0000
## PP.Risk_Score_PBPB 0.0000 0.0000 0.0000
## PP.Risk_Score_VB 0.4135 0.0771 0.1527
## PP.Ben_Score_GFFB 0.9566 0.9799 0.9818
## PP.Ben_Score_GFPRB 0.6204 0.9790 0.9238
## PP.Ben_Score_CBB 0.0006 0.0017 0.0011
## PP.Ben_Score_PBFB 0.0000 0.0000 0.0000
## PP.Ben_Score_PBPB 0.0000 0.0000 0.0000
## PP.Ben_Score_VB 0.0000 0.0000 0.0000
## PP.BehavInt1_GFFB 0.1880 0.2598 0.2163
## PP.BehavInt2_GFFB 0.1495 0.2946 0.2161
## PP.BehavInt3_GFFB 0.2718 0.3244 0.2845
## PP.BehavInt4_GFFB 0.1472 0.2063 0.1664
## PP.BehavInt1_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0002 0.0006 0.0004
## PP.BehavInt2_CBB 0.0005 0.0026 0.0015
## PP.BehavInt3_CBB 0.0004 0.0011 0.0007
## PP.BehavInt4_CBB 0.0004 0.0010 0.0006
## PP.BehavInt1_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.0000 0.0000 0.0000
## PP.BehavInt2_VB 0.0000 0.0000
## PP.BehavInt3_VB 0.0000 0.0000
## PP.BehavInt4_VB 0.0000 0.0000
## PP.Nat_1_GFFB 0.1188 0.1809 0.1631
## PP.Nat_4R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0000 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0002 0.0014 0.0008
## PP.Nat_1_GFPRB 0.5376 0.5971 0.8229
## PP.Nat_4R_GFPRB 0.0041 0.0949 0.0375
## PP.Nat_2R_GFPRB 0.0001 0.0118 0.0044
## PP.Nat_3R_GFPRB 0.0000 0.0027 0.0009
## PP.Nat_1_CBB 0.0128 0.0586 0.0388
## PP.Nat_4R_CBB 0.3045 0.1891 0.2000
## PP.Nat_2R_CBB 0.0029 0.0001 0.0004
## PP.Nat_3R_CBB 0.0003 0.0000 0.0000
## PP.Nat_1_PBPB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.0007 0.0018 0.0020
## PP.Nat_2R_PBPB 0.0423 0.0939 0.0866
## PP.Nat_3R_PBPB 0.1808 0.0229 0.0273
## PP.Nat_1_PBFB 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0000 0.0001 0.0002
## PP.Nat_2R_PBFB 0.5170 0.7072 0.8037
## PP.Nat_3R_PBFB 0.4011 0.1855 0.1916
## PP.Nat_1_VB 0.0000 0.0000 0.0000
## PP.Nat_4R_VB 0.0242 0.0055 0.0129
## PP.Nat_2R_VB 0.6961 0.3164 0.4848
## PP.Nat_3R_VB 0.2688 0.4485 0.3164
## PP.Nat_1_GFFB PP.Nat_4R_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB
## PP.Risk_Score_GFFB 0.2088 0.0000 0.0000 0.0000
## PP.Risk_Score_GFPRB 0.8478 0.0000 0.0000 0.0000
## PP.Risk_Score_CBB 0.0353 0.1352 0.3218 0.0484
## PP.Risk_Score_PBFB 0.0003 0.8430 0.2865 0.3020
## PP.Risk_Score_PBPB 0.0000 0.2627 0.9675 0.0127
## PP.Risk_Score_VB 0.0000 0.0000 0.0020 0.0000
## PP.Ben_Score_GFFB 0.0000 0.1226 0.2595 0.0000
## PP.Ben_Score_GFPRB 0.0000 0.6213 0.7109 0.0675
## PP.Ben_Score_CBB 0.0011 0.0000 0.0000 0.0000
## PP.Ben_Score_PBFB 0.8793 0.0000 0.0000 0.0000
## PP.Ben_Score_PBPB 0.3782 0.0000 0.0000 0.0000
## PP.Ben_Score_VB 0.3730 0.0000 0.0000 0.0024
## PP.BehavInt1_GFFB 0.0000 0.8948 0.6689 0.0029
## PP.BehavInt2_GFFB 0.0000 0.4505 0.3811 0.0248
## PP.BehavInt3_GFFB 0.0000 0.8385 0.9097 0.0010
## PP.BehavInt4_GFFB 0.0000 0.7437 0.5602 0.0059
## PP.BehavInt1_GFPRB 0.2043 0.0000 0.0000 0.0000
## PP.BehavInt2_GFPRB 0.2038 0.0000 0.0000 0.0000
## PP.BehavInt3_GFPRB 0.2665 0.0000 0.0000 0.0000
## PP.BehavInt4_GFPRB 0.2605 0.0000 0.0000 0.0000
## PP.BehavInt1_CBB 0.0079 0.0000 0.0000 0.0000
## PP.BehavInt2_CBB 0.0016 0.0000 0.0000 0.0000
## PP.BehavInt3_CBB 0.0051 0.0000 0.0000 0.0000
## PP.BehavInt4_CBB 0.0044 0.0000 0.0000 0.0000
## PP.BehavInt1_PBPB 0.2043 0.0000 0.0000 0.0000
## PP.BehavInt2_PBPB 0.2038 0.0000 0.0000 0.0000
## PP.BehavInt3_PBPB 0.2665 0.0000 0.0000 0.0000
## PP.BehavInt4_PBPB 0.2605 0.0000 0.0000 0.0000
## PP.BehavInt1_PBFB 0.6248 0.0000 0.0000 0.0000
## PP.BehavInt2_PBFB 0.9935 0.0000 0.0000 0.0000
## PP.BehavInt3_PBFB 0.9479 0.0000 0.0000 0.0000
## PP.BehavInt4_PBFB 0.9800 0.0000 0.0000 0.0000
## PP.BehavInt1_VB 0.1772 0.0000 0.0000 0.0009
## PP.BehavInt2_VB 0.1188 0.0000 0.0000 0.0002
## PP.BehavInt3_VB 0.1809 0.0000 0.0000 0.0014
## PP.BehavInt4_VB 0.1631 0.0000 0.0000 0.0008
## PP.Nat_1_GFFB 0.7073 0.5783 0.0051
## PP.Nat_4R_GFFB 0.7073 0.0000 0.0000
## PP.Nat_2R_GFFB 0.5783 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0051 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0003 0.0012 0.0295 0.1362
## PP.Nat_4R_GFPRB 0.1716 0.0000 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.3107 0.0000 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0689 0.0000 0.0000 0.0000
## PP.Nat_1_CBB 0.0003 0.0000 0.0000 0.0000
## PP.Nat_4R_CBB 0.0678 0.5893 0.5512 0.4635
## PP.Nat_2R_CBB 0.5532 0.3854 0.0755 0.5070
## PP.Nat_3R_CBB 0.4670 0.2241 0.0183 0.2859
## PP.Nat_1_PBPB 0.7369 0.0000 0.0000 0.0000
## PP.Nat_4R_PBPB 0.0000 0.6316 0.8374 0.0346
## PP.Nat_2R_PBPB 0.0000 0.8182 0.8131 0.0153
## PP.Nat_3R_PBPB 0.0000 0.1523 0.0125 0.0015
## PP.Nat_1_PBFB 0.5796 0.0000 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0000 0.1543 0.0739 0.8364
## PP.Nat_2R_PBFB 0.0000 0.6849 0.3625 0.0307
## PP.Nat_3R_PBFB 0.0000 0.6284 0.1886 0.0157
## PP.Nat_1_VB 0.2686 0.0000 0.0000 0.0022
## PP.Nat_4R_VB 0.0000 0.0088 0.0701 0.0000
## PP.Nat_2R_VB 0.0000 0.0008 0.0065 0.0000
## PP.Nat_3R_VB 0.0000 0.0013 0.0016 0.0000
## PP.Nat_1_GFPRB PP.Nat_4R_GFPRB PP.Nat_2R_GFPRB
## PP.Risk_Score_GFFB 0.0000 0.0000 0.0000
## PP.Risk_Score_GFPRB 0.0000 0.0000 0.0000
## PP.Risk_Score_CBB 0.8521 0.0057 0.0108
## PP.Risk_Score_PBFB 0.3628 0.0131 0.1221
## PP.Risk_Score_PBPB 0.0403 0.0000 0.0019
## PP.Risk_Score_VB 0.0052 0.0000 0.0000
## PP.Ben_Score_GFFB 0.0812 0.0011 0.0037
## PP.Ben_Score_GFPRB 0.0000 0.9838 0.9652
## PP.Ben_Score_CBB 0.1332 0.0000 0.0000
## PP.Ben_Score_PBFB 0.2850 0.0000 0.0000
## PP.Ben_Score_PBPB 0.6691 0.0039 0.0005
## PP.Ben_Score_VB 0.3935 0.1014 0.0163
## PP.BehavInt1_GFFB 0.0042 0.0953 0.2157
## PP.BehavInt2_GFFB 0.0003 0.4118 0.6737
## PP.BehavInt3_GFFB 0.0101 0.0471 0.1164
## PP.BehavInt4_GFFB 0.0041 0.1290 0.2664
## PP.BehavInt1_GFPRB 0.7029 0.0156 0.0029
## PP.BehavInt2_GFPRB 0.2913 0.0016 0.0002
## PP.BehavInt3_GFPRB 0.5228 0.0035 0.0005
## PP.BehavInt4_GFPRB 0.6308 0.0063 0.0010
## PP.BehavInt1_CBB 0.1183 0.0000 0.0000
## PP.BehavInt2_CBB 0.1092 0.0000 0.0000
## PP.BehavInt3_CBB 0.0969 0.0000 0.0000
## PP.BehavInt4_CBB 0.1140 0.0000 0.0000
## PP.BehavInt1_PBPB 0.7029 0.0156 0.0029
## PP.BehavInt2_PBPB 0.2913 0.0016 0.0002
## PP.BehavInt3_PBPB 0.5228 0.0035 0.0005
## PP.BehavInt4_PBPB 0.6308 0.0063 0.0010
## PP.BehavInt1_PBFB 0.0820 0.0000 0.0000
## PP.BehavInt2_PBFB 0.0736 0.0000 0.0000
## PP.BehavInt3_PBFB 0.1965 0.0000 0.0000
## PP.BehavInt4_PBFB 0.2226 0.0000 0.0000
## PP.BehavInt1_VB 0.8204 0.0472 0.0055
## PP.BehavInt2_VB 0.5376 0.0041 0.0001
## PP.BehavInt3_VB 0.5971 0.0949 0.0118
## PP.BehavInt4_VB 0.8229 0.0375 0.0044
## PP.Nat_1_GFFB 0.0003 0.1716 0.3107
## PP.Nat_4R_GFFB 0.0012 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0295 0.0000 0.0000
## PP.Nat_3R_GFFB 0.1362 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0000 0.0000
## PP.Nat_4R_GFPRB 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0030 0.0000 0.0000
## PP.Nat_1_CBB 0.0311 0.0000 0.0000
## PP.Nat_4R_CBB 0.0261 0.6134 0.7953
## PP.Nat_2R_CBB 0.0019 0.5774 0.6340
## PP.Nat_3R_CBB 0.0020 0.7303 0.7766
## PP.Nat_1_PBPB 0.1476 0.0000 0.0000
## PP.Nat_4R_PBPB 0.5598 0.0157 0.1728
## PP.Nat_2R_PBPB 0.1414 0.0419 0.2410
## PP.Nat_3R_PBPB 0.0003 0.3522 0.6607
## PP.Nat_1_PBFB 0.0433 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0044 0.9247 0.3866
## PP.Nat_2R_PBFB 0.0034 0.2110 0.6604
## PP.Nat_3R_PBFB 0.0000 0.7018 0.9882
## PP.Nat_1_VB 0.7864 0.0531 0.0076
## PP.Nat_4R_VB 0.3453 0.0000 0.0000
## PP.Nat_2R_VB 0.2831 0.0000 0.0000
## PP.Nat_3R_VB 0.8787 0.0000 0.0000
## PP.Nat_3R_GFPRB PP.Nat_1_CBB PP.Nat_4R_CBB PP.Nat_2R_CBB
## PP.Risk_Score_GFFB 0.0000 0.0000 0.8636 0.4251
## PP.Risk_Score_GFPRB 0.0000 0.0000 0.6037 0.8339
## PP.Risk_Score_CBB 0.1453 0.9157 0.0000 0.0000
## PP.Risk_Score_PBFB 0.4855 0.2620 0.0053 0.9177
## PP.Risk_Score_PBPB 0.0225 0.0025 0.1092 0.2782
## PP.Risk_Score_VB 0.0000 0.0000 0.5515 0.1624
## PP.Ben_Score_GFFB 0.0002 0.0000 0.0170 0.3101
## PP.Ben_Score_GFPRB 0.5055 0.1103 0.0010 0.0073
## PP.Ben_Score_CBB 0.0000 0.0000 0.2598 0.4670
## PP.Ben_Score_PBFB 0.0000 0.0000 0.5185 0.3302
## PP.Ben_Score_PBPB 0.0000 0.0000 0.8768 0.0368
## PP.Ben_Score_VB 0.0046 0.0909 0.0358 0.0000
## PP.BehavInt1_GFFB 0.0416 0.0002 0.0066 0.2326
## PP.BehavInt2_GFFB 0.1654 0.0035 0.0034 0.1122
## PP.BehavInt3_GFFB 0.0195 0.0000 0.0069 0.2550
## PP.BehavInt4_GFFB 0.0820 0.0005 0.0062 0.2592
## PP.BehavInt1_GFPRB 0.0000 0.0003 0.5735 0.0832
## PP.BehavInt2_GFPRB 0.0000 0.0000 0.4954 0.1512
## PP.BehavInt3_GFPRB 0.0000 0.0000 0.5976 0.0938
## PP.BehavInt4_GFPRB 0.0000 0.0001 0.8537 0.0372
## PP.BehavInt1_CBB 0.0000 0.0000 0.0770 0.3182
## PP.BehavInt2_CBB 0.0000 0.0000 0.0955 0.2337
## PP.BehavInt3_CBB 0.0000 0.0000 0.0973 0.2849
## PP.BehavInt4_CBB 0.0000 0.0000 0.0780 0.2842
## PP.BehavInt1_PBPB 0.0000 0.0003 0.5735 0.0832
## PP.BehavInt2_PBPB 0.0000 0.0000 0.4954 0.1512
## PP.BehavInt3_PBPB 0.0000 0.0000 0.5976 0.0938
## PP.BehavInt4_PBPB 0.0000 0.0001 0.8537 0.0372
## PP.BehavInt1_PBFB 0.0000 0.0000 0.5238 0.3391
## PP.BehavInt2_PBFB 0.0000 0.0000 0.3935 0.5701
## PP.BehavInt3_PBFB 0.0000 0.0000 0.6149 0.2702
## PP.BehavInt4_PBFB 0.0000 0.0000 0.4770 0.3768
## PP.BehavInt1_VB 0.0009 0.0344 0.2576 0.0005
## PP.BehavInt2_VB 0.0000 0.0128 0.3045 0.0029
## PP.BehavInt3_VB 0.0027 0.0586 0.1891 0.0001
## PP.BehavInt4_VB 0.0009 0.0388 0.2000 0.0004
## PP.Nat_1_GFFB 0.0689 0.0003 0.0678 0.5532
## PP.Nat_4R_GFFB 0.0000 0.0000 0.5893 0.3854
## PP.Nat_2R_GFFB 0.0000 0.0000 0.5512 0.0755
## PP.Nat_3R_GFFB 0.0000 0.0000 0.4635 0.5070
## PP.Nat_1_GFPRB 0.0030 0.0311 0.0261 0.0019
## PP.Nat_4R_GFPRB 0.0000 0.0000 0.6134 0.5774
## PP.Nat_2R_GFPRB 0.0000 0.0000 0.7953 0.6340
## PP.Nat_3R_GFPRB 0.0000 0.8011 0.6511
## PP.Nat_1_CBB 0.0000 0.1662 0.1368
## PP.Nat_4R_CBB 0.8011 0.1662 0.0000
## PP.Nat_2R_CBB 0.6511 0.1368 0.0000
## PP.Nat_3R_CBB 0.7621 0.5798 0.0000 0.0000
## PP.Nat_1_PBPB 0.0000 0.0000 0.6215 0.2573
## PP.Nat_4R_PBPB 0.2916 0.0263 0.0045 0.4459
## PP.Nat_2R_PBPB 0.1952 0.0101 0.0002 0.0108
## PP.Nat_3R_PBPB 0.0530 0.0035 0.0624 0.0026
## PP.Nat_1_PBFB 0.0000 0.0000 0.2234 0.9870
## PP.Nat_4R_PBFB 0.3631 0.3785 0.0000 0.0109
## PP.Nat_2R_PBFB 0.3716 0.2842 0.0000 0.0000
## PP.Nat_3R_PBFB 0.3471 0.2878 0.0000 0.0000
## PP.Nat_1_VB 0.0012 0.0329 0.1925 0.0008
## PP.Nat_4R_VB 0.0000 0.0000 0.4421 0.2440
## PP.Nat_2R_VB 0.0000 0.0000 0.5712 0.4326
## PP.Nat_3R_VB 0.0000 0.0000 0.9524 0.6426
## PP.Nat_3R_CBB PP.Nat_1_PBPB PP.Nat_4R_PBPB PP.Nat_2R_PBPB
## PP.Risk_Score_GFFB 0.2271 0.0000 0.6265 0.8776
## PP.Risk_Score_GFPRB 0.5230 0.0000 0.3733 0.4392
## PP.Risk_Score_CBB 0.0004 0.6335 0.0000 0.0000
## PP.Risk_Score_PBFB 0.3603 0.0001 0.0000 0.0000
## PP.Risk_Score_PBPB 0.0706 0.0107 0.0000 0.0000
## PP.Risk_Score_VB 0.1652 0.3741 0.0000 0.0000
## PP.Ben_Score_GFFB 0.2343 0.1599 0.0000 0.0000
## PP.Ben_Score_GFPRB 0.0172 0.6674 0.0005 0.0000
## PP.Ben_Score_CBB 0.6493 0.0000 0.0818 0.0301
## PP.Ben_Score_PBFB 0.0403 0.0000 0.1504 0.5027
## PP.Ben_Score_PBPB 0.0017 0.0000 0.0070 0.1216
## PP.Ben_Score_VB 0.0000 0.0000 0.0087 0.3696
## PP.BehavInt1_GFFB 0.2136 0.8175 0.0000 0.0000
## PP.BehavInt2_GFFB 0.0809 0.5478 0.0000 0.0000
## PP.BehavInt3_GFFB 0.2281 0.9598 0.0000 0.0000
## PP.BehavInt4_GFFB 0.2408 0.7319 0.0000 0.0000
## PP.BehavInt1_GFPRB 0.0041 0.0000 0.0014 0.0346
## PP.BehavInt2_GFPRB 0.0137 0.0000 0.0036 0.0536
## PP.BehavInt3_GFPRB 0.0070 0.0000 0.0044 0.0636
## PP.BehavInt4_GFPRB 0.0020 0.0000 0.0054 0.0870
## PP.BehavInt1_CBB 0.7783 0.0000 0.2491 0.1132
## PP.BehavInt2_CBB 0.9660 0.0000 0.1566 0.0572
## PP.BehavInt3_CBB 0.8506 0.0000 0.2007 0.0940
## PP.BehavInt4_CBB 0.8796 0.0000 0.2233 0.0972
## PP.BehavInt1_PBPB 0.0041 0.0000 0.0014 0.0346
## PP.BehavInt2_PBPB 0.0137 0.0000 0.0036 0.0536
## PP.BehavInt3_PBPB 0.0070 0.0000 0.0044 0.0636
## PP.BehavInt4_PBPB 0.0020 0.0000 0.0054 0.0870
## PP.BehavInt1_PBFB 0.0435 0.0000 0.1156 0.3742
## PP.BehavInt2_PBFB 0.1175 0.0000 0.1529 0.4743
## PP.BehavInt3_PBFB 0.0332 0.0000 0.1862 0.5406
## PP.BehavInt4_PBFB 0.0531 0.0000 0.1454 0.4251
## PP.BehavInt1_VB 0.0000 0.0000 0.0016 0.1046
## PP.BehavInt2_VB 0.0003 0.0000 0.0007 0.0423
## PP.BehavInt3_VB 0.0000 0.0000 0.0018 0.0939
## PP.BehavInt4_VB 0.0000 0.0000 0.0020 0.0866
## PP.Nat_1_GFFB 0.4670 0.7369 0.0000 0.0000
## PP.Nat_4R_GFFB 0.2241 0.0000 0.6316 0.8182
## PP.Nat_2R_GFFB 0.0183 0.0000 0.8374 0.8131
## PP.Nat_3R_GFFB 0.2859 0.0000 0.0346 0.0153
## PP.Nat_1_GFPRB 0.0020 0.1476 0.5598 0.1414
## PP.Nat_4R_GFPRB 0.7303 0.0000 0.0157 0.0419
## PP.Nat_2R_GFPRB 0.7766 0.0000 0.1728 0.2410
## PP.Nat_3R_GFPRB 0.7621 0.0000 0.2916 0.1952
## PP.Nat_1_CBB 0.5798 0.0000 0.0263 0.0101
## PP.Nat_4R_CBB 0.0000 0.6215 0.0045 0.0002
## PP.Nat_2R_CBB 0.0000 0.2573 0.4459 0.0108
## PP.Nat_3R_CBB 0.0379 0.9202 0.0314
## PP.Nat_1_PBPB 0.0379 0.0108 0.1381
## PP.Nat_4R_PBPB 0.9202 0.0108 0.0000
## PP.Nat_2R_PBPB 0.0314 0.1381 0.0000
## PP.Nat_3R_PBPB 0.0004 0.0512 0.0000 0.0000
## PP.Nat_1_PBFB 0.3568 0.0000 0.3291 0.6422
## PP.Nat_4R_PBFB 0.0957 0.0000 0.0000 0.0000
## PP.Nat_2R_PBFB 0.0000 0.4927 0.0000 0.0000
## PP.Nat_3R_PBFB 0.0000 0.5114 0.0003 0.0000
## PP.Nat_1_VB 0.0000 0.0000 0.0021 0.1188
## PP.Nat_4R_VB 0.2332 0.5523 0.0000 0.0000
## PP.Nat_2R_VB 0.4941 0.1637 0.0000 0.0000
## PP.Nat_3R_VB 0.9169 0.0021 0.0002 0.0000
## PP.Nat_3R_PBPB PP.Nat_1_PBFB PP.Nat_4R_PBFB PP.Nat_2R_PBFB
## PP.Risk_Score_GFFB 0.1019 0.0000 0.1378 0.5756
## PP.Risk_Score_GFPRB 0.2990 0.0000 0.2253 0.4337
## PP.Risk_Score_CBB 0.1800 0.4682 0.0000 0.0000
## PP.Risk_Score_PBFB 0.7587 0.0025 0.0000 0.0000
## PP.Risk_Score_PBPB 0.6297 0.2233 0.0000 0.0011
## PP.Risk_Score_VB 0.0845 0.0113 0.0049 0.0021
## PP.Ben_Score_GFFB 0.0000 0.0139 0.0012 0.0000
## PP.Ben_Score_GFPRB 0.0003 0.7514 0.0000 0.0000
## PP.Ben_Score_CBB 0.0000 0.0000 0.2333 0.2638
## PP.Ben_Score_PBFB 0.0023 0.0000 0.0001 0.6257
## PP.Ben_Score_PBPB 0.0044 0.0000 0.0000 0.6953
## PP.Ben_Score_VB 0.0054 0.0000 0.0017 0.6752
## PP.BehavInt1_GFFB 0.0000 0.4976 0.0000 0.0000
## PP.BehavInt2_GFFB 0.0000 0.8139 0.0000 0.0000
## PP.BehavInt3_GFFB 0.0000 0.3449 0.0000 0.0000
## PP.BehavInt4_GFFB 0.0001 0.6127 0.0000 0.0000
## PP.BehavInt1_GFPRB 0.0164 0.0000 0.0000 0.2879
## PP.BehavInt2_GFPRB 0.0257 0.0000 0.0000 0.3486
## PP.BehavInt3_GFPRB 0.0095 0.0000 0.0000 0.4354
## PP.BehavInt4_GFPRB 0.0078 0.0000 0.0000 0.5432
## PP.BehavInt1_CBB 0.0001 0.0000 0.0604 0.5720
## PP.BehavInt2_CBB 0.0002 0.0000 0.1103 0.4418
## PP.BehavInt3_CBB 0.0002 0.0000 0.0891 0.4966
## PP.BehavInt4_CBB 0.0002 0.0000 0.0727 0.5380
## PP.BehavInt1_PBPB 0.0164 0.0000 0.0000 0.2879
## PP.BehavInt2_PBPB 0.0257 0.0000 0.0000 0.3486
## PP.BehavInt3_PBPB 0.0095 0.0000 0.0000 0.4354
## PP.BehavInt4_PBPB 0.0078 0.0000 0.0000 0.5432
## PP.BehavInt1_PBFB 0.0081 0.0000 0.0000 0.5157
## PP.BehavInt2_PBFB 0.0122 0.0000 0.0001 0.5244
## PP.BehavInt3_PBFB 0.0030 0.0000 0.0002 0.6281
## PP.BehavInt4_PBFB 0.0040 0.0000 0.0001 0.5338
## PP.BehavInt1_VB 0.0211 0.0000 0.0000 0.7690
## PP.BehavInt2_VB 0.1808 0.0000 0.0000 0.5170
## PP.BehavInt3_VB 0.0229 0.0000 0.0001 0.7072
## PP.BehavInt4_VB 0.0273 0.0000 0.0002 0.8037
## PP.Nat_1_GFFB 0.0000 0.5796 0.0000 0.0000
## PP.Nat_4R_GFFB 0.1523 0.0000 0.1543 0.6849
## PP.Nat_2R_GFFB 0.0125 0.0000 0.0739 0.3625
## PP.Nat_3R_GFFB 0.0015 0.0000 0.8364 0.0307
## PP.Nat_1_GFPRB 0.0003 0.0433 0.0044 0.0034
## PP.Nat_4R_GFPRB 0.3522 0.0000 0.9247 0.2110
## PP.Nat_2R_GFPRB 0.6607 0.0000 0.3866 0.6604
## PP.Nat_3R_GFPRB 0.0530 0.0000 0.3631 0.3716
## PP.Nat_1_CBB 0.0035 0.0000 0.3785 0.2842
## PP.Nat_4R_CBB 0.0624 0.2234 0.0000 0.0000
## PP.Nat_2R_CBB 0.0026 0.9870 0.0109 0.0000
## PP.Nat_3R_CBB 0.0004 0.3568 0.0957 0.0000
## PP.Nat_1_PBPB 0.0512 0.0000 0.0000 0.4927
## PP.Nat_4R_PBPB 0.0000 0.3291 0.0000 0.0000
## PP.Nat_2R_PBPB 0.0000 0.6422 0.0000 0.0000
## PP.Nat_3R_PBPB 0.0167 0.0093 0.0000
## PP.Nat_1_PBFB 0.0167 0.0000 0.4395
## PP.Nat_4R_PBFB 0.0093 0.0000 0.0000
## PP.Nat_2R_PBFB 0.0000 0.4395 0.0000
## PP.Nat_3R_PBFB 0.0000 0.6461 0.0000 0.0000
## PP.Nat_1_VB 0.0477 0.0000 0.0000 0.6876
## PP.Nat_4R_VB 0.0014 0.2961 0.0000 0.0000
## PP.Nat_2R_VB 0.0006 0.0102 0.0016 0.0000
## PP.Nat_3R_VB 0.0000 0.0000 0.0366 0.0000
## PP.Nat_3R_PBFB PP.Nat_1_VB PP.Nat_4R_VB PP.Nat_2R_VB
## PP.Risk_Score_GFFB 0.5479 0.0002 0.0125 0.0016
## PP.Risk_Score_GFPRB 0.6713 0.0013 0.0005 0.0000
## PP.Risk_Score_CBB 0.0017 0.5774 0.0137 0.0219
## PP.Risk_Score_PBFB 0.1244 0.0000 0.0000 0.0000
## PP.Risk_Score_PBPB 0.3723 0.0000 0.0000 0.0000
## PP.Risk_Score_VB 0.1618 0.1547 0.0000 0.0000
## PP.Ben_Score_GFFB 0.0001 0.7350 0.0000 0.0000
## PP.Ben_Score_GFPRB 0.0000 0.8506 0.0067 0.0021
## PP.Ben_Score_CBB 0.1156 0.0024 0.0000 0.0000
## PP.Ben_Score_PBFB 0.2406 0.0000 0.8458 0.0745
## PP.Ben_Score_PBPB 0.1721 0.0000 0.1904 0.6529
## PP.Ben_Score_VB 0.0429 0.0000 0.0103 0.4038
## PP.BehavInt1_GFFB 0.0000 0.4431 0.0000 0.0000
## PP.BehavInt2_GFFB 0.0000 0.4383 0.0000 0.0000
## PP.BehavInt3_GFFB 0.0000 0.5397 0.0000 0.0000
## PP.BehavInt4_GFFB 0.0000 0.3530 0.0000 0.0000
## PP.BehavInt1_GFPRB 0.4519 0.0000 0.0725 0.9355
## PP.BehavInt2_GFPRB 0.5515 0.0000 0.1831 0.7131
## PP.BehavInt3_GFPRB 0.3199 0.0000 0.1789 0.6584
## PP.BehavInt4_GFPRB 0.2242 0.0000 0.1348 0.7905
## PP.BehavInt1_CBB 0.2249 0.0009 0.0002 0.0000
## PP.BehavInt2_CBB 0.2120 0.0026 0.0000 0.0000
## PP.BehavInt3_CBB 0.2171 0.0019 0.0000 0.0000
## PP.BehavInt4_CBB 0.2291 0.0022 0.0000 0.0000
## PP.BehavInt1_PBPB 0.4519 0.0000 0.0725 0.9355
## PP.BehavInt2_PBPB 0.5515 0.0000 0.1831 0.7131
## PP.BehavInt3_PBPB 0.3199 0.0000 0.1789 0.6584
## PP.BehavInt4_PBPB 0.2242 0.0000 0.1348 0.7905
## PP.BehavInt1_PBFB 0.4289 0.0000 0.8756 0.1024
## PP.BehavInt2_PBFB 0.4733 0.0000 0.6219 0.0431
## PP.BehavInt3_PBFB 0.2791 0.0000 0.8524 0.0899
## PP.BehavInt4_PBFB 0.3244 0.0000 0.8594 0.0928
## PP.BehavInt1_VB 0.1786 0.0000 0.0097 0.4262
## PP.BehavInt2_VB 0.4011 0.0000 0.0242 0.6961
## PP.BehavInt3_VB 0.1855 0.0000 0.0055 0.3164
## PP.BehavInt4_VB 0.1916 0.0000 0.0129 0.4848
## PP.Nat_1_GFFB 0.0000 0.2686 0.0000 0.0000
## PP.Nat_4R_GFFB 0.6284 0.0000 0.0088 0.0008
## PP.Nat_2R_GFFB 0.1886 0.0000 0.0701 0.0065
## PP.Nat_3R_GFFB 0.0157 0.0022 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0000 0.7864 0.3453 0.2831
## PP.Nat_4R_GFPRB 0.7018 0.0531 0.0000 0.0000
## PP.Nat_2R_GFPRB 0.9882 0.0076 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.3471 0.0012 0.0000 0.0000
## PP.Nat_1_CBB 0.2878 0.0329 0.0000 0.0000
## PP.Nat_4R_CBB 0.0000 0.1925 0.4421 0.5712
## PP.Nat_2R_CBB 0.0000 0.0008 0.2440 0.4326
## PP.Nat_3R_CBB 0.0000 0.0000 0.2332 0.4941
## PP.Nat_1_PBPB 0.5114 0.0000 0.5523 0.1637
## PP.Nat_4R_PBPB 0.0003 0.0021 0.0000 0.0000
## PP.Nat_2R_PBPB 0.0000 0.1188 0.0000 0.0000
## PP.Nat_3R_PBPB 0.0000 0.0477 0.0014 0.0006
## PP.Nat_1_PBFB 0.6461 0.0000 0.2961 0.0102
## PP.Nat_4R_PBFB 0.0000 0.0000 0.0000 0.0016
## PP.Nat_2R_PBFB 0.0000 0.6876 0.0000 0.0000
## PP.Nat_3R_PBFB 0.3365 0.0044 0.0015
## PP.Nat_1_VB 0.3365 0.0031 0.2348
## PP.Nat_4R_VB 0.0044 0.0031 0.0000
## PP.Nat_2R_VB 0.0015 0.2348 0.0000
## PP.Nat_3R_VB 0.0000 0.5576 0.0000 0.0000
## PP.Nat_3R_VB
## PP.Risk_Score_GFFB 0.0022
## PP.Risk_Score_GFPRB 0.0000
## PP.Risk_Score_CBB 0.2097
## PP.Risk_Score_PBFB 0.0347
## PP.Risk_Score_PBPB 0.0011
## PP.Risk_Score_VB 0.0000
## PP.Ben_Score_GFFB 0.0000
## PP.Ben_Score_GFPRB 0.0032
## PP.Ben_Score_CBB 0.0000
## PP.Ben_Score_PBFB 0.0008
## PP.Ben_Score_PBPB 0.0191
## PP.Ben_Score_VB 0.3392
## PP.BehavInt1_GFFB 0.0000
## PP.BehavInt2_GFFB 0.0000
## PP.BehavInt3_GFFB 0.0000
## PP.BehavInt4_GFFB 0.0000
## PP.BehavInt1_GFPRB 0.0951
## PP.BehavInt2_GFPRB 0.0421
## PP.BehavInt3_GFPRB 0.0224
## PP.BehavInt4_GFPRB 0.0419
## PP.BehavInt1_CBB 0.0000
## PP.BehavInt2_CBB 0.0000
## PP.BehavInt3_CBB 0.0000
## PP.BehavInt4_CBB 0.0000
## PP.BehavInt1_PBPB 0.0951
## PP.BehavInt2_PBPB 0.0421
## PP.BehavInt3_PBPB 0.0224
## PP.BehavInt4_PBPB 0.0419
## PP.BehavInt1_PBFB 0.0032
## PP.BehavInt2_PBFB 0.0008
## PP.BehavInt3_PBFB 0.0015
## PP.BehavInt4_PBFB 0.0014
## PP.BehavInt1_VB 0.3345
## PP.BehavInt2_VB 0.2688
## PP.BehavInt3_VB 0.4485
## PP.BehavInt4_VB 0.3164
## PP.Nat_1_GFFB 0.0000
## PP.Nat_4R_GFFB 0.0013
## PP.Nat_2R_GFFB 0.0016
## PP.Nat_3R_GFFB 0.0000
## PP.Nat_1_GFPRB 0.8787
## PP.Nat_4R_GFPRB 0.0000
## PP.Nat_2R_GFPRB 0.0000
## PP.Nat_3R_GFPRB 0.0000
## PP.Nat_1_CBB 0.0000
## PP.Nat_4R_CBB 0.9524
## PP.Nat_2R_CBB 0.6426
## PP.Nat_3R_CBB 0.9169
## PP.Nat_1_PBPB 0.0021
## PP.Nat_4R_PBPB 0.0002
## PP.Nat_2R_PBPB 0.0000
## PP.Nat_3R_PBPB 0.0000
## PP.Nat_1_PBFB 0.0000
## PP.Nat_4R_PBFB 0.0366
## PP.Nat_2R_PBFB 0.0000
## PP.Nat_3R_PBFB 0.0000
## PP.Nat_1_VB 0.5576
## PP.Nat_4R_VB 0.0000
## PP.Nat_2R_VB 0.0000
## PP.Nat_3R_VB
library(corrplot)
corrplot(mydata.cor7, method="color")
corrplot(mydata.cor7, addCoef.col = 1, number.cex = 0.3, method = 'number')
#Familiarity/Naturalness
PP$corFN <- data.frame(PP$Nat_1_GFFB , PP$Nat_2R_GFFB , PP$Nat_3R_GFFB , PP$Nat_4R_GFFB, PP$Nat_1_GFPRB , PP$Nat_2R_GFPRB , PP$Nat_3R_GFPRB , PP$Nat_4R_GFPRB, PP$Nat_1_CBB , PP$Nat_2R_CBB , PP$Nat_3R_CBB , PP$Nat_4R_CBB, PP$Nat_1_PBPB , PP$Nat_2R_PBPB , PP$Nat_3R_PBPB , PP$Nat_4R_PBPB, PP$Nat_1_PBFB , PP$Nat_2R_PBFB , PP$Nat_3R_PBFB , PP$Nat_4R_PBFB, PP$Nat_1_VB , PP$Nat_2R_VB , PP$Nat_3R_VB, PP$Nat_4R_VB, PP$FR.GFFB, PP$FR.GFPRB, PP$FR.CBB, PP$FR.PBPB, PP$FR.PBFB, PP$FR.VB)
mydata.corFN = cor(PP$corFN, use = "pairwise.complete.obs")
head(round(mydata.corFN,2))
## PP.Nat_1_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB PP.Nat_4R_GFFB
## PP.Nat_1_GFFB 1.00 0.18 -0.15 0.18
## PP.Nat_2R_GFFB 0.18 1.00 0.44 0.61
## PP.Nat_3R_GFFB -0.15 0.44 1.00 0.50
## PP.Nat_4R_GFFB 0.18 0.61 0.50 1.00
## PP.Nat_1_GFPRB 0.42 0.07 0.01 0.15
## PP.Nat_2R_GFPRB -0.03 0.29 0.34 0.49
## PP.Nat_1_GFPRB PP.Nat_2R_GFPRB PP.Nat_3R_GFPRB PP.Nat_4R_GFPRB
## PP.Nat_1_GFFB 0.42 -0.03 -0.04 0.04
## PP.Nat_2R_GFFB 0.07 0.29 0.17 0.21
## PP.Nat_3R_GFFB 0.01 0.34 0.49 0.33
## PP.Nat_4R_GFFB 0.15 0.49 0.38 0.47
## PP.Nat_1_GFPRB 1.00 0.25 0.14 0.38
## PP.Nat_2R_GFPRB 0.25 1.00 0.51 0.68
## PP.Nat_1_CBB PP.Nat_2R_CBB PP.Nat_3R_CBB PP.Nat_4R_CBB
## PP.Nat_1_GFFB 0.35 0.04 0.00 -0.01
## PP.Nat_2R_GFFB -0.32 0.22 0.21 0.13
## PP.Nat_3R_GFFB -0.41 0.07 0.01 0.08
## PP.Nat_4R_GFFB -0.36 0.14 0.05 0.20
## PP.Nat_1_GFPRB -0.10 -0.13 -0.13 -0.05
## PP.Nat_2R_GFPRB -0.34 -0.07 -0.07 0.00
## PP.Nat_1_PBPB PP.Nat_2R_PBPB PP.Nat_3R_PBPB PP.Nat_4R_PBPB
## PP.Nat_1_GFFB 0.14 -0.26 -0.17 -0.21
## PP.Nat_2R_GFFB -0.27 0.04 0.06 0.15
## PP.Nat_3R_GFFB -0.36 0.14 0.10 0.09
## PP.Nat_4R_GFFB -0.23 0.00 -0.04 0.08
## PP.Nat_1_GFPRB -0.04 0.05 -0.33 0.03
## PP.Nat_2R_GFPRB -0.27 0.02 -0.21 0.04
## PP.Nat_1_PBFB PP.Nat_2R_PBFB PP.Nat_3R_PBFB PP.Nat_4R_PBFB
## PP.Nat_1_GFFB 0.17 0.28 0.29 0.24
## PP.Nat_2R_GFFB -0.33 -0.11 -0.07 0.05
## PP.Nat_3R_GFFB -0.37 -0.11 -0.15 -0.11
## PP.Nat_4R_GFFB -0.35 0.03 0.05 -0.07
## PP.Nat_1_GFPRB -0.06 0.20 0.28 0.23
## PP.Nat_2R_GFPRB -0.38 0.07 0.09 0.05
## PP.Nat_1_VB PP.Nat_2R_VB PP.Nat_3R_VB PP.Nat_4R_VB PP.FR.GFFB
## PP.Nat_1_GFFB 0.09 -0.22 -0.24 -0.21 0.42
## PP.Nat_2R_GFFB -0.09 0.12 0.12 0.15 0.01
## PP.Nat_3R_GFFB -0.04 0.22 0.20 0.27 -0.08
## PP.Nat_4R_GFFB -0.13 0.13 0.05 0.25 0.09
## PP.Nat_1_GFPRB 0.09 0.07 0.06 0.02 0.42
## PP.Nat_2R_GFPRB -0.16 0.35 0.28 0.24 0.08
## PP.FR.GFPRB PP.FR.CBB PP.FR.PBPB PP.FR.PBFB PP.FR.VB
## PP.Nat_1_GFFB 0.25 0.28 0.06 0.17 0.20
## PP.Nat_2R_GFFB -0.02 -0.33 -0.35 -0.35 -0.02
## PP.Nat_3R_GFFB 0.09 -0.39 -0.19 -0.40 -0.01
## PP.Nat_4R_GFFB 0.08 -0.33 -0.20 -0.36 -0.14
## PP.Nat_1_GFPRB 0.53 0.05 0.09 -0.08 0.29
## PP.Nat_2R_GFPRB 0.24 -0.39 -0.02 -0.30 -0.13
library("Hmisc")
mydata.rcorrFN = rcorr(as.matrix(mydata.corFN))
mydata.rcorrFN
## PP.Nat_1_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB PP.Nat_4R_GFFB
## PP.Nat_1_GFFB 1.00 -0.16 -0.46 -0.13
## PP.Nat_2R_GFFB -0.16 1.00 0.80 0.88
## PP.Nat_3R_GFFB -0.46 0.80 1.00 0.84
## PP.Nat_4R_GFFB -0.13 0.88 0.84 1.00
## PP.Nat_1_GFPRB 0.51 0.08 0.05 0.23
## PP.Nat_2R_GFPRB -0.24 0.63 0.75 0.82
## PP.Nat_3R_GFPRB -0.32 0.62 0.84 0.78
## PP.Nat_4R_GFPRB -0.24 0.60 0.75 0.79
## PP.Nat_1_CBB 0.48 -0.71 -0.84 -0.76
## PP.Nat_2R_CBB -0.23 0.26 0.09 0.10
## PP.Nat_3R_CBB -0.25 0.28 0.11 0.10
## PP.Nat_4R_CBB -0.27 0.21 0.10 0.14
## PP.Nat_1_PBPB 0.18 -0.74 -0.76 -0.75
## PP.Nat_2R_PBPB -0.72 0.17 0.28 0.06
## PP.Nat_3R_PBPB -0.65 0.26 0.31 0.08
## PP.Nat_4R_PBPB -0.65 0.17 0.25 0.10
## PP.Nat_1_PBFB 0.24 -0.76 -0.80 -0.82
## PP.Nat_2R_PBFB 0.63 -0.24 -0.30 -0.10
## PP.Nat_3R_PBFB 0.65 -0.24 -0.33 -0.09
## PP.Nat_4R_PBFB 0.52 0.02 -0.12 0.04
## PP.Nat_1_VB 0.09 -0.54 -0.43 -0.54
## PP.Nat_2R_VB -0.67 0.41 0.62 0.44
## PP.Nat_3R_VB -0.68 0.38 0.58 0.34
## PP.Nat_4R_VB -0.69 0.33 0.55 0.37
## PP.FR.GFFB 0.74 -0.31 -0.38 -0.16
## PP.FR.GFPRB 0.44 -0.21 -0.09 -0.04
## PP.FR.CBB 0.50 -0.78 -0.87 -0.80
## PP.FR.PBPB 0.26 -0.79 -0.69 -0.69
## PP.FR.PBFB 0.38 -0.81 -0.82 -0.81
## PP.FR.VB 0.38 -0.52 -0.46 -0.51
## PP.Nat_1_GFPRB PP.Nat_2R_GFPRB PP.Nat_3R_GFPRB PP.Nat_4R_GFPRB
## PP.Nat_1_GFFB 0.51 -0.24 -0.32 -0.24
## PP.Nat_2R_GFFB 0.08 0.63 0.62 0.60
## PP.Nat_3R_GFFB 0.05 0.75 0.84 0.75
## PP.Nat_4R_GFFB 0.23 0.82 0.78 0.79
## PP.Nat_1_GFPRB 1.00 0.40 0.26 0.47
## PP.Nat_2R_GFPRB 0.40 1.00 0.88 0.94
## PP.Nat_3R_GFPRB 0.26 0.88 1.00 0.87
## PP.Nat_4R_GFPRB 0.47 0.94 0.87 1.00
## PP.Nat_1_CBB -0.19 -0.80 -0.84 -0.79
## PP.Nat_2R_CBB -0.51 -0.20 -0.13 -0.17
## PP.Nat_3R_CBB -0.49 -0.15 -0.05 -0.14
## PP.Nat_4R_CBB -0.43 -0.11 -0.09 -0.05
## PP.Nat_1_PBPB -0.22 -0.75 -0.77 -0.69
## PP.Nat_2R_PBPB -0.37 0.01 0.07 0.11
## PP.Nat_3R_PBPB -0.61 -0.07 0.11 -0.01
## PP.Nat_4R_PBPB -0.30 0.04 0.04 0.17
## PP.Nat_1_PBFB -0.26 -0.83 -0.82 -0.79
## PP.Nat_2R_PBFB 0.52 0.01 -0.09 -0.08
## PP.Nat_3R_PBFB 0.59 0.02 -0.12 -0.04
## PP.Nat_4R_PBFB 0.52 0.15 0.07 0.06
## PP.Nat_1_VB 0.04 -0.45 -0.48 -0.39
## PP.Nat_2R_VB -0.01 0.59 0.61 0.64
## PP.Nat_3R_VB -0.12 0.49 0.54 0.51
## PP.Nat_4R_VB -0.12 0.43 0.46 0.51
## PP.FR.GFFB 0.64 -0.08 -0.20 -0.05
## PP.FR.GFPRB 0.78 0.22 0.10 0.26
## PP.FR.CBB -0.05 -0.80 -0.85 -0.78
## PP.FR.PBPB 0.02 -0.53 -0.61 -0.52
## PP.FR.PBFB -0.06 -0.71 -0.76 -0.71
## PP.FR.VB 0.34 -0.38 -0.40 -0.30
## PP.Nat_1_CBB PP.Nat_2R_CBB PP.Nat_3R_CBB PP.Nat_4R_CBB
## PP.Nat_1_GFFB 0.48 -0.23 -0.25 -0.27
## PP.Nat_2R_GFFB -0.71 0.26 0.28 0.21
## PP.Nat_3R_GFFB -0.84 0.09 0.11 0.10
## PP.Nat_4R_GFFB -0.76 0.10 0.10 0.14
## PP.Nat_1_GFPRB -0.19 -0.51 -0.49 -0.43
## PP.Nat_2R_GFPRB -0.80 -0.20 -0.15 -0.11
## PP.Nat_3R_GFPRB -0.84 -0.13 -0.05 -0.09
## PP.Nat_4R_GFPRB -0.79 -0.17 -0.14 -0.05
## PP.Nat_1_CBB 1.00 0.17 0.08 0.17
## PP.Nat_2R_CBB 0.17 1.00 0.92 0.90
## PP.Nat_3R_CBB 0.08 0.92 1.00 0.83
## PP.Nat_4R_CBB 0.17 0.90 0.83 1.00
## PP.Nat_1_PBPB 0.75 -0.04 -0.12 0.00
## PP.Nat_2R_PBPB -0.28 0.49 0.47 0.43
## PP.Nat_3R_PBPB -0.27 0.47 0.48 0.37
## PP.Nat_4R_PBPB -0.26 0.25 0.19 0.34
## PP.Nat_1_PBFB 0.85 0.07 0.03 0.10
## PP.Nat_2R_PBFB 0.14 -0.67 -0.65 -0.65
## PP.Nat_3R_PBFB 0.15 -0.59 -0.57 -0.53
## PP.Nat_4R_PBFB -0.11 -0.50 -0.44 -0.58
## PP.Nat_1_VB 0.40 -0.36 -0.41 -0.29
## PP.Nat_2R_VB -0.73 -0.05 -0.03 0.03
## PP.Nat_3R_VB -0.65 -0.03 0.00 0.00
## PP.Nat_4R_VB -0.59 -0.04 -0.03 0.09
## PP.FR.GFFB 0.34 -0.58 -0.64 -0.51
## PP.FR.GFPRB 0.06 -0.63 -0.61 -0.54
## PP.FR.CBB 0.93 -0.06 -0.13 -0.06
## PP.FR.PBPB 0.70 -0.19 -0.28 -0.12
## PP.FR.PBFB 0.80 -0.24 -0.30 -0.23
## PP.FR.VB 0.43 -0.48 -0.53 -0.41
## PP.Nat_1_PBPB PP.Nat_2R_PBPB PP.Nat_3R_PBPB PP.Nat_4R_PBPB
## PP.Nat_1_GFFB 0.18 -0.72 -0.65 -0.65
## PP.Nat_2R_GFFB -0.74 0.17 0.26 0.17
## PP.Nat_3R_GFFB -0.76 0.28 0.31 0.25
## PP.Nat_4R_GFFB -0.75 0.06 0.08 0.10
## PP.Nat_1_GFPRB -0.22 -0.37 -0.61 -0.30
## PP.Nat_2R_GFPRB -0.75 0.01 -0.07 0.04
## PP.Nat_3R_GFPRB -0.77 0.07 0.11 0.04
## PP.Nat_4R_GFPRB -0.69 0.11 -0.01 0.17
## PP.Nat_1_CBB 0.75 -0.28 -0.27 -0.26
## PP.Nat_2R_CBB -0.04 0.49 0.47 0.25
## PP.Nat_3R_CBB -0.12 0.47 0.48 0.19
## PP.Nat_4R_CBB 0.00 0.43 0.37 0.34
## PP.Nat_1_PBPB 1.00 0.02 -0.13 0.14
## PP.Nat_2R_PBPB 0.02 1.00 0.78 0.79
## PP.Nat_3R_PBPB -0.13 0.78 1.00 0.67
## PP.Nat_4R_PBPB 0.14 0.79 0.67 1.00
## PP.Nat_1_PBFB 0.92 -0.05 -0.15 -0.03
## PP.Nat_2R_PBFB 0.02 -0.81 -0.76 -0.63
## PP.Nat_3R_PBFB 0.05 -0.75 -0.86 -0.60
## PP.Nat_4R_PBFB -0.35 -0.62 -0.55 -0.66
## PP.Nat_1_VB 0.75 -0.06 -0.23 0.13
## PP.Nat_2R_VB -0.39 0.53 0.45 0.52
## PP.Nat_3R_VB -0.45 0.48 0.60 0.47
## PP.Nat_4R_VB -0.14 0.60 0.49 0.72
## PP.FR.GFFB 0.27 -0.68 -0.75 -0.46
## PP.FR.GFPRB 0.06 -0.44 -0.71 -0.34
## PP.FR.CBB 0.79 -0.35 -0.39 -0.30
## PP.FR.PBPB 0.82 -0.21 -0.45 -0.13
## PP.FR.PBFB 0.83 -0.32 -0.41 -0.25
## PP.FR.VB 0.60 -0.36 -0.55 -0.15
## PP.Nat_1_PBFB PP.Nat_2R_PBFB PP.Nat_3R_PBFB PP.Nat_4R_PBFB
## PP.Nat_1_GFFB 0.24 0.63 0.65 0.52
## PP.Nat_2R_GFFB -0.76 -0.24 -0.24 0.02
## PP.Nat_3R_GFFB -0.80 -0.30 -0.33 -0.12
## PP.Nat_4R_GFFB -0.82 -0.10 -0.09 0.04
## PP.Nat_1_GFPRB -0.26 0.52 0.59 0.52
## PP.Nat_2R_GFPRB -0.83 0.01 0.02 0.15
## PP.Nat_3R_GFPRB -0.82 -0.09 -0.12 0.07
## PP.Nat_4R_GFPRB -0.79 -0.08 -0.04 0.06
## PP.Nat_1_CBB 0.85 0.14 0.15 -0.11
## PP.Nat_2R_CBB 0.07 -0.67 -0.59 -0.50
## PP.Nat_3R_CBB 0.03 -0.65 -0.57 -0.44
## PP.Nat_4R_CBB 0.10 -0.65 -0.53 -0.58
## PP.Nat_1_PBPB 0.92 0.02 0.05 -0.35
## PP.Nat_2R_PBPB -0.05 -0.81 -0.75 -0.62
## PP.Nat_3R_PBPB -0.15 -0.76 -0.86 -0.55
## PP.Nat_4R_PBPB -0.03 -0.63 -0.60 -0.66
## PP.Nat_1_PBFB 1.00 -0.03 0.02 -0.33
## PP.Nat_2R_PBFB -0.03 1.00 0.89 0.80
## PP.Nat_3R_PBFB 0.02 0.89 1.00 0.76
## PP.Nat_4R_PBFB -0.33 0.80 0.76 1.00
## PP.Nat_1_VB 0.68 0.09 0.10 -0.27
## PP.Nat_2R_VB -0.45 -0.51 -0.48 -0.36
## PP.Nat_3R_VB -0.46 -0.53 -0.61 -0.35
## PP.Nat_4R_VB -0.28 -0.58 -0.53 -0.57
## PP.FR.GFFB 0.21 0.72 0.73 0.49
## PP.FR.GFPRB 0.02 0.51 0.59 0.35
## PP.FR.CBB 0.85 0.27 0.29 0.01
## PP.FR.PBPB 0.76 0.22 0.27 -0.13
## PP.FR.PBFB 0.84 0.27 0.29 -0.02
## PP.FR.VB 0.54 0.40 0.44 0.07
## PP.Nat_1_VB PP.Nat_2R_VB PP.Nat_3R_VB PP.Nat_4R_VB PP.FR.GFFB
## PP.Nat_1_GFFB 0.09 -0.67 -0.68 -0.69 0.74
## PP.Nat_2R_GFFB -0.54 0.41 0.38 0.33 -0.31
## PP.Nat_3R_GFFB -0.43 0.62 0.58 0.55 -0.38
## PP.Nat_4R_GFFB -0.54 0.44 0.34 0.37 -0.16
## PP.Nat_1_GFPRB 0.04 -0.01 -0.12 -0.12 0.64
## PP.Nat_2R_GFPRB -0.45 0.59 0.49 0.43 -0.08
## PP.Nat_3R_GFPRB -0.48 0.61 0.54 0.46 -0.20
## PP.Nat_4R_GFPRB -0.39 0.64 0.51 0.51 -0.05
## PP.Nat_1_CBB 0.40 -0.73 -0.65 -0.59 0.34
## PP.Nat_2R_CBB -0.36 -0.05 -0.03 -0.04 -0.58
## PP.Nat_3R_CBB -0.41 -0.03 0.00 -0.03 -0.64
## PP.Nat_4R_CBB -0.29 0.03 0.00 0.09 -0.51
## PP.Nat_1_PBPB 0.75 -0.39 -0.45 -0.14 0.27
## PP.Nat_2R_PBPB -0.06 0.53 0.48 0.60 -0.68
## PP.Nat_3R_PBPB -0.23 0.45 0.60 0.49 -0.75
## PP.Nat_4R_PBPB 0.13 0.52 0.47 0.72 -0.46
## PP.Nat_1_PBFB 0.68 -0.45 -0.46 -0.28 0.21
## PP.Nat_2R_PBFB 0.09 -0.51 -0.53 -0.58 0.72
## PP.Nat_3R_PBFB 0.10 -0.48 -0.61 -0.53 0.73
## PP.Nat_4R_PBFB -0.27 -0.36 -0.35 -0.57 0.49
## PP.Nat_1_VB 1.00 0.00 -0.12 0.17 0.34
## PP.Nat_2R_VB 0.00 1.00 0.83 0.88 -0.45
## PP.Nat_3R_VB -0.12 0.83 1.00 0.76 -0.59
## PP.Nat_4R_VB 0.17 0.88 0.76 1.00 -0.47
## PP.FR.GFFB 0.34 -0.45 -0.59 -0.47 1.00
## PP.FR.GFPRB 0.35 -0.09 -0.22 -0.11 0.70
## PP.FR.CBB 0.52 -0.72 -0.63 -0.56 0.46
## PP.FR.PBPB 0.66 -0.47 -0.52 -0.27 0.44
## PP.FR.PBFB 0.64 -0.56 -0.52 -0.42 0.45
## PP.FR.VB 0.75 -0.27 -0.37 -0.16 0.58
## PP.FR.GFPRB PP.FR.CBB PP.FR.PBPB PP.FR.PBFB PP.FR.VB
## PP.Nat_1_GFFB 0.44 0.50 0.26 0.38 0.38
## PP.Nat_2R_GFFB -0.21 -0.78 -0.79 -0.81 -0.52
## PP.Nat_3R_GFFB -0.09 -0.87 -0.69 -0.82 -0.46
## PP.Nat_4R_GFFB -0.04 -0.80 -0.69 -0.81 -0.51
## PP.Nat_1_GFPRB 0.78 -0.05 0.02 -0.06 0.34
## PP.Nat_2R_GFPRB 0.22 -0.80 -0.53 -0.71 -0.38
## PP.Nat_3R_GFPRB 0.10 -0.85 -0.61 -0.76 -0.40
## PP.Nat_4R_GFPRB 0.26 -0.78 -0.52 -0.71 -0.30
## PP.Nat_1_CBB 0.06 0.93 0.70 0.80 0.43
## PP.Nat_2R_CBB -0.63 -0.06 -0.19 -0.24 -0.48
## PP.Nat_3R_CBB -0.61 -0.13 -0.28 -0.30 -0.53
## PP.Nat_4R_CBB -0.54 -0.06 -0.12 -0.23 -0.41
## PP.Nat_1_PBPB 0.06 0.79 0.82 0.83 0.60
## PP.Nat_2R_PBPB -0.44 -0.35 -0.21 -0.32 -0.36
## PP.Nat_3R_PBPB -0.71 -0.39 -0.45 -0.41 -0.55
## PP.Nat_4R_PBPB -0.34 -0.30 -0.13 -0.25 -0.15
## PP.Nat_1_PBFB 0.02 0.85 0.76 0.84 0.54
## PP.Nat_2R_PBFB 0.51 0.27 0.22 0.27 0.40
## PP.Nat_3R_PBFB 0.59 0.29 0.27 0.29 0.44
## PP.Nat_4R_PBFB 0.35 0.01 -0.13 -0.02 0.07
## PP.Nat_1_VB 0.35 0.52 0.66 0.64 0.75
## PP.Nat_2R_VB -0.09 -0.72 -0.47 -0.56 -0.27
## PP.Nat_3R_VB -0.22 -0.63 -0.52 -0.52 -0.37
## PP.Nat_4R_VB -0.11 -0.56 -0.27 -0.42 -0.16
## PP.FR.GFFB 0.70 0.46 0.44 0.45 0.58
## PP.FR.GFPRB 1.00 0.21 0.39 0.30 0.64
## PP.FR.CBB 0.21 1.00 0.80 0.89 0.57
## PP.FR.PBPB 0.39 0.80 1.00 0.90 0.73
## PP.FR.PBFB 0.30 0.89 0.90 1.00 0.74
## PP.FR.VB 0.64 0.57 0.73 0.74 1.00
##
## n= 30
##
##
## P
## PP.Nat_1_GFFB PP.Nat_2R_GFFB PP.Nat_3R_GFFB PP.Nat_4R_GFFB
## PP.Nat_1_GFFB 0.4131 0.0110 0.4936
## PP.Nat_2R_GFFB 0.4131 0.0000 0.0000
## PP.Nat_3R_GFFB 0.0110 0.0000 0.0000
## PP.Nat_4R_GFFB 0.4936 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0037 0.6814 0.7791 0.2308
## PP.Nat_2R_GFPRB 0.2061 0.0002 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.0891 0.0002 0.0000 0.0000
## PP.Nat_4R_GFPRB 0.1981 0.0004 0.0000 0.0000
## PP.Nat_1_CBB 0.0066 0.0000 0.0000 0.0000
## PP.Nat_2R_CBB 0.2242 0.1703 0.6348 0.6156
## PP.Nat_3R_CBB 0.1826 0.1299 0.5534 0.5862
## PP.Nat_4R_CBB 0.1501 0.2684 0.5845 0.4487
## PP.Nat_1_PBPB 0.3376 0.0000 0.0000 0.0000
## PP.Nat_2R_PBPB 0.0000 0.3720 0.1297 0.7568
## PP.Nat_3R_PBPB 0.0001 0.1637 0.0979 0.6597
## PP.Nat_4R_PBPB 0.0000 0.3701 0.1875 0.6092
## PP.Nat_1_PBFB 0.1963 0.0000 0.0000 0.0000
## PP.Nat_2R_PBFB 0.0002 0.1964 0.1066 0.5815
## PP.Nat_3R_PBFB 0.0000 0.2077 0.0743 0.6478
## PP.Nat_4R_PBFB 0.0030 0.9273 0.5187 0.8535
## PP.Nat_1_VB 0.6258 0.0023 0.0171 0.0020
## PP.Nat_2R_VB 0.0000 0.0245 0.0002 0.0158
## PP.Nat_3R_VB 0.0000 0.0379 0.0008 0.0636
## PP.Nat_4R_VB 0.0000 0.0762 0.0015 0.0422
## PP.FR.GFFB 0.0000 0.0985 0.0364 0.3944
## PP.FR.GFPRB 0.0148 0.2621 0.6310 0.8509
## PP.FR.CBB 0.0049 0.0000 0.0000 0.0000
## PP.FR.PBPB 0.1713 0.0000 0.0000 0.0000
## PP.FR.PBFB 0.0380 0.0000 0.0000 0.0000
## PP.FR.VB 0.0406 0.0033 0.0111 0.0044
## PP.Nat_1_GFPRB PP.Nat_2R_GFPRB PP.Nat_3R_GFPRB PP.Nat_4R_GFPRB
## PP.Nat_1_GFFB 0.0037 0.2061 0.0891 0.1981
## PP.Nat_2R_GFFB 0.6814 0.0002 0.0002 0.0004
## PP.Nat_3R_GFFB 0.7791 0.0000 0.0000 0.0000
## PP.Nat_4R_GFFB 0.2308 0.0000 0.0000 0.0000
## PP.Nat_1_GFPRB 0.0274 0.1590 0.0090
## PP.Nat_2R_GFPRB 0.0274 0.0000 0.0000
## PP.Nat_3R_GFPRB 0.1590 0.0000 0.0000
## PP.Nat_4R_GFPRB 0.0090 0.0000 0.0000
## PP.Nat_1_CBB 0.3105 0.0000 0.0000 0.0000
## PP.Nat_2R_CBB 0.0041 0.3014 0.4907 0.3621
## PP.Nat_3R_CBB 0.0056 0.4213 0.8037 0.4663
## PP.Nat_4R_CBB 0.0182 0.5765 0.6514 0.8097
## PP.Nat_1_PBPB 0.2446 0.0000 0.0000 0.0000
## PP.Nat_2R_PBPB 0.0449 0.9376 0.7175 0.5483
## PP.Nat_3R_PBPB 0.0003 0.7122 0.5753 0.9688
## PP.Nat_4R_PBPB 0.1087 0.8509 0.8354 0.3568
## PP.Nat_1_PBFB 0.1603 0.0000 0.0000 0.0000
## PP.Nat_2R_PBFB 0.0032 0.9478 0.6240 0.6832
## PP.Nat_3R_PBFB 0.0006 0.9051 0.5321 0.8529
## PP.Nat_4R_PBFB 0.0032 0.4238 0.6967 0.7454
## PP.Nat_1_VB 0.8487 0.0118 0.0068 0.0327
## PP.Nat_2R_VB 0.9488 0.0006 0.0004 0.0001
## PP.Nat_3R_VB 0.5124 0.0065 0.0023 0.0042
## PP.Nat_4R_VB 0.5111 0.0173 0.0113 0.0039
## PP.FR.GFFB 0.0001 0.6799 0.2939 0.8038
## PP.FR.GFPRB 0.0000 0.2519 0.5921 0.1694
## PP.FR.CBB 0.7877 0.0000 0.0000 0.0000
## PP.FR.PBPB 0.9216 0.0024 0.0003 0.0034
## PP.FR.PBFB 0.7664 0.0000 0.0000 0.0000
## PP.FR.VB 0.0659 0.0385 0.0303 0.1084
## PP.Nat_1_CBB PP.Nat_2R_CBB PP.Nat_3R_CBB PP.Nat_4R_CBB
## PP.Nat_1_GFFB 0.0066 0.2242 0.1826 0.1501
## PP.Nat_2R_GFFB 0.0000 0.1703 0.1299 0.2684
## PP.Nat_3R_GFFB 0.0000 0.6348 0.5534 0.5845
## PP.Nat_4R_GFFB 0.0000 0.6156 0.5862 0.4487
## PP.Nat_1_GFPRB 0.3105 0.0041 0.0056 0.0182
## PP.Nat_2R_GFPRB 0.0000 0.3014 0.4213 0.5765
## PP.Nat_3R_GFPRB 0.0000 0.4907 0.8037 0.6514
## PP.Nat_4R_GFPRB 0.0000 0.3621 0.4663 0.8097
## PP.Nat_1_CBB 0.3835 0.6689 0.3835
## PP.Nat_2R_CBB 0.3835 0.0000 0.0000
## PP.Nat_3R_CBB 0.6689 0.0000 0.0000
## PP.Nat_4R_CBB 0.3835 0.0000 0.0000
## PP.Nat_1_PBPB 0.0000 0.8172 0.5348 0.9969
## PP.Nat_2R_PBPB 0.1295 0.0065 0.0086 0.0166
## PP.Nat_3R_PBPB 0.1463 0.0087 0.0073 0.0470
## PP.Nat_4R_PBPB 0.1685 0.1917 0.3088 0.0678
## PP.Nat_1_PBFB 0.0000 0.7019 0.8645 0.6167
## PP.Nat_2R_PBFB 0.4730 0.0000 0.0000 0.0000
## PP.Nat_3R_PBFB 0.4265 0.0006 0.0010 0.0029
## PP.Nat_4R_PBFB 0.5511 0.0050 0.0143 0.0008
## PP.Nat_1_VB 0.0285 0.0487 0.0247 0.1143
## PP.Nat_2R_VB 0.0000 0.7992 0.8947 0.8869
## PP.Nat_3R_VB 0.0001 0.8935 0.9949 0.9868
## PP.Nat_4R_VB 0.0006 0.8508 0.8871 0.6247
## PP.FR.GFFB 0.0645 0.0008 0.0001 0.0041
## PP.FR.GFPRB 0.7672 0.0002 0.0003 0.0023
## PP.FR.CBB 0.0000 0.7534 0.4838 0.7334
## PP.FR.PBPB 0.0000 0.3034 0.1365 0.5349
## PP.FR.PBFB 0.0000 0.2092 0.1024 0.2276
## PP.FR.VB 0.0190 0.0076 0.0025 0.0254
## PP.Nat_1_PBPB PP.Nat_2R_PBPB PP.Nat_3R_PBPB PP.Nat_4R_PBPB
## PP.Nat_1_GFFB 0.3376 0.0000 0.0001 0.0000
## PP.Nat_2R_GFFB 0.0000 0.3720 0.1637 0.3701
## PP.Nat_3R_GFFB 0.0000 0.1297 0.0979 0.1875
## PP.Nat_4R_GFFB 0.0000 0.7568 0.6597 0.6092
## PP.Nat_1_GFPRB 0.2446 0.0449 0.0003 0.1087
## PP.Nat_2R_GFPRB 0.0000 0.9376 0.7122 0.8509
## PP.Nat_3R_GFPRB 0.0000 0.7175 0.5753 0.8354
## PP.Nat_4R_GFPRB 0.0000 0.5483 0.9688 0.3568
## PP.Nat_1_CBB 0.0000 0.1295 0.1463 0.1685
## PP.Nat_2R_CBB 0.8172 0.0065 0.0087 0.1917
## PP.Nat_3R_CBB 0.5348 0.0086 0.0073 0.3088
## PP.Nat_4R_CBB 0.9969 0.0166 0.0470 0.0678
## PP.Nat_1_PBPB 0.8961 0.4822 0.4477
## PP.Nat_2R_PBPB 0.8961 0.0000 0.0000
## PP.Nat_3R_PBPB 0.4822 0.0000 0.0000
## PP.Nat_4R_PBPB 0.4477 0.0000 0.0000
## PP.Nat_1_PBFB 0.0000 0.7902 0.4343 0.8715
## PP.Nat_2R_PBFB 0.9282 0.0000 0.0000 0.0002
## PP.Nat_3R_PBFB 0.7898 0.0000 0.0000 0.0005
## PP.Nat_4R_PBFB 0.0606 0.0003 0.0016 0.0000
## PP.Nat_1_VB 0.0000 0.7408 0.2193 0.4959
## PP.Nat_2R_VB 0.0331 0.0025 0.0136 0.0033
## PP.Nat_3R_VB 0.0120 0.0073 0.0005 0.0092
## PP.Nat_4R_VB 0.4566 0.0005 0.0059 0.0000
## PP.FR.GFFB 0.1508 0.0000 0.0000 0.0106
## PP.FR.GFPRB 0.7510 0.0145 0.0000 0.0703
## PP.FR.CBB 0.0000 0.0586 0.0343 0.1120
## PP.FR.PBPB 0.0000 0.2545 0.0130 0.5032
## PP.FR.PBFB 0.0000 0.0874 0.0252 0.1847
## PP.FR.VB 0.0005 0.0512 0.0016 0.4409
## PP.Nat_1_PBFB PP.Nat_2R_PBFB PP.Nat_3R_PBFB PP.Nat_4R_PBFB
## PP.Nat_1_GFFB 0.1963 0.0002 0.0000 0.0030
## PP.Nat_2R_GFFB 0.0000 0.1964 0.2077 0.9273
## PP.Nat_3R_GFFB 0.0000 0.1066 0.0743 0.5187
## PP.Nat_4R_GFFB 0.0000 0.5815 0.6478 0.8535
## PP.Nat_1_GFPRB 0.1603 0.0032 0.0006 0.0032
## PP.Nat_2R_GFPRB 0.0000 0.9478 0.9051 0.4238
## PP.Nat_3R_GFPRB 0.0000 0.6240 0.5321 0.6967
## PP.Nat_4R_GFPRB 0.0000 0.6832 0.8529 0.7454
## PP.Nat_1_CBB 0.0000 0.4730 0.4265 0.5511
## PP.Nat_2R_CBB 0.7019 0.0000 0.0006 0.0050
## PP.Nat_3R_CBB 0.8645 0.0000 0.0010 0.0143
## PP.Nat_4R_CBB 0.6167 0.0000 0.0029 0.0008
## PP.Nat_1_PBPB 0.0000 0.9282 0.7898 0.0606
## PP.Nat_2R_PBPB 0.7902 0.0000 0.0000 0.0003
## PP.Nat_3R_PBPB 0.4343 0.0000 0.0000 0.0016
## PP.Nat_4R_PBPB 0.8715 0.0002 0.0005 0.0000
## PP.Nat_1_PBFB 0.8543 0.9165 0.0752
## PP.Nat_2R_PBFB 0.8543 0.0000 0.0000
## PP.Nat_3R_PBFB 0.9165 0.0000 0.0000
## PP.Nat_4R_PBFB 0.0752 0.0000 0.0000
## PP.Nat_1_VB 0.0000 0.6184 0.5906 0.1497
## PP.Nat_2R_VB 0.0132 0.0042 0.0070 0.0516
## PP.Nat_3R_VB 0.0099 0.0029 0.0003 0.0564
## PP.Nat_4R_VB 0.1349 0.0008 0.0024 0.0011
## PP.FR.GFFB 0.2705 0.0000 0.0000 0.0058
## PP.FR.GFPRB 0.9025 0.0038 0.0006 0.0574
## PP.FR.CBB 0.0000 0.1512 0.1144 0.9669
## PP.FR.PBPB 0.0000 0.2467 0.1506 0.4894
## PP.FR.PBFB 0.0000 0.1519 0.1140 0.9038
## PP.FR.VB 0.0023 0.0287 0.0158 0.7094
## PP.Nat_1_VB PP.Nat_2R_VB PP.Nat_3R_VB PP.Nat_4R_VB PP.FR.GFFB
## PP.Nat_1_GFFB 0.6258 0.0000 0.0000 0.0000 0.0000
## PP.Nat_2R_GFFB 0.0023 0.0245 0.0379 0.0762 0.0985
## PP.Nat_3R_GFFB 0.0171 0.0002 0.0008 0.0015 0.0364
## PP.Nat_4R_GFFB 0.0020 0.0158 0.0636 0.0422 0.3944
## PP.Nat_1_GFPRB 0.8487 0.9488 0.5124 0.5111 0.0001
## PP.Nat_2R_GFPRB 0.0118 0.0006 0.0065 0.0173 0.6799
## PP.Nat_3R_GFPRB 0.0068 0.0004 0.0023 0.0113 0.2939
## PP.Nat_4R_GFPRB 0.0327 0.0001 0.0042 0.0039 0.8038
## PP.Nat_1_CBB 0.0285 0.0000 0.0001 0.0006 0.0645
## PP.Nat_2R_CBB 0.0487 0.7992 0.8935 0.8508 0.0008
## PP.Nat_3R_CBB 0.0247 0.8947 0.9949 0.8871 0.0001
## PP.Nat_4R_CBB 0.1143 0.8869 0.9868 0.6247 0.0041
## PP.Nat_1_PBPB 0.0000 0.0331 0.0120 0.4566 0.1508
## PP.Nat_2R_PBPB 0.7408 0.0025 0.0073 0.0005 0.0000
## PP.Nat_3R_PBPB 0.2193 0.0136 0.0005 0.0059 0.0000
## PP.Nat_4R_PBPB 0.4959 0.0033 0.0092 0.0000 0.0106
## PP.Nat_1_PBFB 0.0000 0.0132 0.0099 0.1349 0.2705
## PP.Nat_2R_PBFB 0.6184 0.0042 0.0029 0.0008 0.0000
## PP.Nat_3R_PBFB 0.5906 0.0070 0.0003 0.0024 0.0000
## PP.Nat_4R_PBFB 0.1497 0.0516 0.0564 0.0011 0.0058
## PP.Nat_1_VB 0.9812 0.5148 0.3695 0.0700
## PP.Nat_2R_VB 0.9812 0.0000 0.0000 0.0125
## PP.Nat_3R_VB 0.5148 0.0000 0.0000 0.0006
## PP.Nat_4R_VB 0.3695 0.0000 0.0000 0.0091
## PP.FR.GFFB 0.0700 0.0125 0.0006 0.0091
## PP.FR.GFPRB 0.0558 0.6318 0.2444 0.5565 0.0000
## PP.FR.CBB 0.0030 0.0000 0.0002 0.0012 0.0101
## PP.FR.PBPB 0.0000 0.0091 0.0029 0.1435 0.0156
## PP.FR.PBFB 0.0002 0.0013 0.0033 0.0211 0.0124
## PP.FR.VB 0.0000 0.1416 0.0470 0.3893 0.0008
## PP.FR.GFPRB PP.FR.CBB PP.FR.PBPB PP.FR.PBFB PP.FR.VB
## PP.Nat_1_GFFB 0.0148 0.0049 0.1713 0.0380 0.0406
## PP.Nat_2R_GFFB 0.2621 0.0000 0.0000 0.0000 0.0033
## PP.Nat_3R_GFFB 0.6310 0.0000 0.0000 0.0000 0.0111
## PP.Nat_4R_GFFB 0.8509 0.0000 0.0000 0.0000 0.0044
## PP.Nat_1_GFPRB 0.0000 0.7877 0.9216 0.7664 0.0659
## PP.Nat_2R_GFPRB 0.2519 0.0000 0.0024 0.0000 0.0385
## PP.Nat_3R_GFPRB 0.5921 0.0000 0.0003 0.0000 0.0303
## PP.Nat_4R_GFPRB 0.1694 0.0000 0.0034 0.0000 0.1084
## PP.Nat_1_CBB 0.7672 0.0000 0.0000 0.0000 0.0190
## PP.Nat_2R_CBB 0.0002 0.7534 0.3034 0.2092 0.0076
## PP.Nat_3R_CBB 0.0003 0.4838 0.1365 0.1024 0.0025
## PP.Nat_4R_CBB 0.0023 0.7334 0.5349 0.2276 0.0254
## PP.Nat_1_PBPB 0.7510 0.0000 0.0000 0.0000 0.0005
## PP.Nat_2R_PBPB 0.0145 0.0586 0.2545 0.0874 0.0512
## PP.Nat_3R_PBPB 0.0000 0.0343 0.0130 0.0252 0.0016
## PP.Nat_4R_PBPB 0.0703 0.1120 0.5032 0.1847 0.4409
## PP.Nat_1_PBFB 0.9025 0.0000 0.0000 0.0000 0.0023
## PP.Nat_2R_PBFB 0.0038 0.1512 0.2467 0.1519 0.0287
## PP.Nat_3R_PBFB 0.0006 0.1144 0.1506 0.1140 0.0158
## PP.Nat_4R_PBFB 0.0574 0.9669 0.4894 0.9038 0.7094
## PP.Nat_1_VB 0.0558 0.0030 0.0000 0.0002 0.0000
## PP.Nat_2R_VB 0.6318 0.0000 0.0091 0.0013 0.1416
## PP.Nat_3R_VB 0.2444 0.0002 0.0029 0.0033 0.0470
## PP.Nat_4R_VB 0.5565 0.0012 0.1435 0.0211 0.3893
## PP.FR.GFFB 0.0000 0.0101 0.0156 0.0124 0.0008
## PP.FR.GFPRB 0.2685 0.0349 0.1020 0.0002
## PP.FR.CBB 0.2685 0.0000 0.0000 0.0011
## PP.FR.PBPB 0.0349 0.0000 0.0000 0.0000
## PP.FR.PBFB 0.1020 0.0000 0.0000 0.0000
## PP.FR.VB 0.0002 0.0011 0.0000 0.0000
library(corrplot)
corrplot(mydata.corFN, method="color")
corrplot(mydata.corFN, addCoef.col = 1, number.cex = 0.3, method = 'number')
## Checking length of variables before transforming
length(PP$Naturalness.GFFB)
## [1] 1005
length(PP$Naturalness.GFPRB)
## [1] 1005
length(PP$Naturalness.CBB)
## [1] 1005
length(PP$Naturalness.PBPB)
## [1] 1005
length(PP$Naturalness.PBFB)
## [1] 1005
length(PP$Naturalness.VB)
## [1] 1005
length(PP$Behav_Score_GFFB)
## [1] 1005
length(PP$Behav_Score_GFPRB)
## [1] 1005
length(PP$Behav_Score_CBB)
## [1] 1005
length(PP$Behav_Score_PBPB)
## [1] 1005
length(PP$Behav_Score_PBFB)
## [1] 1005
length(PP$Behav_Score_VB)
## [1] 1005
length(PP$Ben_Score_GFFB)
## [1] 1005
length(PP$Ben_Score_GFPRB)
## [1] 1005
length(PP$Ben_Score_CBB)
## [1] 1005
length(PP$Ben_Score_PBPB)
## [1] 1005
length(PP$Ben_Score_PBFB)
## [1] 1005
length(PP$Ben_Score_VB)
## [1] 1005
length(PP$Control_GFFB )
## [1] 1005
length(PP$Control_GFPRB)
## [1] 1005
length(PP$Control_CBB)
## [1] 1005
length(PP$Control_PBPB)
## [1] 1005
length(PP$Control_PBFB)
## [1] 1005
length(PP$Control_VB)
## [1] 1005
length(PP$Familiarity_GFFB)
## [1] 1005
length(PP$Familiarity_GFPRB)
## [1] 1005
length(PP$Familiarity_CBB)
## [1] 1005
length(PP$Familiarity_PBPB)
## [1] 1005
length(PP$Familiarity_PBFB)
## [1] 1005
length(PP$Familiarity_VB )
## [1] 1005
length(PP$Understanding_GFFB)
## [1] 1005
length(PP$Understanding_GFPRB)
## [1] 1005
length(PP$Understanding_CBB)
## [1] 1005
length(PP$Understanding_PBPB)
## [1] 1005
length(PP$Understanding_PBFB )
## [1] 1005
length(PP$Understanding_VB)
## [1] 1005
length(PP$FR.GFFB)
## [1] 1005
length(PP$FR.GFPRB)
## [1] 1005
length(PP$FR.CBB)
## [1] 1005
length(PP$FR.PBPB)
## [1] 1005
length(PP$FR.PBFB)
## [1] 1005
length(PP$FR.VB)
## [1] 1005
length(PP$Risk_Score_GFFB)
## [1] 1005
length(PP$Risk_Score_GFPRB)
## [1] 1005
length(PP$Risk_Score_CBB)
## [1] 1005
length(PP$Risk_Score_PBPB)
## [1] 1005
length(PP$Risk_Score_PBFB)
## [1] 1005
length(PP$Risk_Score_VB)
## [1] 1005
length(PP$Disgust_GFFB)
## [1] 1005
length(PP$Disgust_GFPRB)
## [1] 1005
length(PP$Disgust_CBB)
## [1] 1005
length(PP$Disgust_PBPB)
## [1] 1005
length(PP$Disgust_PBFB)
## [1] 1005
length(PP$Disgust_VB)
## [1] 1005
length(PP$CCBelief_Score)
## [1] 1005
length(PP$CNS_Score)
## [1] 1005
length(PP$DS_Score)
## [1] 1005
length(PP$Ideology)
## [1] 1005
length(PP$ATNS_Score )
## [1] 1005
length(PP$AW_Score )
## [1] 1005
length(PP$Collectivism_Score)
## [1] 1005
length(PP$Individualism_Score)
## [1] 1005
#Renaming variables to fit pivot_longer command
PP$Support.GFFB <- PP$Behav_Score_GFFB
length(PP$Support.GFFB)
## [1] 1005
PP$Support.GFPRB <- PP$Behav_Score_GFPRB
length(PP$Support.GFPRB)
## [1] 1005
PP$Support.CBB <- PP$Behav_Score_CBB
length(PP$Support.CBB)
## [1] 1005
PP$Support.PBPB <- PP$Behav_Score_PBPB
length(PP$Support.PBPB)
## [1] 1005
PP$Support.PBFB <- PP$Behav_Score_PBFB
length(PP$Support.PBFB)
## [1] 1005
PP$Support.VB <- PP$Behav_Score_VB
length(PP$Support.VB)
## [1] 1005
PP$Familiarity.GFFB <- PP$Familiarity_GFFB
length(PP$Familiarity.GFFB)
## [1] 1005
PP$Familiarity.GFPRB <- PP$Familiarity_GFPRB
length(PP$Familiarity.GFPRB)
## [1] 1005
PP$Familiarity.CBB <- PP$Familiarity_CBB
length(PP$Familiarity.CBB)
## [1] 1005
PP$Familiarity.PBPB <- PP$Familiarity_PBPB
length(PP$Familiarity.PBPB)
## [1] 1005
PP$Familiarity.PBFB <- PP$Familiarity_PBFB
length(PP$Familiarity.PBFB)
## [1] 1005
PP$Familiarity.VB <- PP$Familiarity_VB
length(PP$Familiarity.VB)
## [1] 1005
PP$Understanding.GFFB <- PP$Understanding_GFFB
length(PP$Understanding.GFFB)
## [1] 1005
PP$Understanding.GFPRB <- PP$Understanding_GFPRB
length(PP$Understanding.GFPRB)
## [1] 1005
PP$Understanding.CBB <- PP$Understanding_CBB
length(PP$Understanding.CBB)
## [1] 1005
PP$Understanding.PBPB <- PP$Understanding_PBPB
length(PP$Understanding.PBPB)
## [1] 1005
PP$Understanding.PBFB <- PP$Understanding_PBFB
length(PP$Understanding.PBFB)
## [1] 1005
PP$Understanding.VB <- PP$Understanding_VB
length(PP$Understanding.VB)
## [1] 1005
PP$Disgust.GFFB <-PP$Disgust_GFFB
length(PP$Disgust.GFFB)
## [1] 1005
PP$Disgust.GFPRB <-PP$Disgust_GFPRB
length(PP$Disgust.GFPRB)
## [1] 1005
PP$Disgust.CBB <-PP$Disgust_CBB
length(PP$Disgust.CBB)
## [1] 1005
PP$Disgust.PBPB <-PP$Disgust_PBPB
length(PP$Disgust.PBPB)
## [1] 1005
PP$Disgust.PBFB <-PP$Disgust_PBFB
length(PP$Disgust.PBFB)
## [1] 1005
PP$Disgust.VB <-PP$Disgust_VB
length(PP$Disgust.VB)
## [1] 1005
PP$Control.GFFB <- PP$Control_GFFB
length(PP$Control.GFFB)
## [1] 1005
PP$Control.GFPRB <- PP$Control_GFPRB
length(PP$Control.GFPRB)
## [1] 1005
PP$Control.CBB <- PP$Control_CBB
length(PP$Control.CBB)
## [1] 1005
PP$Control.PBPB <- PP$Control_PBPB
length(PP$Control.PBPB)
## [1] 1005
PP$Control.PBFB <- PP$Control_PBFB
length(PP$Control.PBFB)
## [1] 1005
PP$Control.VB <- PP$Control_VB
length(PP$Control.VB)
## [1] 1005
PP$Ben.GFFB <- PP$Ben_Score_GFFB
length(PP$Ben.GFFB)
## [1] 1005
PP$Ben.GFPRB <- PP$Ben_Score_GFPRB
length(PP$Ben.GFPRB)
## [1] 1005
PP$Ben.CBB <- PP$Ben_Score_CBB
length(PP$Ben.CBB)
## [1] 1005
PP$Ben.PBPB <- PP$Ben_Score_PBPB
length(PP$Ben.PBPB)
## [1] 1005
PP$Ben.PBFB <- PP$Ben_Score_PBFB
length(PP$Ben.PBFB)
## [1] 1005
PP$Ben.VB <- PP$Ben_Score_VB
length(PP$Ben.VB)
## [1] 1005
##Risk Length
PP$Risk.GFFB <- PP$Risk_Score_GFFB
length(PP$Risk.GFFB)
## [1] 1005
PP$Risk.GFPRB <- PP$Risk_Score_GFPRB
length(PP$Risk.GFPRB)
## [1] 1005
PP$Risk.CBB <- PP$Risk_Score_CBB
length(PP$Risk.CBB)
## [1] 1005
PP$Risk.PBPB <- PP$Risk_Score_PBPB
length(PP$Risk.PBPB)
## [1] 1005
PP$Risk.PBFB <- PP$Risk_Score_PBFB
length(PP$Risk.PBFB)
## [1] 1005
PP$Risk.VB <- PP$Risk_Score_VB
length(PP$Risk.VB)
## [1] 1005
library(lmerTest)
##
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
##
## lmer
## The following object is masked from 'package:stats':
##
## step
library(lme4)
#Reshape to long form
PPvector <- c("Naturalness.GFFB", "Naturalness.GFPRB", "Naturalness.CBB","Naturalness.PBPB", "Naturalness.PBFB", "Naturalness.VB", "Support.GFFB", "Support.GFPRB", "Support.CBB","Support.PBPB", "Support.PBFB", "Support.VB", "Familiarity.GFFB","Familiarity.GFPRB", "Familiarity.CBB", "Familiarity.PBPB","Familiarity.PBFB", "Familiarity.VB", "Understanding.GFFB", "Understanding.GFPRB", "Understanding.CBB", "Understanding.PBPB", "Understanding.PBFB", "Understanding.VB", "Disgust.GFFB", "Disgust.GFPRB", "Disgust.CBB", "Disgust.PBPB", "Disgust.PBFB","Disgust.VB", "Ben.GFFB","Ben.GFPRB","Ben.CBB", "Ben.PBPB", "Ben.PBFB", "Ben.VB", "Risk.GFFB", "Risk.GFPRB","Risk.CBB","Risk.PBPB", "Risk.PBFB", "Risk.VB", "FR.GFFB", "FR.GFPRB", "FR.CBB", "FR.PBPB", "FR.PBFB", "FR.VB")
L <- reshape(data = PP,
varying = PPvector,
timevar = "Type",
direction = "long")
#Check length of variables after being long-transformed
length(L$Ben)
## [1] 6030
length(L$FR)
## [1] 6030
length(L$Naturalness)
## [1] 6030
length(L$Risk)
## [1] 6030
length(L$Support)
## [1] 6030
sd(L$ATNS_Score, na.rm= TRUE)
## [1] 17.35749
length(L$AW_Score)
## [1] 6030
length(L$ATNS_Score)
## [1] 6030
length(L$CCBelief_Score)
## [1] 6030
length(L$CNS_Score)
## [1] 6030
length(L$Individualism_Score)
## [1] 6030
length(PP$Collectivism_Score)
## [1] 1005
length(L$Ideology)
## [1] 6030
length(L$SESNum)
## [1] 6030
length(L$EdNum)
## [1] 6030
length(L$Dem_Age)
## [1] 6030
length(L$Dem_Gen)
## [1] 6030
#Counts of observations (in long form) for each of the technology types
table(L$Type)
##
## CBB GFFB GFPRB PBFB PBPB VB
## 1005 1005 1005 1005 1005 1005
# Mean-Center Individual Differences
describe(L$AW_Score)
## L$AW_Score
## n missing distinct Info Mean Gmd .05 .10
## 6006 24 172 0.995 70.53 27.4 25.0 39.5
## .25 .50 .75 .90 .95
## 52.0 73.5 92.5 100.0 100.0
##
## lowest : 0.0 1.0 2.0 2.5 3.0, highest: 98.0 98.5 99.0 99.5 100.0
L$AW_Score.c <- L$AW_Score - 70.53
describe(L$ATNS_Score)
## L$ATNS_Score
## n missing distinct Info Mean Gmd .05 .10
## 6012 18 313 1 62.48 19.38 34.2 42.4
## .25 .50 .75 .90 .95
## 51.2 62.0 73.4 84.4 94.8
##
## lowest : 0.0 1.0 2.4 3.6 7.2, highest: 98.8 99.2 99.6 99.8 100.0
L$ATNS_Score.c <- L$ATNS_Score - 62.48
describe(L$CCBelief_Score)
## L$CCBelief_Score
## n missing distinct Info Mean Gmd .05 .10
## 6006 24 275 0.997 72.51 25.71 31.75 44.75
## .25 .50 .75 .90 .95
## 56.00 75.25 93.25 100.00 100.00
##
## lowest : 0.00 0.50 0.75 1.00 1.25, highest: 99.00 99.25 99.50 99.75 100.00
L$CCBelief_Score.c <- L$CCBelief_Score - 72.51
describe(L$CNS_Score)
## L$CNS_Score
## n missing distinct Info Mean Gmd .05 .10
## 6012 18 240 1 57.53 12.96 40.0 45.0
## .25 .50 .75 .90 .95
## 50.6 56.6 61.8 71.8 80.2
##
## lowest : 18.0 20.0 21.8 22.2 22.6, highest: 98.0 98.8 99.6 99.8 100.0
L$CNS_Score.c <- L$CNS_Score - 57.53
describe(L$DS_Score)
## L$DS_Score
## n missing distinct Info Mean Gmd .05 .10
## 6006 24 237 1 57.55 23.19 20.67 32.67
## .25 .50 .75 .90 .95
## 45.33 58.67 67.67 86.00 96.00
##
## lowest : 0.0000000 0.6666667 1.6666667 2.6666667 3.6666667
## highest: 98.0000000 98.3333333 99.3333333 99.6666667 100.0000000
L$DS_Score.c <- L$DS_Score - 57.55
describe(L$Individualism_Score)
## L$Individualism_Score
## n missing distinct Info Mean Gmd .05 .10
## 6012 18 250 0.999 73.77 20.34 45.50 51.00
## .25 .50 .75 .90 .95
## 60.50 75.00 88.00 98.75 100.00
##
## lowest : 0.00 11.50 22.75 25.00 27.75, highest: 99.00 99.25 99.50 99.75 100.00
L$Individualism_Score.c <- L$Individualism_Score - 73.77
describe(L$Collectivism_Score)
## L$Collectivism_Score
## n missing distinct Info Mean Gmd .05 .10
## 6018 12 292 1 66.53 23.13 30.25 40.00
## .25 .50 .75 .90 .95
## 52.25 66.75 81.75 94.00 100.00
##
## lowest : 0.00 1.25 7.00 9.50 10.50, highest: 99.00 99.25 99.50 99.75 100.00
L$Collectivism_Score.c <- L$Collectivism_Score - 66.53
# Note: Ideology score is the mean of political party (-3 Dem to +3 Rep) and political orientation (-3 Lib to +3 Con).
describe(L$Ideology)
## L$Ideology
## n missing distinct Info Mean Gmd .05 .10
## 6018 12 13 0.988 0.05184 1.932 -3.0 -2.5
## .25 .50 .75 .90 .95
## -1.0 0.0 1.5 2.5 3.0
##
## lowest : -3.0 -2.5 -2.0 -1.5 -1.0, highest: 1.0 1.5 2.0 2.5 3.0
##
## Value -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
## Frequency 402 258 258 558 444 522 1188 366 378 522 312
## Proportion 0.067 0.043 0.043 0.093 0.074 0.087 0.197 0.061 0.063 0.087 0.052
##
## Value 2.5 3.0
## Frequency 354 456
## Proportion 0.059 0.076
L$Ideology.c <- L$Ideology -1.785
# Mean-Center Technology Ratings
describe(L$Ben)
## L$Ben
## n missing distinct Info Mean Gmd .05 .10
## 2996 3034 296 0.999 60.36 30.63 2.333 22.667
## .25 .50 .75 .90 .95
## 44.667 61.000 82.000 98.167 100.000
##
## lowest : 0.0000000 0.3333333 0.6666667 1.0000000 1.3333333
## highest: 98.6666667 99.0000000 99.3333333 99.6666667 100.0000000
L$Benefit.c <- L$Ben - 60.36
describe(L$Disgust)
## L$Disgust
## n missing distinct Info Mean Gmd .05 .10
## 2996 3034 101 0.997 47.64 39.28 0 0
## .25 .50 .75 .90 .95
## 17 50 77 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
L$Disgust.c <- L$Disgust - 47.64
describe(L$Familiarity)
## L$Familiarity
## n missing distinct Info Mean Gmd .05 .10
## 2996 3034 101 0.998 57.8 36.28 0 6
## .25 .50 .75 .90 .95
## 32 63 85 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
L$Familiarity.c <- L$Familiarity - 57.8
describe(L$Naturalness)
## L$Naturalness
## n missing distinct Info Mean Gmd .05 .10
## 3006 3024 399 1 50.22 26.67 7.00 22.50
## .25 .50 .75 .90 .95
## 34.75 49.38 65.50 82.00 96.19
##
## lowest : 0.00 0.25 0.50 0.75 1.00, highest: 99.00 99.25 99.50 99.75 100.00
L$Naturalness.c <- L$Naturalness - 50.22
describe(L$Risk)
## L$Risk
## n missing distinct Info Mean Gmd .05 .10
## 3319 2711 506 1 44.56 32.81 0.00 2.50
## .25 .50 .75 .90 .95
## 21.25 46.50 65.00 84.00 95.00
##
## lowest : 0.0000000 0.2500000 0.3333333 0.5000000 0.7500000
## highest: 99.2500000 99.5000000 99.6666667 99.7500000 100.0000000
L$Risk.c <- L$Risk - 44.56
describe(L$Support)
## L$Support
## n missing distinct Info Mean Gmd .05 .10
## 3008 3022 402 0.999 56.27 34.23 0.000 6.925
## .25 .50 .75 .90 .95
## 36.000 58.500 80.250 96.750 100.000
##
## lowest : 0.00 0.25 0.50 0.75 1.00, highest: 99.00 99.25 99.50 99.75 100.00
L$Support.c <- L$Support - 56.27
describe(L$Understanding)
## L$Understanding
## n missing distinct Info Mean Gmd .05 .10
## 2999 3031 101 0.995 65.01 32.66 5 21
## .25 .50 .75 .90 .95
## 47 70 89 100 100
##
## lowest : 0 1 2 3 4, highest: 96 97 98 99 100
L$Understanding.c <- L$Understanding - 65.01
describe(L$FR)
## L$FR
## n missing distinct Info Mean Gmd .05 .10
## 3004 3026 199 0.999 61.41 30.2 10.0 24.0
## .25 .50 .75 .90 .95
## 46.0 61.5 83.5 98.0 100.0
##
## lowest : 0.0 0.5 1.0 1.5 2.5, highest: 98.0 98.5 99.0 99.5 100.0
L$FR.c <- L$FR - 61.41
#A.B. Benefit & Familiarity/Understanding
L$corAB <- data.frame(L$Ben, L$FR)
cor(L$corAB, use = "pairwise.complete.obs")
## L.Ben L.FR
## L.Ben 1.0000000 0.5053692
## L.FR 0.5053692 1.0000000
#A.C. Benefit & Naturalness
L$corAC <- data.frame(L$Ben, L$Naturalness)
cor(L$corAC, use = "pairwise.complete.obs")
## L.Ben L.Naturalness
## L.Ben 1.0000000 0.2689336
## L.Naturalness 0.2689336 1.0000000
#A.D. Benefit & Risk
L$corAD <- data.frame(L$Ben, L$Risk)
cor(L$corAD, use = "pairwise.complete.obs")
## L.Ben L.Risk
## L.Ben 1.0000000 -0.2609607
## L.Risk -0.2609607 1.0000000
#A.E. Benefit & Support
L$corAE <- data.frame(L$Ben, L$Support)
cor(L$corAE, use = "pairwise.complete.obs")
## L.Ben L.Support
## L.Ben 1.0000000 0.7975091
## L.Support 0.7975091 1.0000000
#A.F. Benefit & Age
L$corAF <- data.frame(L$Ben, L$Dem_Age)
cor(L$corAF, use = "pairwise.complete.obs")
## L.Ben L.Dem_Age
## L.Ben 1.00000000 -0.09943537
## L.Dem_Age -0.09943537 1.00000000
#A.G. Benefit & Gender
L$corAG <- data.frame(L$Ben, L$Dem_Gen)
cor(L$corAG, use = "pairwise.complete.obs")
## L.Ben L.Dem_Gen
## L.Ben 1.00000000 0.06353294
## L.Dem_Gen 0.06353294 1.00000000
#A.H. Benefit & Education
L$corAH <- data.frame(L$Ben, L$EdNum)
cor(L$corAH, use = "pairwise.complete.obs")
## L.Ben L.EdNum
## L.Ben 1.00000000 0.05760122
## L.EdNum 0.05760122 1.00000000
#A.I. Benefit & SES
L$corAI <- data.frame(L$Ben, L$SESNum)
cor(L$corAI, use = "pairwise.complete.obs")
## L.Ben L.SESNum
## L.Ben 1.00000000 0.05627731
## L.SESNum 0.05627731 1.00000000
#A.J. Benefit & Animal Welfare
L$corAJ <- data.frame(L$Ben, L$AW_Score)
cor(L$corAJ, use = "pairwise.complete.obs")
## L.Ben L.AW_Score
## L.Ben 1.0000000 0.1959835
## L.AW_Score 0.1959835 1.0000000
#A.K. Benefit & Aversion to Tampering with Nature
L$corAK <- data.frame(L$Ben, L$ATNS_Score)
cor(L$corAK, use = "pairwise.complete.obs")
## L.Ben L.ATNS_Score
## L.Ben 1.00000000 0.05324871
## L.ATNS_Score 0.05324871 1.00000000
#A.L. Benefit & Climate Change Belief
L$corAL <- data.frame(L$Ben, L$CCBelief_Score)
cor(L$corAL, use = "pairwise.complete.obs")
## L.Ben L.CCBelief_Score
## L.Ben 1.0000000 0.2261216
## L.CCBelief_Score 0.2261216 1.0000000
#A.M. Benefit & Collectivism
L$corAM <- data.frame(L$Ben, L$Collectivism_Score)
cor(L$corAM, use = "pairwise.complete.obs")
## L.Ben L.Collectivism_Score
## L.Ben 1.0000000 0.2431798
## L.Collectivism_Score 0.2431798 1.0000000
#A.N. Connectedness with Nature
L$corAN <- data.frame(L$Ben, L$CNS_Score)
cor(L$corAN, use = "pairwise.complete.obs")
## L.Ben L.CNS_Score
## L.Ben 1.00000000 0.06058848
## L.CNS_Score 0.06058848 1.00000000
#A.O. Benefit & Disgust Sensitivity
L$corAO <- data.frame(L$Ben, L$DS_Score)
cor(L$corAO, use = "pairwise.complete.obs")
## L.Ben L.DS_Score
## L.Ben 1.00000000 0.05158535
## L.DS_Score 0.05158535 1.00000000
#A.P. Benefit & Individualism
L$corAP <- data.frame(L$Ben, L$Individualism_Score)
cor(L$corAP, use = "pairwise.complete.obs")
## L.Ben L.Individualism_Score
## L.Ben 1.0000000 0.1699162
## L.Individualism_Score 0.1699162 1.0000000
#A.Q. Benefit & Political Ideology
L$corAQ <- data.frame(L$Ben, L$Ideology)
cor(L$corAQ, use = "pairwise.complete.obs")
## L.Ben L.Ideology
## L.Ben 1.0000000 -0.1076756
## L.Ideology -0.1076756 1.0000000
#B.C. Familiarity/Understanding and Naturalness
L$corBC <- data.frame(L$FR, L$Naturalness)
cor(L$corBC, use = "pairwise.complete.obs")
## L.FR L.Naturalness
## L.FR 1.0000000 0.2693229
## L.Naturalness 0.2693229 1.0000000
cor.test(L$FR, L$Naturalness, na.rm = TRUE)
##
## Pearson's product-moment correlation
##
## data: L$FR and L$Naturalness
## t = 15.32, df = 3001, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.2358261 0.3021806
## sample estimates:
## cor
## 0.2693229
#B.D. Familiarity/Understanding and Risk
L$corBD <- data.frame(L$FR, L$Risk)
cor(L$corBD, use = "pairwise.complete.obs")
## L.FR L.Risk
## L.FR 1.000000 -0.122596
## L.Risk -0.122596 1.000000
#B.E. Familiarity/Understanding and Support
L$corBE <- data.frame(L$FR, L$Support)
cor(L$corBE, use = "pairwise.complete.obs")
## L.FR L.Support
## L.FR 1.00000 0.54721
## L.Support 0.54721 1.00000
#B.F. Familiarity/Understanding and Age
L$corBF <- data.frame(L$FR, L$Dem_Age)
cor(L$corBF, use = "pairwise.complete.obs")
## L.FR L.Dem_Age
## L.FR 1.00000000 -0.05775584
## L.Dem_Age -0.05775584 1.00000000
#B.G. Familiarity/Understanding and Gender
L$corBG <- data.frame(L$FR, L$Dem_Gen)
cor(L$corBG, use = "pairwise.complete.obs")
## L.FR L.Dem_Gen
## L.FR 1.00000000 0.07861758
## L.Dem_Gen 0.07861758 1.00000000
#B.H. Familiarity/Understanding and Education
L$corBH <- data.frame(L$FR, L$EdNum)
cor(L$corBH, use = "pairwise.complete.obs")
## L.FR L.EdNum
## L.FR 1.00000000 0.07493993
## L.EdNum 0.07493993 1.00000000
#B.I. Familiarity/Understanding and SES
L$corBI <- data.frame(L$FR, L$SESNum)
cor(L$corBI, use = "pairwise.complete.obs")
## L.FR L.SESNum
## L.FR 1.0000000 0.0688315
## L.SESNum 0.0688315 1.0000000
#B.J. Familiarity/Understanding and Animal Welfare
L$corBJ <- data.frame(L$FR, L$AW_Score)
cor(L$corBJ, use = "pairwise.complete.obs")
## L.FR L.AW_Score
## L.FR 1.0000000 0.1910753
## L.AW_Score 0.1910753 1.0000000
#B.K. Familiarity/Understanding and Aversion to Tampering with Nature
L$corBK <- data.frame(L$FR, L$ATNS_Score)
cor(L$corBK, use = "pairwise.complete.obs")
## L.FR L.ATNS_Score
## L.FR 1.00000000 0.07192077
## L.ATNS_Score 0.07192077 1.00000000
#B.L. Familiarity/Understanding and Climate Change Belief
L$corBL <- data.frame(L$FR, L$CCBelief_Score)
cor(L$corBL, use = "pairwise.complete.obs")
## L.FR L.CCBelief_Score
## L.FR 1.000000 0.194683
## L.CCBelief_Score 0.194683 1.000000
#B.M. Familiarity/Understanding and Collectivism
L$corBM <- data.frame(L$FR, L$Collectivism_Score)
cor(L$corBM, use = "pairwise.complete.obs")
## L.FR L.Collectivism_Score
## L.FR 1.0000000 0.1907214
## L.Collectivism_Score 0.1907214 1.0000000
#B.N. Familiarity/Understanding and Connectedness with Nature
L$corBN <- data.frame(L$FR, L$CNS_Score)
cor(L$corBN, use = "pairwise.complete.obs")
## L.FR L.CNS_Score
## L.FR 1.00000000 0.07399785
## L.CNS_Score 0.07399785 1.00000000
#B.O. Familiarity/Understanding and Disgust Sensitivity
L$corBO <- data.frame(L$FR, L$DS_Score)
cor(L$corBO, use = "pairwise.complete.obs")
## L.FR L.DS_Score
## L.FR 1.00000000 -0.02227046
## L.DS_Score -0.02227046 1.00000000
#B.P. Familiarity/Understanding and Individualism
L$corBP <- data.frame(L$FR, L$Individualism_Score)
cor(L$corBP, use = "pairwise.complete.obs")
## L.FR L.Individualism_Score
## L.FR 1.0000000 0.1741522
## L.Individualism_Score 0.1741522 1.0000000
#B.Q. Familiarity/Understanding and Political Ideology
L$corBQ <- data.frame(L$FR, L$Ideology)
cor(L$corBQ, use = "pairwise.complete.obs")
## L.FR L.Ideology
## L.FR 1.00000000 -0.09391488
## L.Ideology -0.09391488 1.00000000
#C.D. Naturalness and Risk
L$corCD <- data.frame(L$Naturalness, L$Risk)
cor(L$corCD, use = "pairwise.complete.obs")
## L.Naturalness L.Risk
## L.Naturalness 1.0000000 -0.3892283
## L.Risk -0.3892283 1.0000000
#C.E. Naturalness and Support
L$corCE <- data.frame(L$Naturalness, L$Support)
cor(L$corCE, use = "pairwise.complete.obs")
## L.Naturalness L.Support
## L.Naturalness 1.0000000 0.2775151
## L.Support 0.2775151 1.0000000
#C.F. Naturalness and Age
L$corCF <- data.frame(L$Naturalness, L$Dem_Age)
cor(L$corCF, use = "pairwise.complete.obs")
## L.Naturalness L.Dem_Age
## L.Naturalness 1.00000000 0.05047959
## L.Dem_Age 0.05047959 1.00000000
#C.G. Naturalness and Gender
L$corCG <- data.frame(L$Naturalness, L$Dem_Gen)
cor(L$corCG, use = "pairwise.complete.obs")
## L.Naturalness L.Dem_Gen
## L.Naturalness 1.000000000 0.009254462
## L.Dem_Gen 0.009254462 1.000000000
#C.H. Naturalness and Education
L$corCH <- data.frame(L$Naturalness, L$EdNum)
cor(L$corCH, use = "pairwise.complete.obs")
## L.Naturalness L.EdNum
## L.Naturalness 1.00000000 0.01733914
## L.EdNum 0.01733914 1.00000000
#C.I. Naturalness and SES
L$corCI <- data.frame(L$Naturalness, L$SESNum)
cor(L$corCI, use = "pairwise.complete.obs")
## L.Naturalness L.SESNum
## L.Naturalness 1.00000000 0.02206981
## L.SESNum 0.02206981 1.00000000
#C.J. Naturalness and Animal Welfare
L$corCJ <- data.frame(L$Naturalness, L$AW_Score)
cor(L$corCJ, use = "pairwise.complete.obs")
## L.Naturalness L.AW_Score
## L.Naturalness 1.00000000 0.02346641
## L.AW_Score 0.02346641 1.00000000
#C.K. Naturalness and Aversion to Tampering with Nature
L$corCK <- data.frame(L$Naturalness, L$ATNS_Score)
cor(L$corCK, use = "pairwise.complete.obs")
## L.Naturalness L.ATNS_Score
## L.Naturalness 1.000000000 -0.004805971
## L.ATNS_Score -0.004805971 1.000000000
#C.L. Naturalness and Climate Change Belief
L$corCL <- data.frame(L$Naturalness, L$CCBelief_Score)
cor(L$corCL, use = "pairwise.complete.obs")
## L.Naturalness L.CCBelief_Score
## L.Naturalness 1.00000000 0.02323764
## L.CCBelief_Score 0.02323764 1.00000000
#C.M. Naturalness and Collectivism
L$corCM <- data.frame(L$Naturalness, L$Collectivism_Score)
cor(L$corCM, use = "pairwise.complete.obs")
## L.Naturalness L.Collectivism_Score
## L.Naturalness 1.000000000 -0.007589717
## L.Collectivism_Score -0.007589717 1.000000000
#C.N. Naturalness and Connectedness with Nature
L$corCN <- data.frame(L$Naturalness, L$CNS_Score)
cor(L$corCN, use = "pairwise.complete.obs")
## L.Naturalness L.CNS_Score
## L.Naturalness 1.00000000 0.04200783
## L.CNS_Score 0.04200783 1.00000000
#C.O. Naturalness and Disgust Sensitivity
L$corCO <- data.frame(L$Naturalness, L$DS_Score)
cor(L$corCO, use = "pairwise.complete.obs")
## L.Naturalness L.DS_Score
## L.Naturalness 1.00000000 -0.01254702
## L.DS_Score -0.01254702 1.00000000
#C.P. Naturalness and Individualism
L$corCP <- data.frame(L$Naturalness, L$Individualism_Score)
cor(L$corCP, use = "pairwise.complete.obs")
## L.Naturalness L.Individualism_Score
## L.Naturalness 1.00000000 0.01032819
## L.Individualism_Score 0.01032819 1.00000000
#C.Q. Naturalness and Political Ideology
L$corCQ <- data.frame(L$Naturalness, L$Ideology)
cor(L$corCQ, use = "pairwise.complete.obs")
## L.Naturalness L.Ideology
## L.Naturalness 1.000000000 -0.007586033
## L.Ideology -0.007586033 1.000000000
#D.E. Risk and Support
L$corDE <- data.frame(L$Risk, L$Support)
cor(L$corDE, use = "pairwise.complete.obs")
## L.Risk L.Support
## L.Risk 1.0000000 -0.2454936
## L.Support -0.2454936 1.0000000
#D.F. Risk and Age
L$corDF <- data.frame(L$Risk, L$Dem_Age)
cor(L$corDF, use = "pairwise.complete.obs")
## L.Risk L.Dem_Age
## L.Risk 1.00000000 -0.08259666
## L.Dem_Age -0.08259666 1.00000000
#D.G. Risk and Gender
L$corDG <- data.frame(L$Risk, L$Dem_Gen)
cor(L$corDG, use = "pairwise.complete.obs")
## L.Risk L.Dem_Gen
## L.Risk 1.00000000 -0.02224316
## L.Dem_Gen -0.02224316 1.00000000
#D.H. Risk and Education
L$corDH <- data.frame(L$Risk, L$EdNum)
cor(L$corDH, use = "pairwise.complete.obs")
## L.Risk L.EdNum
## L.Risk 1.00000000 -0.03355143
## L.EdNum -0.03355143 1.00000000
#D.I. Risk and SES
L$corDI <- data.frame(L$Risk, L$SESNum)
cor(L$corDI, use = "pairwise.complete.obs")
## L.Risk L.SESNum
## L.Risk 1.00000000 -0.03456275
## L.SESNum -0.03456275 1.00000000
#D.J. Risk and Animal Welfare
L$corDJ <- data.frame(L$Risk, L$AW_Score)
cor(L$corDJ, use = "pairwise.complete.obs")
## L.Risk L.AW_Score
## L.Risk 1.00000000 0.02169705
## L.AW_Score 0.02169705 1.00000000
#D.K. Risk and Aversion to Tampering with Nature
L$corDK <- data.frame(L$Risk, L$ATNS_Score)
cor(L$corDK, use = "pairwise.complete.obs")
## L.Risk L.ATNS_Score
## L.Risk 1.000000 0.107381
## L.ATNS_Score 0.107381 1.000000
#D.L. Risk and Climate Change Belief
L$corDL <- data.frame(L$Risk, L$CCBelief_Score)
cor(L$corDL, use = "pairwise.complete.obs")
## L.Risk L.CCBelief_Score
## L.Risk 1.00000000 -0.03013518
## L.CCBelief_Score -0.03013518 1.00000000
#D.M. Risk and Collectivism
L$corDM <- data.frame(L$Risk, L$Collectivism_Score)
cor(L$corDM, use = "pairwise.complete.obs")
## L.Risk L.Collectivism_Score
## L.Risk 1.00000000 0.08163868
## L.Collectivism_Score 0.08163868 1.00000000
#D.N. Risk and Connectedness with Nature
L$corDN <- data.frame(L$Risk, L$CNS_Score)
cor(L$corDN, use = "pairwise.complete.obs")
## L.Risk L.CNS_Score
## L.Risk 1.00000000 -0.07770064
## L.CNS_Score -0.07770064 1.00000000
#D.O. Risk and Disgust Sensitivity
L$corDO <- data.frame(L$Risk, L$DS_Score)
cor(L$corDO, use = "pairwise.complete.obs")
## L.Risk L.DS_Score
## L.Risk 1.00000000 0.04354325
## L.DS_Score 0.04354325 1.00000000
#D.P. Risk and Individualism
L$corDP <- data.frame(L$Risk, L$Individualism_Score)
cor(L$corDP, use = "pairwise.complete.obs")
## L.Risk L.Individualism_Score
## L.Risk 1.00000000 -0.02523468
## L.Individualism_Score -0.02523468 1.00000000
#D.Q. Risk and Political Ideology
L$corDQ <- data.frame(L$Risk, L$Ideology)
cor(L$corDQ, use = "pairwise.complete.obs")
## L.Risk L.Ideology
## L.Risk 1.00000000 0.01751823
## L.Ideology 0.01751823 1.00000000
#E.F. Support and Age
L$corEF <- data.frame(L$Support, L$Dem_Age)
cor(L$corEF, use = "pairwise.complete.obs")
## L.Support L.Dem_Age
## L.Support 1.0000000 -0.1765666
## L.Dem_Age -0.1765666 1.0000000
#E.G. Support and Gender
L$corEG <- data.frame(L$Support, L$Dem_Gen)
cor(L$corEG, use = "pairwise.complete.obs")
## L.Support L.Dem_Gen
## L.Support 1.00000000 0.07486383
## L.Dem_Gen 0.07486383 1.00000000
#E.H. Support and Education
L$corEH <- data.frame(L$Support, L$EdNum)
cor(L$corEH, use = "pairwise.complete.obs")
## L.Support L.EdNum
## L.Support 1.00000000 0.07968866
## L.EdNum 0.07968866 1.00000000
#E.I. Support and SES
L$corEI <- data.frame(L$Support, L$SESNum)
cor(L$corEI, use = "pairwise.complete.obs")
## L.Support L.SESNum
## L.Support 1.00000000 0.05859574
## L.SESNum 0.05859574 1.00000000
#E.J. Support and Animal Welfare
L$corEJ <- data.frame(L$Support, L$AW_Score)
cor(L$corEJ, use = "pairwise.complete.obs")
## L.Support L.AW_Score
## L.Support 1.0000000 0.2248353
## L.AW_Score 0.2248353 1.0000000
#E.K. Support and Aversion to Tampering with Nature
L$corEK <- data.frame(L$Support, L$ATNS_Score)
cor(L$corEK, use = "pairwise.complete.obs")
## L.Support L.ATNS_Score
## L.Support 1.000000000 0.009999502
## L.ATNS_Score 0.009999502 1.000000000
#E.L. Support and Climate Change Belief
L$corEL <- data.frame(L$Support, L$CCBelief_Score)
cor(L$corEL, use = "pairwise.complete.obs")
## L.Support L.CCBelief_Score
## L.Support 1.0000000 0.2501158
## L.CCBelief_Score 0.2501158 1.0000000
#E.M. Support and Collectivism
L$corEM <- data.frame(L$Support, L$Collectivism_Score)
cor(L$corEM, use = "pairwise.complete.obs")
## L.Support L.Collectivism_Score
## L.Support 1.0000000 0.1940219
## L.Collectivism_Score 0.1940219 1.0000000
#E.N. Support and Connectedness with Nature
L$corEN <- data.frame(L$Support, L$CNS_Score)
cor(L$corEN, use = "pairwise.complete.obs")
## L.Support L.CNS_Score
## L.Support 1.00000000 0.06437182
## L.CNS_Score 0.06437182 1.00000000
#E.O. Support and Disgust Sensitivity
L$corEO <- data.frame(L$Support, L$DS_Score)
cor(L$corEO, use = "pairwise.complete.obs")
## L.Support L.DS_Score
## L.Support 1.00000000 0.02274216
## L.DS_Score 0.02274216 1.00000000
#E.P. Support and Individualism
L$corEP <- data.frame(L$Support, L$Individualism_Score)
cor(L$corEP, use = "pairwise.complete.obs")
## L.Support L.Individualism_Score
## L.Support 1.000000 0.117509
## L.Individualism_Score 0.117509 1.000000
#E.Q. Support and Political Ideology
L$corEQ <- data.frame(L$Support, L$Ideology)
cor(L$corEQ, use = "pairwise.complete.obs")
## L.Support L.Ideology
## L.Support 1.0000000 -0.1751993
## L.Ideology -0.1751993 1.0000000
#F.G. Age and Gender
L$corFG <- data.frame(L$Dem_Age, L$Dem_Gen)
cor(L$corFG, use = "pairwise.complete.obs")
## L.Dem_Age L.Dem_Gen
## L.Dem_Age 1.000000000 0.003391124
## L.Dem_Gen 0.003391124 1.000000000
#F.H. Age and Education
L$corFH <- data.frame(L$Dem_Age, L$EdNum)
cor(L$corFH, use = "pairwise.complete.obs")
## L.Dem_Age L.EdNum
## L.Dem_Age 1.00000000 0.07907847
## L.EdNum 0.07907847 1.00000000
#F.I. Age and SES
L$corFI <- data.frame(L$Dem_Age, L$SESNum)
cor(L$corFI, use = "pairwise.complete.obs")
## L.Dem_Age L.SESNum
## L.Dem_Age 1.00000000 0.05562574
## L.SESNum 0.05562574 1.00000000
#F.J. Age and Animal Welfare
L$corFJ <- data.frame(L$Dem_Age, L$AW_Score)
cor(L$corFJ, use = "pairwise.complete.obs")
## L.Dem_Age L.AW_Score
## L.Dem_Age 1.00000000 0.05901509
## L.AW_Score 0.05901509 1.00000000
#F.K. Age and Aversion to Tampering with Nature
L$corFK <- data.frame(L$Dem_Age, L$ATNS_Score)
cor(L$corFK, use = "pairwise.complete.obs")
## L.Dem_Age L.ATNS_Score
## L.Dem_Age 1.00000000 0.03430422
## L.ATNS_Score 0.03430422 1.00000000
#F.L. Age and Climate Change Belief
L$corFL <- data.frame(L$Dem_Age, L$CCBelief_Score)
cor(L$corFL, use = "pairwise.complete.obs")
## L.Dem_Age L.CCBelief_Score
## L.Dem_Age 1.00000000 0.01597997
## L.CCBelief_Score 0.01597997 1.00000000
#F.M. Age and Collectivism
L$corFM <- data.frame(L$Dem_Age, L$Collectivism_Score)
cor(L$corFM, use = "pairwise.complete.obs")
## L.Dem_Age L.Collectivism_Score
## L.Dem_Age 1.00000000 0.09536808
## L.Collectivism_Score 0.09536808 1.00000000
#F.N. Age and Connectedness with Nature
L$corFN <- data.frame(L$Dem_Age, L$CNS_Score)
cor(L$corFN, use = "pairwise.complete.obs")
## L.Dem_Age L.CNS_Score
## L.Dem_Age 1.0000000 0.1118762
## L.CNS_Score 0.1118762 1.0000000
#F.O. Age and Disgust Sensitivity
L$corFO <- data.frame(L$Dem_Age, L$DS_Score)
cor(L$corFO, use = "pairwise.complete.obs")
## L.Dem_Age L.DS_Score
## L.Dem_Age 1.00000000 0.04211854
## L.DS_Score 0.04211854 1.00000000
#F.P. Age and Individualism
L$corFP <- data.frame(L$Dem_Age, L$Individualism_Score)
cor(L$corFP, use = "pairwise.complete.obs")
## L.Dem_Age L.Individualism_Score
## L.Dem_Age 1.00000000 0.08110524
## L.Individualism_Score 0.08110524 1.00000000
#F.Q. Age and Political Ideology
L$corFQ <- data.frame(L$Dem_Age, L$Ideology)
cor(L$corFQ, use = "pairwise.complete.obs")
## L.Dem_Age L.Ideology
## L.Dem_Age 1.00000000 0.06946309
## L.Ideology 0.06946309 1.00000000
#G.H. Gender and Education
L$corGH <- data.frame(L$Dem_Gen, L$EdNum)
cor(L$corGH, use = "pairwise.complete.obs")
## L.Dem_Gen L.EdNum
## L.Dem_Gen 1.0000000 0.1397375
## L.EdNum 0.1397375 1.0000000
#G.I. Gender and SES
L$corGI <- data.frame(L$Dem_Gen, L$SESNum)
cor(L$corGI, use = "pairwise.complete.obs")
## L.Dem_Gen L.SESNum
## L.Dem_Gen 1.0000000 0.2025043
## L.SESNum 0.2025043 1.0000000
#G.J. Gender and Animal Welfare
L$corGJ <- data.frame(L$Dem_Gen, L$AW_Score)
cor(L$corGJ, use = "pairwise.complete.obs")
## L.Dem_Gen L.AW_Score
## L.Dem_Gen 1.00000000 -0.06914132
## L.AW_Score -0.06914132 1.00000000
#G.K. Gender and Aversion to Tampering with Nature
L$corGK <- data.frame(L$Dem_Gen, L$ATNS_Score)
cor(L$corGK, use = "pairwise.complete.obs")
## L.Dem_Gen L.ATNS_Score
## L.Dem_Gen 1.00000000 -0.05744736
## L.ATNS_Score -0.05744736 1.00000000
#G.L. Gender and Climate Change Belief
L$corGL <- data.frame(L$Dem_Gen, L$CCBelief_Score)
cor(L$corGL, use = "pairwise.complete.obs")
## L.Dem_Gen L.CCBelief_Score
## L.Dem_Gen 1.00000000 -0.04622795
## L.CCBelief_Score -0.04622795 1.00000000
#G.M. Gender and Collectivism
L$corGM <- data.frame(L$Dem_Gen, L$Collectivism_Score)
cor(L$corGM, use = "pairwise.complete.obs")
## L.Dem_Gen L.Collectivism_Score
## L.Dem_Gen 1.00000000 -0.01312762
## L.Collectivism_Score -0.01312762 1.00000000
#G.N. Gender and Connectedness with Nature
L$corGN <- data.frame(L$Dem_Gen, L$CNS_Score)
cor(L$corGN, use = "pairwise.complete.obs")
## L.Dem_Gen L.CNS_Score
## L.Dem_Gen 1.00000000 -0.02855254
## L.CNS_Score -0.02855254 1.00000000
#G.O. Gender and Disgust Sensitivity
L$corGO <- data.frame(L$Dem_Gen, L$DS_Score)
cor(L$corGO, use = "pairwise.complete.obs")
## L.Dem_Gen L.DS_Score
## L.Dem_Gen 1.0000000 -0.1071054
## L.DS_Score -0.1071054 1.0000000
#G.P. Gender and Individualism
L$corGP <- data.frame(L$Dem_Gen, L$Individualism_Score)
cor(L$corGP, use = "pairwise.complete.obs")
## L.Dem_Gen L.Individualism_Score
## L.Dem_Gen 1.000000 -0.042141
## L.Individualism_Score -0.042141 1.000000
#G.Q. Gender and Political Ideology
L$corGQ <- data.frame(L$Dem_Gen, L$Ideology)
cor(L$corGQ, use = "pairwise.complete.obs")
## L.Dem_Gen L.Ideology
## L.Dem_Gen 1.00000000 -0.03059793
## L.Ideology -0.03059793 1.00000000
#H.I. Education and SES
L$corHI <- data.frame(L$Dem_Edu, L$SESNum)
cor(L$corHI, use = "pairwise.complete.obs")
## L.Dem_Edu L.SESNum
## L.Dem_Edu 1.0000000 0.3577774
## L.SESNum 0.3577774 1.0000000
#H.J. Education and Animal Welfare
L$corHJ <- data.frame(L$Dem_Edu, L$AW_Score)
cor(L$corHJ, use = "pairwise.complete.obs")
## L.Dem_Edu L.AW_Score
## L.Dem_Edu 1.00000000 0.01370901
## L.AW_Score 0.01370901 1.00000000
#H.K. Education and Aversion to Tampering with Nature
L$corHK <- data.frame(L$Dem_Edu, L$ATNS_Score)
cor(L$corHK, use = "pairwise.complete.obs")
## L.Dem_Edu L.ATNS_Score
## L.Dem_Edu 1.000000000 -0.004799408
## L.ATNS_Score -0.004799408 1.000000000
#H.L. Education and Climate Change Belief
L$corHL <- data.frame(L$Dem_Edu, L$CCBelief_Score)
cor(L$corHL, use = "pairwise.complete.obs")
## L.Dem_Edu L.CCBelief_Score
## L.Dem_Edu 1.00000000 0.05237551
## L.CCBelief_Score 0.05237551 1.00000000
#H.M. Education and Collectivism
L$corHM <- data.frame(L$Dem_Edu, L$Collectivism_Score)
cor(L$corHM, use = "pairwise.complete.obs")
## L.Dem_Edu L.Collectivism_Score
## L.Dem_Edu 1.000000000 0.007301329
## L.Collectivism_Score 0.007301329 1.000000000
#H.N. Education and Connectedness with Nature
L$corHN <- data.frame(L$Dem_Edu, L$CNS_Score)
cor(L$corHN, use = "pairwise.complete.obs")
## L.Dem_Edu L.CNS_Score
## L.Dem_Edu 1.00000000 0.04621678
## L.CNS_Score 0.04621678 1.00000000
#H.O. Education and Disgust Sensitivity
L$corHO <- data.frame(L$Dem_Edu, L$DS_Score)
cor(L$corHO, use = "pairwise.complete.obs")
## L.Dem_Edu L.DS_Score
## L.Dem_Edu 1.000000000 -0.006439492
## L.DS_Score -0.006439492 1.000000000
#H.P. Education and Individualism
L$corHP <- data.frame(L$Dem_Edu, L$Individualism_Score)
cor(L$corHP, use = "pairwise.complete.obs")
## L.Dem_Edu L.Individualism_Score
## L.Dem_Edu 1.000000000 0.001796155
## L.Individualism_Score 0.001796155 1.000000000
#H.Q. Education and Political Ideology
L$corHQ <- data.frame(L$Dem_Edu, L$Ideology)
cor(L$corHQ, use = "pairwise.complete.obs")
## L.Dem_Edu L.Ideology
## L.Dem_Edu 1.0000000 -0.1499917
## L.Ideology -0.1499917 1.0000000
#I.J. Socioeconomic Status and Animal Welfare
L$corIJ <- data.frame(L$SESNum, L$AW_Score)
cor(L$corIJ, use = "pairwise.complete.obs")
## L.SESNum L.AW_Score
## L.SESNum 1.00000000 -0.02956547
## L.AW_Score -0.02956547 1.00000000
#I.K. Socioeconomic Status and Aversion to Tampering with Nature
L$corIK <- data.frame(L$SESNum, L$ATNS_Score)
cor(L$corIK, use = "pairwise.complete.obs")
## L.SESNum L.ATNS_Score
## L.SESNum 1.00000000 -0.02094473
## L.ATNS_Score -0.02094473 1.00000000
#I.L. Socioeconomic Status and Climate Change Belief
L$corIL <- data.frame(L$SESNum, L$CCBelief_Score)
cor(L$corIL, use = "pairwise.complete.obs")
## L.SESNum L.CCBelief_Score
## L.SESNum 1.00000000 0.01996328
## L.CCBelief_Score 0.01996328 1.00000000
#I.M. Socioeconomic Status and Collectivism
L$corIM <- data.frame(L$SESNum, L$Collectivism_Score)
cor(L$corIM, use = "pairwise.complete.obs")
## L.SESNum L.Collectivism_Score
## L.SESNum 1.00000000 0.09944228
## L.Collectivism_Score 0.09944228 1.00000000
#I.N. Socioeconomic Status and Connectedness with Nature
L$corIN <- data.frame(L$SESNum, L$CNS_Score)
cor(L$corIN, use = "pairwise.complete.obs")
## L.SESNum L.CNS_Score
## L.SESNum 1.00000000 -0.01243031
## L.CNS_Score -0.01243031 1.00000000
#I.O. Socioeconomic Status and Disgust Sensitivity
L$corHO <- data.frame(L$SESNum, L$DS_Score)
cor(L$corHO, use = "pairwise.complete.obs")
## L.SESNum L.DS_Score
## L.SESNum 1.00000000 -0.03031381
## L.DS_Score -0.03031381 1.00000000
#I.P. Socioeconomic Status and Individualism
L$corIP <- data.frame(L$SESNum, L$Individualism_Score)
cor(L$corIP, use = "pairwise.complete.obs")
## L.SESNum L.Individualism_Score
## L.SESNum 1.000000 0.043771
## L.Individualism_Score 0.043771 1.000000
#I.Q. Socioeconomic Status and Political Ideology
L$corIQ <- data.frame(L$SESNum, L$Ideology)
cor(L$corIQ, use = "pairwise.complete.obs")
## L.SESNum L.Ideology
## L.SESNum 1.00000000 -0.03783139
## L.Ideology -0.03783139 1.00000000
#J.K. Animal Welfare and Aversion to Tampering with Nature
L$corJK <- data.frame(L$AW_Score, L$ATNS_Score)
cor(L$corJK, use = "pairwise.complete.obs")
## L.AW_Score L.ATNS_Score
## L.AW_Score 1.0000000 0.3007906
## L.ATNS_Score 0.3007906 1.0000000
#J.L. Animal Welfare and Climate Change Belief
L$corJL <- data.frame(L$AW_Score, L$CCBelief_Score)
cor(L$corJL, use = "pairwise.complete.obs")
## L.AW_Score L.CCBelief_Score
## L.AW_Score 1.0000000 0.4449092
## L.CCBelief_Score 0.4449092 1.0000000
#J.M. Animal Welfare and Collectivism
L$corJM <- data.frame(L$AW_Score, L$Collectivism_Score)
cor(L$corJM, use = "pairwise.complete.obs")
## L.AW_Score L.Collectivism_Score
## L.AW_Score 1.0000000 0.2672146
## L.Collectivism_Score 0.2672146 1.0000000
#J.N. Animal Welfare and Connectedness with Nature
L$corJN <- data.frame(L$AW_Score, L$CNS_Score)
cor(L$corJN, use = "pairwise.complete.obs")
## L.AW_Score L.CNS_Score
## L.AW_Score 1.0000000 0.3072356
## L.CNS_Score 0.3072356 1.0000000
#J.O. Animal Welfare and Disgust Sensitivity
L$corJO <- data.frame(L$AW_Score, L$DS_Score)
cor(L$corJO, use = "pairwise.complete.obs")
## L.AW_Score L.DS_Score
## L.AW_Score 1.00000000 0.07984725
## L.DS_Score 0.07984725 1.00000000
#J.P. Animal Welfare and Individualism
L$corJP <- data.frame(L$AW_Score, L$Individualism_Score)
cor(L$corJP, use = "pairwise.complete.obs")
## L.AW_Score L.Individualism_Score
## L.AW_Score 1.0000000 0.3952545
## L.Individualism_Score 0.3952545 1.0000000
#J.Q. Animal Welfare and Political Ideology
L$corJQ <- data.frame(L$AW_Score, L$Ideology)
cor(L$corJQ, use = "pairwise.complete.obs")
## L.AW_Score L.Ideology
## L.AW_Score 1.0000000 -0.1252431
## L.Ideology -0.1252431 1.0000000
#K.L. Aversion to Tampering with Nature and Climate Change Belief
L$corKL <- data.frame(L$ATNS_Score, L$CCBelief_Score)
cor(L$corKL, use = "pairwise.complete.obs")
## L.ATNS_Score L.CCBelief_Score
## L.ATNS_Score 1.0000000 0.2592716
## L.CCBelief_Score 0.2592716 1.0000000
#K.M. Aversion to Tampering with Nature and Collectivism
L$corKM <- data.frame(L$ATNS_Score, L$Collectivism_Score)
cor(L$corKM, use = "pairwise.complete.obs")
## L.ATNS_Score L.Collectivism_Score
## L.ATNS_Score 1.0000000 0.3080754
## L.Collectivism_Score 0.3080754 1.0000000
#K.N. Aversion to Tampering with Nature and Connectedness with Nature
L$corKN <- data.frame(L$ATNS_Score, L$CNS_Score)
cor(L$corKN, use = "pairwise.complete.obs")
## L.ATNS_Score L.CNS_Score
## L.ATNS_Score 1.0000000 0.2872592
## L.CNS_Score 0.2872592 1.0000000
#K.O. Aversion to Tampering with Nature and Disgust Sensitivity
L$corKO <- data.frame(L$ATNS_Score, L$DS_Score)
cor(L$corKO, use = "pairwise.complete.obs")
## L.ATNS_Score L.DS_Score
## L.ATNS_Score 1.0000000 0.1606351
## L.DS_Score 0.1606351 1.0000000
#K.P. Aversion to Tampering with Nature and Individualism
L$corKP <- data.frame(L$ATNS_Score, L$Individualism_Score)
cor(L$corKP, use = "pairwise.complete.obs")
## L.ATNS_Score L.Individualism_Score
## L.ATNS_Score 1.0000000 0.3424293
## L.Individualism_Score 0.3424293 1.0000000
#K.Q. Aversion to Tampering with Nature and Political Ideology
L$corKQ <- data.frame(L$ATNS_Score, L$Ideology)
cor(L$corKQ, use = "pairwise.complete.obs")
## L.ATNS_Score L.Ideology
## L.ATNS_Score 1.00000000 0.03831761
## L.Ideology 0.03831761 1.00000000
#L.M. Climate Change Belief and Collectivism
L$corLM <- data.frame(L$CCBelief_Score, L$Collectivism_Score)
cor(L$corLM, use = "pairwise.complete.obs")
## L.CCBelief_Score L.Collectivism_Score
## L.CCBelief_Score 1.0000000 0.1828825
## L.Collectivism_Score 0.1828825 1.0000000
#L.N. Climate Change Belief and Connectedness with Nature
L$corLN <- data.frame(L$CCBelief_Score, L$CNS_Score)
cor(L$corLN, use = "pairwise.complete.obs")
## L.CCBelief_Score L.CNS_Score
## L.CCBelief_Score 1.0000000 0.3779828
## L.CNS_Score 0.3779828 1.0000000
#L.O. Climate Change Belief and Disgust Sensitivity
L$corLO <- data.frame(L$CCBelief_Score, L$DS_Score)
cor(L$corLO, use = "pairwise.complete.obs")
## L.CCBelief_Score L.DS_Score
## L.CCBelief_Score 1.00000000 0.04399014
## L.DS_Score 0.04399014 1.00000000
#L.P. Climate Change Belief and Individualism
L$corLP <- data.frame(L$CCBelief_Score, L$Individualism_Score)
cor(L$corLP, use = "pairwise.complete.obs")
## L.CCBelief_Score L.Individualism_Score
## L.CCBelief_Score 1.0000000 0.3704785
## L.Individualism_Score 0.3704785 1.0000000
#L.Q. Climate Change Belief and Political Ideology
L$corLQ <- data.frame(L$CCBelief_Score, L$Ideology)
cor(L$corLQ, use = "pairwise.complete.obs")
## L.CCBelief_Score L.Ideology
## L.CCBelief_Score 1.0000000 -0.3798505
## L.Ideology -0.3798505 1.0000000
#M.N. Collectivism and Connectedness with Nature
L$corMN <- data.frame(L$Collectivism_Score, L$CNS_Score)
cor(L$corMN, use = "pairwise.complete.obs")
## L.Collectivism_Score L.CNS_Score
## L.Collectivism_Score 1.00000000 0.08052293
## L.CNS_Score 0.08052293 1.00000000
#M.O. Collectivism and Disgust Sensitivity
L$corMO <- data.frame(L$Collectivism_Score, L$DS_Score)
cor(L$corMO, use = "pairwise.complete.obs")
## L.Collectivism_Score L.DS_Score
## L.Collectivism_Score 1.0000000 0.2196776
## L.DS_Score 0.2196776 1.0000000
#M.P. Collectivism and Individualism
L$corMP <- data.frame(L$Collectivism_Score, L$Individualism_Score)
cor(L$corMP, use = "pairwise.complete.obs")
## L.Collectivism_Score L.Individualism_Score
## L.Collectivism_Score 1.0000000 0.4781778
## L.Individualism_Score 0.4781778 1.0000000
#M.Q. Collectivism and Political Ideology
L$corMQ <- data.frame(L$Collectivism_Score, L$Ideology)
cor(L$corMQ, use = "pairwise.complete.obs")
## L.Collectivism_Score L.Ideology
## L.Collectivism_Score 1.0000000 0.1089864
## L.Ideology 0.1089864 1.0000000
#N.O. Connectedness with Nature and Disgust Sensitivity
L$corNO <- data.frame(L$CNS_Score, L$DS_Score)
cor(L$corNO, use = "pairwise.complete.obs")
## L.CNS_Score L.DS_Score
## L.CNS_Score 1.00000000 -0.05109167
## L.DS_Score -0.05109167 1.00000000
#N.P. Connectedness with Nature and Individualism
L$corNP <- data.frame(L$CNS_Score, L$Individualism_Score)
cor(L$corNP, use = "pairwise.complete.obs")
## L.CNS_Score L.Individualism_Score
## L.CNS_Score 1.0000000 0.2723873
## L.Individualism_Score 0.2723873 1.0000000
#N.Q. Connectedness with Nature and Political Ideology
L$corNQ <- data.frame(L$CNS_Score, L$Ideology)
cor(L$corNQ, use = "pairwise.complete.obs")
## L.CNS_Score L.Ideology
## L.CNS_Score 1.0000000 -0.1218341
## L.Ideology -0.1218341 1.0000000
#O.P. Disgust Sensitivity and Individualism
L$corOP <- data.frame(L$DS_Score, L$Individualism_Score)
cor(L$corOP, use = "pairwise.complete.obs")
## L.DS_Score L.Individualism_Score
## L.DS_Score 1.0000000 0.1399183
## L.Individualism_Score 0.1399183 1.0000000
#O.Q. Disgust Sensitivity and Political Ideology
L$corOQ <- data.frame(L$DS_Score, L$Ideology)
cor(L$corOQ, use = "pairwise.complete.obs")
## L.DS_Score L.Ideology
## L.DS_Score 1.00000000 0.01320363
## L.Ideology 0.01320363 1.00000000
#P.Q. Individualism and Political Ideology
L$corPQ <- data.frame(L$Individualism_Score, L$Ideology)
cor(L$corPQ, use = "pairwise.complete.obs")
## L.Individualism_Score L.Ideology
## L.Individualism_Score 1.00000000 -0.02687926
## L.Ideology -0.02687926 1.00000000
#Correlation between environmentalism measures, including animal welfare concerns, aversion to tampering with nature, climate change belief, connectedness to nature, and political ideology
PP$corID <- data.frame(PP$AW_Score, PP$ATNS_Score, PP$CCBelief_Score, PP$CNS_Score, PP$Ideology)
mydata.corID = cor(PP$corID, use = "pairwise.complete.obs")
head(round(mydata.corID,2))
## PP.AW_Score PP.ATNS_Score PP.CCBelief_Score PP.CNS_Score
## PP.AW_Score 1.00 0.30 0.44 0.31
## PP.ATNS_Score 0.30 1.00 0.26 0.29
## PP.CCBelief_Score 0.44 0.26 1.00 0.38
## PP.CNS_Score 0.31 0.29 0.38 1.00
## PP.Ideology -0.13 0.04 -0.38 -0.12
## PP.Ideology
## PP.AW_Score -0.13
## PP.ATNS_Score 0.04
## PP.CCBelief_Score -0.38
## PP.CNS_Score -0.12
## PP.Ideology 1.00
library("Hmisc")
mydata.rcorrID = rcorr(as.matrix(mydata.corID))
mydata.rcorrID
## PP.AW_Score PP.ATNS_Score PP.CCBelief_Score PP.CNS_Score
## PP.AW_Score 1.00 0.12 0.60 0.26
## PP.ATNS_Score 0.12 1.00 0.15 0.11
## PP.CCBelief_Score 0.60 0.15 1.00 0.48
## PP.CNS_Score 0.26 0.11 0.48 1.00
## PP.Ideology -0.70 -0.32 -0.94 -0.66
## PP.Ideology
## PP.AW_Score -0.70
## PP.ATNS_Score -0.32
## PP.CCBelief_Score -0.94
## PP.CNS_Score -0.66
## PP.Ideology 1.00
##
## n= 5
##
##
## P
## PP.AW_Score PP.ATNS_Score PP.CCBelief_Score PP.CNS_Score
## PP.AW_Score 0.8419 0.2897 0.6705
## PP.ATNS_Score 0.8419 0.8156 0.8651
## PP.CCBelief_Score 0.2897 0.8156 0.4107
## PP.CNS_Score 0.6705 0.8651 0.4107
## PP.Ideology 0.1899 0.5988 0.0172 0.2272
## PP.Ideology
## PP.AW_Score 0.1899
## PP.ATNS_Score 0.5988
## PP.CCBelief_Score 0.0172
## PP.CNS_Score 0.2272
## PP.Ideology
library(corrplot)
corrplot(mydata.corID, method="color")
corrplot(mydata.corID, addCoef.col = 1, number.cex = 0.3, method = 'number')
# Correlation between animal welfare concern, aversion to tampering with nature, climate change belief, connectedness to nature, disgust sensitivity, highest education attained, individualism, collectivism, political orientation, and political party.
L$corID <- data.frame(L$AW_Score, L$ATNS_Score, L$CCBelief_Score, L$CNS_Score, L$DS_Score, L$EdNum, L$Individualism_Score, L$Collectivism_Score, L$Ideology)
mydata.cor9 = cor(L$corID, use = "pairwise.complete.obs")
head(round(mydata.cor9,2))
## L.AW_Score L.ATNS_Score L.CCBelief_Score L.CNS_Score
## L.AW_Score 1.00 0.30 0.44 0.31
## L.ATNS_Score 0.30 1.00 0.26 0.29
## L.CCBelief_Score 0.44 0.26 1.00 0.38
## L.CNS_Score 0.31 0.29 0.38 1.00
## L.DS_Score 0.08 0.16 0.04 -0.05
## L.EdNum 0.01 0.00 0.05 0.05
## L.DS_Score L.EdNum L.Individualism_Score L.Collectivism_Score
## L.AW_Score 0.08 0.01 0.40 0.27
## L.ATNS_Score 0.16 0.00 0.34 0.31
## L.CCBelief_Score 0.04 0.05 0.37 0.18
## L.CNS_Score -0.05 0.05 0.27 0.08
## L.DS_Score 1.00 -0.01 0.14 0.22
## L.EdNum -0.01 1.00 0.00 0.01
## L.Ideology
## L.AW_Score -0.13
## L.ATNS_Score 0.04
## L.CCBelief_Score -0.38
## L.CNS_Score -0.12
## L.DS_Score 0.01
## L.EdNum -0.15
library("Hmisc")
mydata.rcorr9 = rcorr(as.matrix(mydata.cor9))
mydata.rcorr9
## L.AW_Score L.ATNS_Score L.CCBelief_Score L.CNS_Score
## L.AW_Score 1.00 0.30 0.65 0.41
## L.ATNS_Score 0.30 1.00 0.27 0.28
## L.CCBelief_Score 0.65 0.27 1.00 0.56
## L.CNS_Score 0.41 0.28 0.56 1.00
## L.DS_Score -0.18 -0.03 -0.19 -0.41
## L.EdNum -0.23 -0.34 -0.06 -0.11
## L.Individualism_Score 0.50 0.36 0.48 0.26
## L.Collectivism_Score 0.18 0.25 0.05 -0.18
## L.Ideology -0.54 -0.19 -0.82 -0.49
## L.DS_Score L.EdNum L.Individualism_Score
## L.AW_Score -0.18 -0.23 0.50
## L.ATNS_Score -0.03 -0.34 0.36
## L.CCBelief_Score -0.19 -0.06 0.48
## L.CNS_Score -0.41 -0.11 0.26
## L.DS_Score 1.00 -0.21 -0.07
## L.EdNum -0.21 1.00 -0.33
## L.Individualism_Score -0.07 -0.33 1.00
## L.Collectivism_Score 0.14 -0.33 0.56
## L.Ideology -0.03 -0.35 -0.35
## L.Collectivism_Score L.Ideology
## L.AW_Score 0.18 -0.54
## L.ATNS_Score 0.25 -0.19
## L.CCBelief_Score 0.05 -0.82
## L.CNS_Score -0.18 -0.49
## L.DS_Score 0.14 -0.03
## L.EdNum -0.33 -0.35
## L.Individualism_Score 0.56 -0.35
## L.Collectivism_Score 1.00 0.00
## L.Ideology 0.00 1.00
##
## n= 9
##
##
## P
## L.AW_Score L.ATNS_Score L.CCBelief_Score L.CNS_Score
## L.AW_Score 0.4258 0.0559 0.2687
## L.ATNS_Score 0.4258 0.4843 0.4738
## L.CCBelief_Score 0.0559 0.4843 0.1173
## L.CNS_Score 0.2687 0.4738 0.1173
## L.DS_Score 0.6337 0.9443 0.6166 0.2688
## L.EdNum 0.5515 0.3685 0.8696 0.7773
## L.Individualism_Score 0.1677 0.3391 0.1952 0.4969
## L.Collectivism_Score 0.6517 0.5081 0.8917 0.6469
## L.Ideology 0.1376 0.6177 0.0073 0.1764
## L.DS_Score L.EdNum L.Individualism_Score
## L.AW_Score 0.6337 0.5515 0.1677
## L.ATNS_Score 0.9443 0.3685 0.3391
## L.CCBelief_Score 0.6166 0.8696 0.1952
## L.CNS_Score 0.2688 0.7773 0.4969
## L.DS_Score 0.5867 0.8577
## L.EdNum 0.5867 0.3930
## L.Individualism_Score 0.8577 0.3930
## L.Collectivism_Score 0.7098 0.3825 0.1184
## L.Ideology 0.9380 0.3609 0.3617
## L.Collectivism_Score L.Ideology
## L.AW_Score 0.6517 0.1376
## L.ATNS_Score 0.5081 0.6177
## L.CCBelief_Score 0.8917 0.0073
## L.CNS_Score 0.6469 0.1764
## L.DS_Score 0.7098 0.9380
## L.EdNum 0.3825 0.3609
## L.Individualism_Score 0.1184 0.3617
## L.Collectivism_Score 0.9981
## L.Ideology 0.9981
library(corrplot)
corrplot(mydata.cor9, method="color")
corrplot(mydata.cor9, addCoef.col = 1, number.cex = 0.3, method = 'number')
#Correlation between perceived benefits, familiarity/understanding, naturalness, risk, and willingness to support technology.
L$corT <- data.frame(L$Ben, L$FR, L$Naturalness, L$Risk, L$Support)
mydata.cor11AT = cor(L$corT, use = "pairwise.complete.obs")
head(round(mydata.cor11AT,2))
## L.Ben L.FR L.Naturalness L.Risk L.Support
## L.Ben 1.00 0.51 0.27 -0.26 0.80
## L.FR 0.51 1.00 0.27 -0.12 0.55
## L.Naturalness 0.27 0.27 1.00 -0.39 0.28
## L.Risk -0.26 -0.12 -0.39 1.00 -0.25
## L.Support 0.80 0.55 0.28 -0.25 1.00
library("Hmisc")
mydata.rcorr11AT = rcorr(as.matrix(mydata.cor11AT))
mydata.rcorr11AT
## L.Ben L.FR L.Naturalness L.Risk L.Support
## L.Ben 1.00 0.66 0.35 -0.78 0.96
## L.FR 0.66 1.00 0.31 -0.65 0.70
## L.Naturalness 0.35 0.31 1.00 -0.84 0.35
## L.Risk -0.78 -0.65 -0.84 1.00 -0.78
## L.Support 0.96 0.70 0.35 -0.78 1.00
##
## n= 5
##
##
## P
## L.Ben L.FR L.Naturalness L.Risk L.Support
## L.Ben 0.2222 0.5639 0.1165 0.0108
## L.FR 0.2222 0.6173 0.2345 0.1900
## L.Naturalness 0.5639 0.6173 0.0719 0.5634
## L.Risk 0.1165 0.2345 0.0719 0.1171
## L.Support 0.0108 0.1900 0.5634 0.1171
library(corrplot)
corrplot(mydata.cor11AT, method="color")
corrplot(mydata.cor11AT, addCoef.col = 1, number.cex = 0.3, method = 'number')
#Correlation between perceived benefits, familiarity/understanding, naturalness, risk, willingness to support technology, age, gender, highest EDU attained, socioeconomic status, animal welfare, aversion to tampering with nature, climate change belief, collectivism, connectedness to nature, disgust sensitivity, individualism, and political ideology.
L$corR <- data.frame(L$Ben, L$FR, L$Naturalness, L$Risk, L$Support, L$Dem_Age, L$Dem_Gen, L$EdNum, L$SESNum, L$AW_Score, L$ATNS_Score, L$CCBelief_Score, L$Collectivism_Score, L$CNS_Score, PP$DS_Score, L$Individualism_Score, L$Ideology)
mydata.cor11A = cor(L$corR, use = "pairwise.complete.obs")
head(round(mydata.cor11A,2))
## L.Ben L.FR L.Naturalness L.Risk L.Support L.Dem_Age L.Dem_Gen
## L.Ben 1.00 0.51 0.27 -0.26 0.80 -0.10 0.06
## L.FR 0.51 1.00 0.27 -0.12 0.55 -0.06 0.08
## L.Naturalness 0.27 0.27 1.00 -0.39 0.28 0.05 0.01
## L.Risk -0.26 -0.12 -0.39 1.00 -0.25 -0.08 -0.02
## L.Support 0.80 0.55 0.28 -0.25 1.00 -0.18 0.07
## L.Dem_Age -0.10 -0.06 0.05 -0.08 -0.18 1.00 0.00
## L.EdNum L.SESNum L.AW_Score L.ATNS_Score L.CCBelief_Score
## L.Ben 0.06 0.06 0.20 0.05 0.23
## L.FR 0.07 0.07 0.19 0.07 0.19
## L.Naturalness 0.02 0.02 0.02 0.00 0.02
## L.Risk -0.03 -0.03 0.02 0.11 -0.03
## L.Support 0.08 0.06 0.22 0.01 0.25
## L.Dem_Age 0.08 0.06 0.06 0.03 0.02
## L.Collectivism_Score L.CNS_Score PP.DS_Score
## L.Ben 0.24 0.06 0.05
## L.FR 0.19 0.07 -0.02
## L.Naturalness -0.01 0.04 -0.01
## L.Risk 0.08 -0.08 0.04
## L.Support 0.19 0.06 0.02
## L.Dem_Age 0.10 0.11 0.04
## L.Individualism_Score L.Ideology
## L.Ben 0.17 -0.11
## L.FR 0.17 -0.09
## L.Naturalness 0.01 -0.01
## L.Risk -0.03 0.02
## L.Support 0.12 -0.18
## L.Dem_Age 0.08 0.07
library("Hmisc")
mydata.rcorr11A = rcorr(as.matrix(mydata.cor11A))
mydata.rcorr11A
## L.Ben L.FR L.Naturalness L.Risk L.Support L.Dem_Age
## L.Ben 1.00 0.80 0.50 -0.58 0.97 -0.41
## L.FR 0.80 1.00 0.48 -0.47 0.83 -0.37
## L.Naturalness 0.50 0.48 1.00 -0.75 0.50 -0.06
## L.Risk -0.58 -0.47 -0.75 1.00 -0.56 -0.09
## L.Support 0.97 0.83 0.50 -0.56 1.00 -0.46
## L.Dem_Age -0.41 -0.37 -0.06 -0.09 -0.46 1.00
## L.Dem_Gen -0.01 0.01 -0.02 -0.09 0.02 -0.10
## L.EdNum -0.04 -0.02 -0.03 -0.12 0.00 0.02
## L.SESNum -0.07 -0.06 -0.05 -0.11 -0.04 -0.01
## L.AW_Score 0.23 0.21 -0.07 -0.07 0.25 -0.09
## L.ATNS_Score -0.13 -0.12 -0.23 0.17 -0.17 -0.05
## L.CCBelief_Score 0.31 0.28 -0.01 -0.15 0.34 -0.14
## L.Collectivism_Score 0.18 0.12 -0.18 0.05 0.13 -0.05
## L.CNS_Score 0.00 0.01 -0.03 -0.16 0.01 0.08
## PP.DS_Score -0.09 -0.20 -0.16 0.10 -0.13 -0.01
## L.Individualism_Score 0.13 0.12 -0.12 -0.07 0.09 -0.02
## L.Ideology -0.36 -0.36 -0.11 0.12 -0.43 0.14
## L.Dem_Gen L.EdNum L.SESNum L.AW_Score L.ATNS_Score
## L.Ben -0.01 -0.04 -0.07 0.23 -0.13
## L.FR 0.01 -0.02 -0.06 0.21 -0.12
## L.Naturalness -0.02 -0.03 -0.05 -0.07 -0.23
## L.Risk -0.09 -0.12 -0.11 -0.07 0.17
## L.Support 0.02 0.00 -0.04 0.25 -0.17
## L.Dem_Age -0.10 0.02 -0.01 -0.09 -0.05
## L.Dem_Gen 1.00 0.25 0.34 -0.37 -0.38
## L.EdNum 0.25 1.00 0.58 -0.21 -0.28
## L.SESNum 0.34 0.58 1.00 -0.32 -0.32
## L.AW_Score -0.37 -0.21 -0.32 1.00 0.47
## L.ATNS_Score -0.38 -0.28 -0.32 0.47 1.00
## L.CCBelief_Score -0.26 -0.06 -0.18 0.72 0.39
## L.Collectivism_Score -0.31 -0.27 -0.15 0.37 0.42
## L.CNS_Score -0.24 -0.09 -0.22 0.53 0.44
## PP.DS_Score -0.35 -0.20 -0.23 0.04 0.20
## L.Individualism_Score -0.35 -0.25 -0.22 0.63 0.55
## L.Ideology -0.08 -0.32 -0.13 -0.42 -0.06
## L.CCBelief_Score L.Collectivism_Score L.CNS_Score
## L.Ben 0.31 0.18 0.00
## L.FR 0.28 0.12 0.01
## L.Naturalness -0.01 -0.18 -0.03
## L.Risk -0.15 0.05 -0.16
## L.Support 0.34 0.13 0.01
## L.Dem_Age -0.14 -0.05 0.08
## L.Dem_Gen -0.26 -0.31 -0.24
## L.EdNum -0.06 -0.27 -0.09
## L.SESNum -0.18 -0.15 -0.22
## L.AW_Score 0.72 0.37 0.53
## L.ATNS_Score 0.39 0.42 0.44
## L.CCBelief_Score 1.00 0.23 0.61
## L.Collectivism_Score 0.23 1.00 0.04
## L.CNS_Score 0.61 0.04 1.00
## PP.DS_Score -0.03 0.29 -0.17
## L.Individualism_Score 0.57 0.66 0.44
## L.Ideology -0.71 0.03 -0.37
## PP.DS_Score L.Individualism_Score L.Ideology
## L.Ben -0.09 0.13 -0.36
## L.FR -0.20 0.12 -0.36
## L.Naturalness -0.16 -0.12 -0.11
## L.Risk 0.10 -0.07 0.12
## L.Support -0.13 0.09 -0.43
## L.Dem_Age -0.01 -0.02 0.14
## L.Dem_Gen -0.35 -0.35 -0.08
## L.EdNum -0.20 -0.25 -0.32
## L.SESNum -0.23 -0.22 -0.13
## L.AW_Score 0.04 0.63 -0.42
## L.ATNS_Score 0.20 0.55 -0.06
## L.CCBelief_Score -0.03 0.57 -0.71
## L.Collectivism_Score 0.29 0.66 0.03
## L.CNS_Score -0.17 0.44 -0.37
## PP.DS_Score 1.00 0.15 0.03
## L.Individualism_Score 0.15 1.00 -0.22
## L.Ideology 0.03 -0.22 1.00
##
## n= 17
##
##
## P
## L.Ben L.FR L.Naturalness L.Risk L.Support L.Dem_Age
## L.Ben 0.0001 0.0430 0.0139 0.0000 0.1060
## L.FR 0.0001 0.0512 0.0593 0.0000 0.1416
## L.Naturalness 0.0430 0.0512 0.0006 0.0423 0.8099
## L.Risk 0.0139 0.0593 0.0006 0.0198 0.7303
## L.Support 0.0000 0.0000 0.0423 0.0198 0.0613
## L.Dem_Age 0.1060 0.1416 0.8099 0.7303 0.0613
## L.Dem_Gen 0.9752 0.9649 0.9531 0.7184 0.9373 0.7038
## L.EdNum 0.8861 0.9293 0.8949 0.6417 0.9875 0.9274
## L.SESNum 0.8035 0.8326 0.8580 0.6723 0.8672 0.9781
## L.AW_Score 0.3832 0.4190 0.7997 0.8036 0.3408 0.7243
## L.ATNS_Score 0.6077 0.6338 0.3679 0.5086 0.5264 0.8493
## L.CCBelief_Score 0.2263 0.2789 0.9786 0.5720 0.1825 0.5919
## L.Collectivism_Score 0.4821 0.6465 0.5001 0.8418 0.6299 0.8351
## L.CNS_Score 0.9959 0.9820 0.9085 0.5420 0.9630 0.7633
## PP.DS_Score 0.7214 0.4311 0.5370 0.6953 0.6290 0.9643
## L.Individualism_Score 0.6276 0.6592 0.6326 0.7816 0.7406 0.9323
## L.Ideology 0.1522 0.1587 0.6631 0.6503 0.0887 0.6027
## L.Dem_Gen L.EdNum L.SESNum L.AW_Score L.ATNS_Score
## L.Ben 0.9752 0.8861 0.8035 0.3832 0.6077
## L.FR 0.9649 0.9293 0.8326 0.4190 0.6338
## L.Naturalness 0.9531 0.8949 0.8580 0.7997 0.3679
## L.Risk 0.7184 0.6417 0.6723 0.8036 0.5086
## L.Support 0.9373 0.9875 0.8672 0.3408 0.5264
## L.Dem_Age 0.7038 0.9274 0.9781 0.7243 0.8493
## L.Dem_Gen 0.3413 0.1755 0.1477 0.1335
## L.EdNum 0.3413 0.0155 0.4205 0.2784
## L.SESNum 0.1755 0.0155 0.2173 0.2075
## L.AW_Score 0.1477 0.4205 0.2173 0.0552
## L.ATNS_Score 0.1335 0.2784 0.2075 0.0552
## L.CCBelief_Score 0.3174 0.8211 0.5000 0.0011 0.1240
## L.Collectivism_Score 0.2335 0.2878 0.5753 0.1485 0.0898
## L.CNS_Score 0.3446 0.7322 0.3928 0.0305 0.0792
## PP.DS_Score 0.1666 0.4513 0.3746 0.8894 0.4323
## L.Individualism_Score 0.1677 0.3386 0.3949 0.0064 0.0232
## L.Ideology 0.7609 0.2085 0.6162 0.0973 0.8059
## L.CCBelief_Score L.Collectivism_Score L.CNS_Score
## L.Ben 0.2263 0.4821 0.9959
## L.FR 0.2789 0.6465 0.9820
## L.Naturalness 0.9786 0.5001 0.9085
## L.Risk 0.5720 0.8418 0.5420
## L.Support 0.1825 0.6299 0.9630
## L.Dem_Age 0.5919 0.8351 0.7633
## L.Dem_Gen 0.3174 0.2335 0.3446
## L.EdNum 0.8211 0.2878 0.7322
## L.SESNum 0.5000 0.5753 0.3928
## L.AW_Score 0.0011 0.1485 0.0305
## L.ATNS_Score 0.1240 0.0898 0.0792
## L.CCBelief_Score 0.3720 0.0089
## L.Collectivism_Score 0.3720 0.8642
## L.CNS_Score 0.0089 0.8642
## PP.DS_Score 0.9162 0.2656 0.5039
## L.Individualism_Score 0.0158 0.0038 0.0797
## L.Ideology 0.0014 0.9030 0.1455
## PP.DS_Score L.Individualism_Score L.Ideology
## L.Ben 0.7214 0.6276 0.1522
## L.FR 0.4311 0.6592 0.1587
## L.Naturalness 0.5370 0.6326 0.6631
## L.Risk 0.6953 0.7816 0.6503
## L.Support 0.6290 0.7406 0.0887
## L.Dem_Age 0.9643 0.9323 0.6027
## L.Dem_Gen 0.1666 0.1677 0.7609
## L.EdNum 0.4513 0.3386 0.2085
## L.SESNum 0.3746 0.3949 0.6162
## L.AW_Score 0.8894 0.0064 0.0973
## L.ATNS_Score 0.4323 0.0232 0.8059
## L.CCBelief_Score 0.9162 0.0158 0.0014
## L.Collectivism_Score 0.2656 0.0038 0.9030
## L.CNS_Score 0.5039 0.0797 0.1455
## PP.DS_Score 0.5552 0.9051
## L.Individualism_Score 0.5552 0.3973
## L.Ideology 0.9051 0.3973
library(corrplot)
corrplot(mydata.cor11A, method="color")
corrplot(mydata.cor11A, addCoef.col = 1, number.cex = 0.3, method = 'number')
#CBB, PBPB,PBFB vs. VB, GFPRB, GFFB - NEWTECH
L$C1 <- (1/2)*(L$Type == 'CBB') + (-1/2)*(L$Type == 'GFFB') + (-1/2)*(L$Type == 'GFPRB') +(1/2)*(L$Type == 'PBFB') +(1/2)*(L$Type == 'PBPB') + (-1/2)*(L$Type == 'VB')
#CBB vs. PFPB, PBPB - LABCULTURED
L$C2 <- (2/3)*(L$Type == 'CBB') + (-1/3)*(L$Type == 'PBFB') + (-1/3)*(L$Type == 'PBPB') +(0)*(L$Type == 'VB') + (0)*(L$Type == 'GFFB') + (0)*(L$Type == 'GFPRB')
#VB vs. GFFB and GFPRB - Veggie vs. Traditional Beef
L$C3 <- (0)*(L$Type == 'CBB') + (0)*(L$Type == 'PBFB') + (0)*(L$Type == 'PBPB') +(2/3)*(L$Type == 'VB') + (-1/3)*(L$Type == 'GFFB') + (-1/3)*(L$Type == 'GFPRB')
#GFFB vs. GFPRB - GRAIN FED BEEF vs. GRASS FED BEEF
L$C4 <- (0)*(L$Type == 'CBB') + (0)*(L$Type == 'PBFB') + (0)*(L$Type == 'PBPB') + (0)*(L$Type == 'VB') + (1/2)*(L$Type == 'GFFB') + (-1/2)*(L$Type == 'GFPRB')
#PBFB vs PBPB (Orthogonality Code - Not meaningful comparison)
L$C5 <- (0)*(L$Type == 'CBB') + (1/2)*(L$Type == 'PBFB') + (-1/2)*(L$Type == 'PBPB') + (0)*(L$Type == 'VB') + (0)*(L$Type == 'GFFB') + (0)*(L$Type == 'GFPRB')
##### Means and Standard Deviations for Six Protein Types
# Support
## Defines variables in the support scale
PP$BehavInt1_GFFB <- PP$GFFB_BehavIntent_29
PP$BehavInt2_GFFB <- PP$GFFB_BehavIntent_28
PP$BehavInt3_GFFB <- PP$GFFB_BehavIntent_27
PP$BehavInt4_GFFB <- PP$GFFB_BehavIntent_26
PP$BehavInt1_GFPRB <- PP$PBPB_BehavIntent_29
PP$BehavInt2_GFPRB <- PP$PBPB_BehavIntent_28
PP$BehavInt3_GFPRB <- PP$PBPB_BehavIntent_27
PP$BehavInt4_GFPRB <- PP$PBPB_BehavIntent_26
PP$BehavInt1_CBB <- PP$CBB_BehavIntent_29
PP$BehavInt2_CBB <- PP$CBB_BehavIntent_28
PP$BehavInt3_CBB <- PP$CBB_BehavIntent_27
PP$BehavInt4_CBB <- PP$CBB_BehavIntent_26
PP$BehavInt1_PBPB <- PP$PBPB_BehavIntent_29
PP$BehavInt2_PBPB <- PP$PBPB_BehavIntent_28
PP$BehavInt3_PBPB <- PP$PBPB_BehavIntent_27
PP$BehavInt4_PBPB <- PP$PBPB_BehavIntent_26
PP$BehavInt1_VB <- PP$VB_BehavIntent_29
PP$BehavInt2_VB <- PP$VB_BehavIntent_28
PP$BehavInt3_VB <- PP$VB_BehavIntent_27
PP$BehavInt4_VB <- PP$VB_BehavIntent_26
PP$BehavInt1_PBFB <- PP$PBFB_BehavIntent_29
PP$BehavInt2_PBFB <- PP$PBFB_BehavIntent_28
PP$BehavInt3_PBFB <- PP$PBFB_BehavIntent_27
PP$BehavInt4_PBFB <- PP$PBFB_BehavIntent_26
#Scores
PP$Behav_Score_GFFB <- rowMeans(PP [, c("BehavInt1_GFFB", "BehavInt2_GFFB", "BehavInt3_GFFB", "BehavInt4_GFFB")], na.rm=TRUE)
PP$Behav_Score_GFPRB <- rowMeans(PP [, c("BehavInt1_GFPRB", "BehavInt2_GFPRB", "BehavInt3_GFPRB", "BehavInt4_GFPRB")], na.rm=TRUE)
PP$Behav_Score_CBB <- rowMeans(PP [, c("BehavInt1_CBB", "BehavInt2_CBB", "BehavInt3_CBB", "BehavInt4_CBB")], na.rm=TRUE)
PP$Behav_Score_PBPB <- rowMeans(PP [, c("BehavInt1_PBPB", "BehavInt2_PBPB", "BehavInt3_PBPB", "BehavInt4_PBPB")], na.rm=TRUE)
PP$Behav_Score_PBFB <- rowMeans(PP [, c("BehavInt1_PBFB", "BehavInt2_PBFB", "BehavInt3_PBFB", "BehavInt4_PBFB")], na.rm=TRUE)
PP$Behav_Score_VB <- rowMeans(PP [, c("BehavInt1_VB", "BehavInt2_VB", "BehavInt3_VB", "BehavInt4_VB")], na.rm=TRUE)
describe(PP$Behav_Score_CBB)
## PP$Behav_Score_CBB
## n missing distinct Info Mean Gmd .05 .10
## 516 489 249 0.999 49.36 36.5 0.00 0.25
## .25 .50 .75 .90 .95
## 21.44 52.50 74.81 94.25 100.00
##
## lowest : 0.00 0.25 0.50 0.75 1.00, highest: 99.00 99.25 99.50 99.75 100.00
describe(PP$Behav_Score_PBFB)
## PP$Behav_Score_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 479 526 257 1 52.69 35.61 0.00 1.95
## .25 .50 .75 .90 .95
## 29.88 54.25 77.62 93.65 99.75
##
## lowest : 0.00 0.25 0.50 0.75 1.00, highest: 98.25 99.00 99.25 99.75 100.00
describe(PP$Behav_Score_PBPB)
## PP$Behav_Score_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 522 483 252 0.999 57.53 33.44 0.5125 9.8000
## .25 .50 .75 .90 .95
## 37.8750 60.0000 80.5000 97.1250 100.0000
##
## lowest : 0.00 0.25 0.50 0.75 1.00, highest: 98.50 98.75 99.25 99.75 100.00
describe(PP$Behav_Score_VB)
## PP$Behav_Score_VB
## n missing distinct Info Mean Gmd .05 .10
## 471 534 238 0.999 62.93 30.95 8.375 22.250
## .25 .50 .75 .90 .95
## 47.750 66.000 84.500 99.000 100.000
##
## lowest : 0.00 0.25 0.75 1.25 1.50, highest: 99.00 99.25 99.50 99.75 100.00
describe(PP$Behav_Score_GFFB)
## PP$Behav_Score_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 498 507 242 0.999 57.91 33.2 0.425 11.425
## .25 .50 .75 .90 .95
## 41.500 59.250 80.750 99.250 100.000
##
## lowest : 0.00 0.50 0.75 1.25 1.75, highest: 99.00 99.25 99.50 99.75 100.00
describe(PP$Behav_Score_GFPRB)
## PP$Behav_Score_GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 522 483 252 0.999 57.53 33.44 0.5125 9.8000
## .25 .50 .75 .90 .95
## 37.8750 60.0000 80.5000 97.1250 100.0000
##
## lowest : 0.00 0.25 0.50 0.75 1.00, highest: 98.50 98.75 99.25 99.75 100.00
sd(PP$Behav_Score_CBB, na.rm= TRUE)
## [1] 31.7638
sd(PP$Behav_Score_PBFB, na.rm= TRUE)
## [1] 31.0349
sd(PP$Behav_Score_PBPB, na.rm= TRUE)
## [1] 29.36235
sd(PP$Behav_Score_VB, na.rm= TRUE)
## [1] 27.38456
sd(PP$Behav_Score_GFFB, na.rm= TRUE)
## [1] 29.21738
sd(PP$Behav_Score_GFPRB, na.rm= TRUE)
## [1] 29.36235
# Naturalness
## Defines variables in the naturalness scale and reverse codes items 2, 3, and 4.
PP$Nat_1_GFFB <- PP$GFFB_Naturalness_30
PP$Nat_2R_GFFB <- (100-PP$GFFB_Naturalness_31)
PP$Nat_3R_GFFB <- (100-PP$GFFB_Naturalness_35)
PP$Nat_4R_GFFB <- (100-PP$GFFB_Naturalness_36)
PP$Nat_1_GFPRB <- PP$GFPRB_Naturalness_30
PP$Nat_2R_GFPRB <- (100-PP$GFPRB_Naturalness_31)
PP$Nat_3R_GFPRB <- (100-PP$GFPRB_Naturalness_35)
PP$Nat_4R_GFPRB <- (100-PP$GFPRB_Naturalness_36)
PP$Nat_1_CBB <- PP$CBB_Naturalness_30
PP$Nat_2R_CBB <- (100-PP$CBB_Naturalness_31)
PP$Nat_3R_CBB <- (100-PP$CBB_Naturalness_35)
PP$Nat_4R_CBB <- (100-PP$CBB_Naturalness_36)
PP$Nat_1_PBPB <- PP$PBPB_Naturalness_30
PP$Nat_2R_PBPB <- (100-PP$PBPB_Naturalness_31)
PP$Nat_3R_PBPB <- (100-PP$PBPB_Naturalness_35)
PP$Nat_4R_PBPB <- (100-PP$PBPB_Naturalness_36)
PP$Nat_1_PBFB <- PP$PBFB_Naturalness_30
PP$Nat_2R_PBFB <- (100-PP$PBFB_Naturalness_31)
PP$Nat_3R_PBFB <- (100-PP$PBFB_Naturalness_35)
PP$Nat_4R_PBFB <- (100-PP$PBFB_Naturalness_36)
PP$Nat_1_VB <- PP$VB_Naturalness_30
PP$Nat_2R_VB <- (100-PP$VB_Naturalness_31)
PP$Nat_3R_VB <- (100-PP$VB_Naturalness_35)
PP$Nat_4R_VB <- (100-PP$VB_Naturalness_36)
## Scores
PP$Naturalness.GFFB <- rowMeans(PP [, c( "Nat_1_GFFB" , "Nat_2R_GFFB", "Nat_3R_GFFB", "Nat_4R_GFFB")], na.rm=TRUE)
PP$Naturalness.GFPRB <- rowMeans(PP [, c( "Nat_1_GFPRB" , "Nat_4R_GFPRB", "Nat_2R_GFPRB" , "Nat_3R_GFPRB")], na.rm=TRUE)
PP$Naturalness.CBB <- rowMeans(PP [, c( "Nat_1_CBB" , "Nat_4R_CBB", "Nat_2R_CBB" , "Nat_3R_CBB")], na.rm=TRUE)
PP$Naturalness.PBPB <- rowMeans(PP [, c( "Nat_1_PBPB" , "Nat_4R_PBPB", "Nat_2R_PBPB" , "Nat_3R_PBPB")], na.rm=TRUE)
PP$Naturalness.PBFB <- rowMeans(PP [, c( "Nat_1_PBFB" , "Nat_4R_PBFB", "Nat_2R_PBFB" , "Nat_3R_PBFB")], na.rm=TRUE)
PP$Naturalness.VB <- rowMeans(PP [, c( "Nat_1_VB" , "Nat_4R_VB", "Nat_2R_VB" , "Nat_3R_VB")], na.rm=TRUE)
describe(PP$Naturalness.CBB)
## PP$Naturalness.CBB
## n missing distinct Info Mean Gmd .05 .10
## 516 489 224 0.999 34.32 24.5 0.00 0.75
## .25 .50 .75 .90 .95
## 17.94 35.38 49.00 59.00 67.12
##
## lowest : 0.00 0.25 0.50 1.00 1.25, highest: 96.25 98.50 99.50 99.75 100.00
describe(PP$Naturalness.PBFB)
## PP$Naturalness.PBFB
## n missing distinct Info Mean Gmd .05 .10
## 481 524 223 1 38.66 23.22 0.00 5.25
## .25 .50 .75 .90 .95
## 25.50 40.25 50.50 62.50 72.75
##
## lowest : 0.00 0.25 0.50 0.75 1.00, highest: 87.50 88.25 97.25 97.50 100.00
describe(PP$Naturalness.PBPB)
## PP$Naturalness.PBPB
## n missing distinct Info Mean Gmd .05 .10
## 524 481 236 1 42.37 22.52 2.288 12.900
## .25 .50 .75 .90 .95
## 29.688 44.000 53.750 67.100 74.962
##
## lowest : 0.00 0.50 0.75 1.00 1.25, highest: 92.25 96.75 97.00 98.50 100.00
describe(PP$Naturalness.VB)
## PP$Naturalness.VB
## n missing distinct Info Mean Gmd .05 .10
## 472 533 237 1 51.39 25.22 16.50 25.00
## .25 .50 .75 .90 .95
## 36.19 49.00 65.50 84.00 96.36
##
## lowest : 0.00 1.25 3.00 3.25 4.25, highest: 99.00 99.25 99.50 99.75 100.00
describe(PP$Naturalness.GFFB)
## PP$Naturalness.GFFB
## n missing distinct Info Mean Gmd .05 .10
## 499 506 219 1 49.53 23.65 21.38 25.20
## .25 .50 .75 .90 .95
## 34.75 48.00 62.12 79.30 93.35
##
## lowest : 0.00 0.25 1.00 6.25 7.00, highest: 98.25 98.50 99.25 99.50 100.00
describe(PP$Naturalness.GFPRB)
## PP$Naturalness.GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 514 491 240 0.999 62.49 27.37 25.00 32.08
## .25 .50 .75 .90 .95
## 44.81 59.12 81.44 98.75 100.00
##
## lowest : 0.00 1.75 7.00 10.75 11.75, highest: 99.00 99.25 99.50 99.75 100.00
sd(PP$Naturalness.CBB, na.rm = TRUE)
## [1] 21.71332
sd(PP$Naturalness.PBFB, na.rm = TRUE)
## [1] 20.69015
sd(PP$Naturalness.PBPB, na.rm = TRUE)
## [1] 20.16823
sd(PP$Naturalness.VB, na.rm = TRUE)
## [1] 22.39438
sd(PP$Naturalness.GFFB, na.rm = TRUE)
## [1] 21.26861
sd(PP$Naturalness.GFPRB, na.rm = TRUE)
## [1] 23.85977
# Risk
## Defines variables in the risk scale
PP$Risk_1_GFFB <- PP$GFFB_Risk_32
PP$Risk_2_GFFB <- PP$GFFB_Risk_35
PP$Risk_3_GFFB <- PP$GFFB_Risk_36
PP$Risk_4_GFFB <- PP$GFFB_Risk_33
PP$Risk_1_GFPRB <- PP$GFPRB_Risk_32
PP$Risk_2_GFPRB <- PP$GFPRB_Risk_35
PP$Risk_3_GFPRB <- PP$GFPRB_Risk_36
PP$Risk_4_GFPRB <- PP$GFPRB_Risk_33
PP$Risk_1_CBB <- PP$CBB_Risk_32
PP$Risk_2_CBB <- PP$CBB_Risk_35
PP$Risk_3_CBB <- PP$CBB_Risk_36
PP$Risk_4_CBB <- PP$CBB_Risk_33
PP$Risk_1_PBPB <- PP$PBPB_Risk_32
PP$Risk_2_PBPB <- PP$PBPB_Risk_35
PP$Risk_3_PBPB <- PP$PBPB_Risk_36
PP$Risk_4_PBPB <- PP$PBPB_Risk_33
PP$Risk_1_PBFB <- PP$PBFB_Risk_32
PP$Risk_2_PBFB <- PP$PBPB_Risk_35
PP$Risk_3_PBFB <- PP$PBPB_Risk_36
PP$Risk_4_PBFB <- PP$PBPB_Risk_33
PP$Risk_1_VB <- PP$VB_Risk_32
PP$Risk_2_VB <- PP$VB_Risk_35
PP$Risk_3_VB <- PP$VB_Risk_36
PP$Risk_4_VB <- PP$VB_Risk_33
# Scores
PP$Risk_Score_GFFB <- rowMeans(PP [, c("Risk_1_GFFB", "Risk_2_GFFB", "Risk_3_GFFB", "Risk_4_GFFB")], na.rm=TRUE)
PP$Risk_Score_GFPRB <- rowMeans(PP [, c("Risk_1_GFPRB", "Risk_2_GFPRB", "Risk_3_GFPRB", "Risk_4_GFPRB")], na.rm=TRUE)
PP$Risk_Score_CBB <- rowMeans(PP [, c("Risk_1_CBB", "Risk_2_CBB", "Risk_3_CBB", "Risk_4_CBB")], na.rm=TRUE)
PP$Risk_Score_PBPB <- rowMeans(PP [, c("Risk_1_PBPB", "Risk_2_PBPB", "Risk_3_PBPB", "Risk_4_PBPB")], na.rm=TRUE)
PP$Risk_Score_PBFB <- rowMeans(PP [, c("Risk_1_PBFB", "Risk_2_PBFB", "Risk_3_PBFB", "Risk_4_PBFB")], na.rm=TRUE)
PP$Risk_Score_VB <- rowMeans(PP [, c("Risk_1_VB", "Risk_2_VB", "Risk_3_VB", "Risk_4_VB")], na.rm=TRUE)
describe(PP$Risk_Score_CBB)
## PP$Risk_Score_CBB
## n missing distinct Info Mean Gmd .05 .10
## 517 488 267 1 54.2 32.1 2.20 12.65
## .25 .50 .75 .90 .95
## 36.50 53.50 75.00 93.30 100.00
##
## lowest : 0.00 0.25 0.50 1.00 1.25, highest: 99.00 99.25 99.50 99.75 100.00
describe(PP$Risk_Score_PBFB)
## PP$Risk_Score_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 795 210 317 1 45.56 33.89 0.000 3.133
## .25 .50 .75 .90 .95
## 21.833 47.250 67.000 87.733 100.000
##
## lowest : 0.0000000 0.2500000 0.3333333 0.5000000 1.0000000
## highest: 97.0000000 97.6666667 98.0000000 99.6666667 100.0000000
describe(PP$Risk_Score_PBPB)
## PP$Risk_Score_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 524 481 258 1 42.48 31.14 0.000 2.325
## .25 .50 .75 .90 .95
## 20.188 44.250 60.250 79.600 90.962
##
## lowest : 0.00 0.25 0.50 0.75 1.00, highest: 98.00 98.25 98.50 99.75 100.00
describe(PP$Risk_Score_VB)
## PP$Risk_Score_VB
## n missing distinct Info Mean Gmd .05 .10
## 471 534 247 1 36.41 30.29 0.00 1.25
## .25 .50 .75 .90 .95
## 13.62 32.75 55.00 73.00 84.88
##
## lowest : 0.00 0.25 0.50 0.75 1.00, highest: 95.00 96.50 97.25 99.00 100.00
describe(PP$Risk_Score_GFFB)
## PP$Risk_Score_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 499 506 264 1 48.87 31.98 0.00 5.40
## .25 .50 .75 .90 .95
## 28.00 51.75 68.38 86.05 95.52
##
## lowest : 0.00 0.25 0.50 0.75 1.00, highest: 97.00 98.75 99.00 99.50 100.00
describe(PP$Risk_Score_GFPRB)
## PP$Risk_Score_GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 513 492 256 0.999 38.72 31.88 0.00 0.25
## .25 .50 .75 .90 .95
## 14.00 38.50 57.50 77.70 88.55
##
## lowest : 0.00 0.25 0.50 0.75 1.00, highest: 97.00 97.50 98.50 99.75 100.00
sd(PP$Risk_Score_CBB, na.rm = TRUE)
## [1] 28.05343
sd(PP$Risk_Score_PBFB, na.rm = TRUE)
## [1] 29.45914
sd(PP$Risk_Score_PBPB, na.rm = TRUE)
## [1] 27.19177
sd(PP$Risk_Score_VB, na.rm = TRUE)
## [1] 26.56997
sd(PP$Risk_Score_GFFB, na.rm = TRUE)
## [1] 27.89227
sd(PP$Risk_Score_GFPRB, na.rm = TRUE)
## [1] 27.86542
# Benefit
## Defines variables in the benefit scale
PP$Benefit_1_GFFB <- PP$GFFB_Benefit_18
PP$Benefit_2_GFFB <- PP$GFFB_Benefit_40
PP$Benefit_3_GFFB <- PP$GFFB_Benefit_41
PP$Benefit_1_GFPRB <- PP$GFPRB_Benefit_18
PP$Benefit_2_GFPRB <- PP$GFPRB_Benefit_40
PP$Benefit_3_GFPRB <- PP$GFPRB_Benefit_41
PP$Benefit_1_CBB <- PP$CBB_Benefit_18
PP$Benefit_2_CBB <- PP$CBB_Benefit_40
PP$Benefit_3_CBB <- PP$CBB_Benefit_41
PP$Benefit_1_PBPB <- PP$PBPB_Benefit_18
PP$Benefit_2_PBPB <- PP$PBPB_Benefit_40
PP$Benefit_3_PBPB <- PP$PBPB_Benefit_41
PP$Benefit_1_VB <- PP$VB_Benefit_18
PP$Benefit_2_VB <- PP$VB_Benefit_40
PP$Benefit_3_VB <- PP$VB_Benefit_41
# Scores
PP$Ben_Score_GFFB <- rowMeans(PP [, c("Benefit_1_GFFB", "Benefit_2_GFFB", "Benefit_3_GFFB")], na.rm=TRUE)
PP$Ben_Score_GFPRB <- rowMeans(PP [, c("Benefit_1_GFPRB", "Benefit_2_GFPRB", "Benefit_3_GFPRB")], na.rm=TRUE)
PP$Ben_Score_CBB <- rowMeans(PP [, c("Benefit_1_CBB", "Benefit_2_CBB", "Benefit_3_CBB")], na.rm=TRUE)
PP$Ben_Score_PBPB <- rowMeans(PP [, c("Benefit_1_PBPB", "Benefit_2_PBPB", "Benefit_3_PBPB")], na.rm=TRUE)
PP$Ben_Score_PBFB <- rowMeans(PP [, c("Benefit_1_PBFB", "Benefit_2_PBFB", "Benefit_3_PBFB")], na.rm=TRUE)
PP$Ben_Score_VB <- rowMeans(PP [, c("Benefit_1_VB", "Benefit_2_VB", "Benefit_3_VB")], na.rm=TRUE)
describe(PP$Ben_Score_CBB)
## PP$Ben_Score_CBB
## n missing distinct Info Mean Gmd .05 .10
## 514 491 228 1 52.55 32.46 0.00 8.10
## .25 .50 .75 .90 .95
## 34.00 53.17 73.67 91.70 99.78
##
## lowest : 0.0000000 0.3333333 0.6666667 1.0000000 1.3333333
## highest: 98.3333333 99.0000000 99.3333333 99.6666667 100.0000000
describe(PP$Ben_Score_PBFB)
## PP$Ben_Score_PBFB
## n missing distinct Info Mean Gmd .05 .10
## 479 526 202 1 57.15 32.14 0.00 8.60
## .25 .50 .75 .90 .95
## 39.67 57.33 80.67 95.00 100.00
##
## lowest : 0.0000000 0.3333333 0.6666667 1.3333333 1.6666667
## highest: 98.0000000 98.3333333 99.0000000 99.6666667 100.0000000
describe(PP$Ben_Score_PBPB)
## PP$Ben_Score_PBPB
## n missing distinct Info Mean Gmd .05 .10
## 521 484 207 1 61.46 29.49 7.667 24.333
## .25 .50 .75 .90 .95
## 47.333 62.667 81.333 96.333 100.000
##
## lowest : 0.0000000 0.3333333 0.6666667 1.0000000 3.3333333
## highest: 97.3333333 98.6666667 99.0000000 99.3333333 100.0000000
describe(PP$Ben_Score_VB)
## PP$Ben_Score_VB
## n missing distinct Info Mean Gmd .05 .10
## 471 534 189 0.999 67.74 27.66 23.83 35.33
## .25 .50 .75 .90 .95
## 52.00 70.00 87.00 100.00 100.00
##
## lowest : 0.000000 2.666667 11.000000 13.666667 19.000000
## highest: 98.333333 98.666667 99.333333 99.666667 100.000000
describe(PP$Ben_Score_GFFB)
## PP$Ben_Score_GFFB
## n missing distinct Info Mean Gmd .05 .10
## 497 508 219 0.999 56.2 30.81 2.267 17.533
## .25 .50 .75 .90 .95
## 39.667 56.000 76.667 95.800 100.000
##
## lowest : 0.0000000 0.6666667 1.0000000 1.6666667 2.0000000
## highest: 98.3333333 99.0000000 99.3333333 99.6666667 100.0000000
describe(PP$Ben_Score_GFPRB)
## PP$Ben_Score_GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 514 491 193 0.998 67.33 27.03 25.87 33.43
## .25 .50 .75 .90 .95
## 52.42 67.00 87.25 100.00 100.00
##
## lowest : 0.0000000 0.3333333 1.3333333 2.3333333 4.0000000
## highest: 98.6666667 99.0000000 99.3333333 99.6666667 100.0000000
sd(PP$Ben_Score_CBB, na.rm = TRUE)
## [1] 28.37883
sd(PP$Ben_Score_PBFB, na.rm = TRUE)
## [1] 28.36827
sd(PP$Ben_Score_PBPB, na.rm = TRUE)
## [1] 26.1661
sd(PP$Ben_Score_VB, na.rm = TRUE)
## [1] 24.60428
sd(PP$Ben_Score_GFFB, na.rm = TRUE)
## [1] 27.07308
sd(PP$Ben_Score_GFPRB, na.rm = TRUE)
## [1] 24.01472
# Familiarity & Understanding
## Defines variables in the familiarity and understanding scales
PP$Understanding_GFFB <- PP$GFFB_Risk_30
PP$Understanding_GFPRB <- PP$GFPRB_Risk_30
PP$Understanding_CBB <- PP$CBB_Risk_30
PP$Understanding_PBPB <- PP$PBPB_Risk_30
PP$Understanding_PBFB <- PP$PBFB_Risk_30
PP$Understanding_VB <- PP$VB_Risk_30
PP$Familiarity_GFFB <-PP$GFFB_Risk_31
PP$Familiarity_GFPRB <-PP$GFPRB_Risk_31
PP$Familiarity_CBB <-PP$CBB_Risk_31
PP$Familiarity_PBPB <-PP$PBPB_Risk_31
PP$Familiarity_PBFB <-PP$PBFB_Risk_31
PP$Familiarity_VB <-PP$VB_Risk_31
#Scores
PP$FR.GFFB <- rowMeans(PP [, c("Familiarity_GFFB", "Understanding_GFFB")], na.rm=TRUE)
PP$FR.GFPRB <- rowMeans(PP [, c("Familiarity_GFPRB", "Understanding_GFPRB")], na.rm=TRUE)
PP$FR.CBB <- rowMeans(PP [, c("Familiarity_CBB", "Understanding_CBB")], na.rm=TRUE)
PP$FR.PBPB <- rowMeans(PP [, c("Familiarity_PBPB", "Understanding_PBPB")], na.rm=TRUE)
PP$FR.PBFB <- rowMeans(PP [, c("Familiarity_PBFB", "Understanding_PBFB")], na.rm=TRUE)
PP$FR.VB <- rowMeans(PP [, c("Familiarity_VB", "Understanding_VB")], na.rm=TRUE)
describe(PP$FR.CBB)
## PP$FR.CBB
## n missing distinct Info Mean Gmd .05 .10
## 516 489 175 1 52.09 32.26 1.375 11.500
## .25 .50 .75 .90 .95
## 33.875 51.750 73.125 93.500 100.000
##
## lowest : 0.0 0.5 1.0 1.5 2.5, highest: 98.0 98.5 99.0 99.5 100.0
describe(PP$FR.PBFB)
## PP$FR.PBFB
## n missing distinct Info Mean Gmd .05 .10
## 481 524 165 1 52.95 32.09 0.5 10.5
## .25 .50 .75 .90 .95
## 33.5 53.0 76.0 90.0 95.5
##
## lowest : 0.0 0.5 1.0 1.5 3.0, highest: 95.0 95.5 96.5 99.0 100.0
describe(PP$FR.PBPB)
## PP$FR.PBPB
## n missing distinct Info Mean Gmd .05 .10
## 524 481 160 1 58.87 27.62 17.65 25.50
## .25 .50 .75 .90 .95
## 45.88 57.50 77.62 91.85 100.00
##
## lowest : 0.0 0.5 1.5 2.5 3.5, highest: 96.0 96.5 98.0 99.5 100.0
describe(PP$FR.VB)
## PP$FR.VB
## n missing distinct Info Mean Gmd .05 .10
## 472 533 155 0.999 65.33 26.92 22.05 36.50
## .25 .50 .75 .90 .95
## 50.00 66.50 84.12 99.00 100.00
##
## lowest : 0.0 1.0 2.5 6.0 7.5, highest: 98.0 98.5 99.0 99.5 100.0
describe(PP$FR.GFFB)
## PP$FR.GFFB
## n missing distinct Info Mean Gmd .05 .10
## 498 507 156 0.998 66.18 28.02 18.85 33.35
## .25 .50 .75 .90 .95
## 50.00 67.25 86.50 100.00 100.00
##
## lowest : 0.0 1.5 7.0 8.0 10.0, highest: 98.0 98.5 99.0 99.5 100.0
describe(PP$FR.GFPRB)
## PP$FR.GFPRB
## n missing distinct Info Mean Gmd .05 .10
## 513 492 141 0.996 73.05 26.21 31.3 44.6
## .25 .50 .75 .90 .95
## 54.0 77.5 93.5 100.0 100.0
##
## lowest : 0.0 4.5 9.0 13.0 14.0, highest: 98.0 98.5 99.0 99.5 100.0
sd(PP$FR.CBB, na.rm = TRUE)
## [1] 28.1976
sd(PP$FR.PBFB, na.rm = TRUE)
## [1] 28.00067
sd(PP$FR.PBPB, na.rm = TRUE)
## [1] 24.35105
sd(PP$FR.VB, na.rm = TRUE)
## [1] 23.84396
sd(PP$FR.GFFB, na.rm = TRUE)
## [1] 24.79544
sd(PP$FR.GFPRB, na.rm = TRUE)
## [1] 23.67885
##### Contrast Codes, Standard Errors
###### Note: Comparison of risks and benefits control for each other given the negative correlation (approximate r = 0.26, p < .001) between the measures.
# Support
tab.2.sup <- lmer(Support ~ C1 + C2 + C3 + C4 + C5 + (1|id), data = L)
## Model Summary & Standard Errors
summary(tab.2.sup)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ C1 + C2 + C3 + C4 + C5 + (1 | id)
## Data: L
##
## REML criterion at convergence: 28169.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.5456 -0.4179 0.0521 0.4301 3.3434
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 449.2 21.19
## Residual 431.8 20.78
## Number of obs: 3008, groups: id, 1003
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 56.4847 0.7747 1001.8182 72.908 < 2e-16 ***
## C1 -6.4914 0.8047 2201.0504 -8.066 1.18e-15 ***
## C2 -6.1986 1.2296 2292.4556 -5.041 4.99e-07 ***
## C3 5.1803 1.2795 2341.2427 4.049 5.32e-05 ***
## C4 0.2924 1.4180 2293.3067 0.206 0.836669
## C5 -5.1045 1.4401 2316.5191 -3.545 0.000401 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) C1 C2 C3 C4
## C1 -0.003
## C2 -0.020 0.006
## C3 -0.007 -0.057 0.027
## C4 -0.017 -0.063 0.051 0.000
## C5 -0.014 0.067 -0.029 0.064 0.074
tab_model(tab.2.sup,
show.stat = T, show.se = T)
| Support | |||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Error | CI | Statistic | p |
| (Intercept) | 56.48 | 0.77 | 54.97 – 58.00 | 72.91 | <0.001 |
| C1 | -6.49 | 0.80 | -8.07 – -4.91 | -8.07 | <0.001 |
| C2 | -6.20 | 1.23 | -8.61 – -3.79 | -5.04 | <0.001 |
| C3 | 5.18 | 1.28 | 2.67 – 7.69 | 4.05 | <0.001 |
| C4 | 0.29 | 1.42 | -2.49 – 3.07 | 0.21 | 0.837 |
| C5 | -5.10 | 1.44 | -7.93 – -2.28 | -3.54 | <0.001 |
| Random Effects | |||||
| σ2 | 431.78 | ||||
| τ00 id | 449.18 | ||||
| ICC | 0.51 | ||||
| N id | 1003 | ||||
| Observations | 3008 | ||||
| Marginal R2 / Conditional R2 | 0.022 / 0.521 | ||||
se <- summary(tab.2.sup)$coefficients[, "Std. Error"]
se
## (Intercept) C1 C2 C3 C4 C5
## 0.7747379 0.8047384 1.2296339 1.2794701 1.4179921 1.4400539
# Naturalness
tab.2.nat <- lmer(Naturalness ~ C1 + C2 + C3 + C4 + C5 + (1|id), data = L)
## Model Summary & Standard Errors
summary(tab.2.nat)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ C1 + C2 + C3 + C4 + C5 + (1 | id)
## Data: L
##
## REML criterion at convergence: 26923.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.92273 -0.65184 -0.03425 0.61938 3.08384
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 1.535 1.239
## Residual 455.241 21.336
## Number of obs: 3006, groups: id, 1004
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 50.3942 0.3914 1002.1120 128.753 < 2e-16 ***
## C1 -8.1457 0.7797 2793.3499 -10.447 < 2e-16 ***
## C2 -17.9940 1.1570 2769.4762 -15.552 < 2e-16 ***
## C3 -4.6214 1.1903 2759.6843 -3.883 0.000106 ***
## C4 -12.9528 1.3423 2791.1877 -9.650 < 2e-16 ***
## C5 19.8994 1.3486 2753.0710 14.755 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) C1 C2 C3 C4
## C1 -0.012
## C2 -0.009 -0.009
## C3 0.023 -0.024 0.000
## C4 0.008 -0.008 0.000 -0.008
## C5 0.025 0.025 -0.025 0.000 0.000
tab_model(tab.2.nat,
show.stat = T, show.se = T)
| Naturalness | |||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Error | CI | Statistic | p |
| (Intercept) | 50.39 | 0.39 | 49.63 – 51.16 | 128.75 | <0.001 |
| C1 | -8.15 | 0.78 | -9.67 – -6.62 | -10.45 | <0.001 |
| C2 | -17.99 | 1.16 | -20.26 – -15.73 | -15.55 | <0.001 |
| C3 | -4.62 | 1.19 | -6.96 – -2.29 | -3.88 | <0.001 |
| C4 | -12.95 | 1.34 | -15.58 – -10.32 | -9.65 | <0.001 |
| C5 | 19.90 | 1.35 | 17.26 – 22.54 | 14.76 | <0.001 |
| Random Effects | |||||
| σ2 | 455.24 | ||||
| τ00 id | 1.54 | ||||
| ICC | 0.00 | ||||
| N id | 1004 | ||||
| Observations | 3006 | ||||
| Marginal R2 / Conditional R2 | 0.185 / 0.187 | ||||
se2 <- summary(tab.2.nat)$coefficients[, "Std. Error"]
se2
## (Intercept) C1 C2 C3 C4 C5
## 0.3914032 0.7796945 1.1570348 1.1902837 1.3422796 1.3486155
# Risk
tab.2.risk <- lmer(Risk ~ Benefit.c + C1 + C2 + C3 + C4 + C5 + (1|id), data = L)
## Model Summary & Standard Errors
summary(tab.2.risk)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Benefit.c + C1 + C2 + C3 + C4 + C5 + (1 | id)
## Data: L
##
## REML criterion at convergence: 27553.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.2328 -0.5024 0.0051 0.5075 3.9700
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 414.2 20.35
## Residual 353.9 18.81
## Number of obs: 2993, groups: id, 1003
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 44.7685 0.7293 941.2526 61.386 < 2e-16 ***
## Benefit.c -0.4238 0.0173 2805.7194 -24.494 < 2e-16 ***
## C1 3.9575 0.7607 2172.5107 5.203 2.15e-07 ***
## C2 4.9718 1.1186 2156.4956 4.445 9.24e-06 ***
## C3 -4.9123 1.1478 2151.5246 -4.280 1.95e-05 ***
## C4 3.4597 1.3046 2162.5878 2.652 0.00806 **
## C5 3.4698 1.2978 2148.3517 2.674 0.00756 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Bnft.c C1 C2 C3 C4
## Benefit.c -0.001
## C1 -0.006 0.151
## C2 -0.005 0.113 0.001
## C3 0.013 -0.098 -0.051 -0.008
## C4 0.004 0.135 0.018 0.022 -0.032
## C5 0.013 0.069 0.031 -0.026 0.007 -0.001
tab_model(tab.2.risk,
show.stat = T, show.se = T)
| Risk | |||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Error | CI | Statistic | p |
| (Intercept) | 44.77 | 0.73 | 43.34 – 46.20 | 61.39 | <0.001 |
| Benefit c | -0.42 | 0.02 | -0.46 – -0.39 | -24.49 | <0.001 |
| C1 | 3.96 | 0.76 | 2.47 – 5.45 | 5.20 | <0.001 |
| C2 | 4.97 | 1.12 | 2.78 – 7.17 | 4.44 | <0.001 |
| C3 | -4.91 | 1.15 | -7.16 – -2.66 | -4.28 | <0.001 |
| C4 | 3.46 | 1.30 | 0.90 – 6.02 | 2.65 | 0.008 |
| C5 | 3.47 | 1.30 | 0.93 – 6.01 | 2.67 | 0.008 |
| Random Effects | |||||
| σ2 | 353.87 | ||||
| τ00 id | 414.23 | ||||
| ICC | 0.54 | ||||
| N id | 1003 | ||||
| Observations | 2993 | ||||
| Marginal R2 / Conditional R2 | 0.171 / 0.618 | ||||
se3 <- summary(tab.2.risk)$coefficients[, "Std. Error"]
se3
## (Intercept) Benefit.c C1 C2 C3 C4
## 0.72929698 0.01730249 0.76065530 1.11855808 1.14781583 1.30458624
## C5
## 1.29779916
# Benefit
tab.2.ben <- lmer(Ben ~ Risk.c + C1 + C2 + C3 + C4 + C5 + (1|id), data = L)
## Model Summary & Standard Errors
summary(tab.2.ben)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Risk.c + C1 + C2 + C3 + C4 + C5 + (1 | id)
## Data: L
##
## REML criterion at convergence: 27337.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.5036 -0.4563 0.0628 0.5252 2.9538
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 346.2 18.61
## Residual 341.6 18.48
## Number of obs: 2993, groups: id, 1003
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 60.47669 0.67817 919.00276 89.176 < 2e-16 ***
## Risk.c -0.38395 0.01618 2908.99314 -23.728 < 2e-16 ***
## C1 -4.04456 0.74453 2180.61806 -5.432 6.18e-08 ***
## C2 -4.16715 1.09654 2155.51124 -3.800 0.000149 ***
## C3 3.55610 1.12577 2159.60273 3.159 0.001606 **
## C4 -7.18956 1.27241 2159.36233 -5.650 1.81e-08 ***
## C5 -2.95722 1.27155 2151.98526 -2.326 0.020128 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Risk.c C1 C2 C3 C4
## Risk.c -0.004
## C1 -0.005 -0.147
## C2 -0.004 -0.120 0.002
## C3 0.013 0.110 -0.052 -0.011
## C4 0.005 -0.100 0.012 0.018 -0.030
## C5 0.014 -0.072 0.032 -0.025 0.005 -0.003
tab_model(tab.2.ben,
show.stat = T, show.se = T)
| Ben | |||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Error | CI | Statistic | p |
| (Intercept) | 60.48 | 0.68 | 59.15 – 61.81 | 89.18 | <0.001 |
| Risk c | -0.38 | 0.02 | -0.42 – -0.35 | -23.73 | <0.001 |
| C1 | -4.04 | 0.74 | -5.50 – -2.58 | -5.43 | <0.001 |
| C2 | -4.17 | 1.10 | -6.32 – -2.02 | -3.80 | <0.001 |
| C3 | 3.56 | 1.13 | 1.35 – 5.76 | 3.16 | 0.002 |
| C4 | -7.19 | 1.27 | -9.68 – -4.69 | -5.65 | <0.001 |
| C5 | -2.96 | 1.27 | -5.45 – -0.46 | -2.33 | 0.020 |
| Random Effects | |||||
| σ2 | 341.63 | ||||
| τ00 id | 346.19 | ||||
| ICC | 0.50 | ||||
| N id | 1003 | ||||
| Observations | 2993 | ||||
| Marginal R2 / Conditional R2 | 0.179 / 0.592 | ||||
se4 <- summary(tab.2.ben)$coefficients[, "Std. Error"]
se4
## (Intercept) Risk.c C1 C2 C3 C4
## 0.67816853 0.01618104 0.74453244 1.09653517 1.12576773 1.27241408
## C5
## 1.27155418
# Familiarity & Understanding
tab.2.fu <- lmer(FR ~ C1 + C2 + C3 + C4 + C5 + (1|id), data = L)
## Model Summary & Standard Errors
summary(tab.2.fu)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ C1 + C2 + C3 + C4 + C5 + (1 | id)
## Data: L
##
## REML criterion at convergence: 27647.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.4236 -0.5634 0.0586 0.6100 2.9557
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 227.8 15.09
## Residual 424.9 20.61
## Number of obs: 3004, groups: id, 1004
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 61.3993 0.6071 1002.1865 101.127 < 2e-16 ***
## C1 -13.7553 0.8062 2371.0178 -17.062 < 2e-16 ***
## C2 -3.5800 1.1928 2354.4503 -3.001 0.00272 **
## C3 -3.7042 1.2258 2346.5128 -3.022 0.00254 **
## C4 -7.1824 1.3886 2369.2537 -5.173 2.50e-07 ***
## C5 -6.8720 1.3877 2343.6548 -4.952 7.86e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) C1 C2 C3 C4
## C1 -0.009
## C2 -0.006 -0.014
## C3 0.015 -0.033 0.002
## C4 0.005 -0.004 0.005 -0.016
## C5 0.016 0.024 -0.033 0.010 -0.008
tab_model(tab.2.fu,
show.stat = T, show.se = T)
| FR | |||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Error | CI | Statistic | p |
| (Intercept) | 61.40 | 0.61 | 60.21 – 62.59 | 101.13 | <0.001 |
| C1 | -13.76 | 0.81 | -15.34 – -12.17 | -17.06 | <0.001 |
| C2 | -3.58 | 1.19 | -5.92 – -1.24 | -3.00 | 0.003 |
| C3 | -3.70 | 1.23 | -6.11 – -1.30 | -3.02 | 0.003 |
| C4 | -7.18 | 1.39 | -9.91 – -4.46 | -5.17 | <0.001 |
| C5 | -6.87 | 1.39 | -9.59 – -4.15 | -4.95 | <0.001 |
| Random Effects | |||||
| σ2 | 424.94 | ||||
| τ00 id | 227.75 | ||||
| ICC | 0.35 | ||||
| N id | 1004 | ||||
| Observations | 3004 | ||||
| Marginal R2 / Conditional R2 | 0.083 / 0.403 | ||||
se5 <- summary(tab.2.fu)$coefficients[, "Std. Error"]
se5
## (Intercept) C1 C2 C3 C4 C5
## 0.6071498 0.8061792 1.1927863 1.2257984 1.3885547 1.3876574
# Model 1
modA.1 <- lmer(Support ~ C1 + C2 + C3 + C4 + C5 + (1|id), data = L)
summary(modA.1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ C1 + C2 + C3 + C4 + C5 + (1 | id)
## Data: L
##
## REML criterion at convergence: 28169.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.5456 -0.4179 0.0521 0.4301 3.3434
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 449.2 21.19
## Residual 431.8 20.78
## Number of obs: 3008, groups: id, 1003
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 56.4847 0.7747 1001.8182 72.908 < 2e-16 ***
## C1 -6.4914 0.8047 2201.0504 -8.066 1.18e-15 ***
## C2 -6.1986 1.2296 2292.4556 -5.041 4.99e-07 ***
## C3 5.1803 1.2795 2341.2427 4.049 5.32e-05 ***
## C4 0.2924 1.4180 2293.3067 0.206 0.836669
## C5 -5.1045 1.4401 2316.5191 -3.545 0.000401 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) C1 C2 C3 C4
## C1 -0.003
## C2 -0.020 0.006
## C3 -0.007 -0.057 0.027
## C4 -0.017 -0.063 0.051 0.000
## C5 -0.014 0.067 -0.029 0.064 0.074
tab_model(modA.1,
show.stat = T, show.se = T)
| Support | |||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Error | CI | Statistic | p |
| (Intercept) | 56.48 | 0.77 | 54.97 – 58.00 | 72.91 | <0.001 |
| C1 | -6.49 | 0.80 | -8.07 – -4.91 | -8.07 | <0.001 |
| C2 | -6.20 | 1.23 | -8.61 – -3.79 | -5.04 | <0.001 |
| C3 | 5.18 | 1.28 | 2.67 – 7.69 | 4.05 | <0.001 |
| C4 | 0.29 | 1.42 | -2.49 – 3.07 | 0.21 | 0.837 |
| C5 | -5.10 | 1.44 | -7.93 – -2.28 | -3.54 | <0.001 |
| Random Effects | |||||
| σ2 | 431.78 | ||||
| τ00 id | 449.18 | ||||
| ICC | 0.51 | ||||
| N id | 1003 | ||||
| Observations | 3008 | ||||
| Marginal R2 / Conditional R2 | 0.022 / 0.521 | ||||
confint(modA.1)
## Computing profile confidence intervals ...
## 2.5 % 97.5 %
## .sig01 19.962311 22.470893
## .sigma 20.130427 21.412665
## (Intercept) 54.966128 58.003963
## C1 -8.067509 -4.915172
## C2 -8.606936 -3.790127
## C3 2.674390 7.686242
## C4 -2.484845 3.069674
## C5 -7.924868 -2.283917
# Model 2
modA.6 <- lmer(Support ~ Naturalness.c + C1 + C2 + C3 + C4 + C5 + (1|id), data = L)
summary(modA.6)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Naturalness.c + C1 + C2 + C3 + C4 + C5 + (1 | id)
## Data: L
##
## REML criterion at convergence: 25168.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.8393 -0.4549 0.0449 0.4905 3.1256
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 401.6 20.04
## Residual 413.7 20.34
## Number of obs: 2697, groups: id, 1003
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 56.33807 0.76281 1068.40515 73.856 < 2e-16 ***
## Naturalness.c 0.38839 0.02155 2147.25231 18.023 < 2e-16 ***
## C1 -3.20872 0.91118 1942.24469 -3.521 0.000439 ***
## C2 0.67094 1.26579 1984.39274 0.530 0.596131
## C3 7.17041 1.41061 2064.02900 5.083 4.05e-07 ***
## C4 5.42802 1.91507 2091.24653 2.834 0.004636 **
## C5 -12.72932 1.47319 1998.79489 -8.641 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Ntrln. C1 C2 C3 C4
## Naturlnss.c -0.013
## C1 -0.116 0.206
## C2 -0.027 0.298 0.076
## C3 -0.117 0.085 0.174 0.056
## C4 -0.179 0.157 0.294 0.094 0.310
## C5 -0.020 -0.284 0.018 -0.114 0.048 0.034
tab_model(modA.6,
show.stat = T, show.se = T)
| Support | |||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Error | CI | Statistic | p |
| (Intercept) | 56.34 | 0.76 | 54.84 – 57.83 | 73.86 | <0.001 |
| Naturalness c | 0.39 | 0.02 | 0.35 – 0.43 | 18.02 | <0.001 |
| C1 | -3.21 | 0.91 | -5.00 – -1.42 | -3.52 | <0.001 |
| C2 | 0.67 | 1.27 | -1.81 – 3.15 | 0.53 | 0.596 |
| C3 | 7.17 | 1.41 | 4.40 – 9.94 | 5.08 | <0.001 |
| C4 | 5.43 | 1.92 | 1.67 – 9.18 | 2.83 | 0.005 |
| C5 | -12.73 | 1.47 | -15.62 – -9.84 | -8.64 | <0.001 |
| Random Effects | |||||
| σ2 | 413.74 | ||||
| τ00 id | 401.64 | ||||
| ICC | 0.49 | ||||
| N id | 1003 | ||||
| Observations | 2697 | ||||
| Marginal R2 / Conditional R2 | 0.097 / 0.542 | ||||
confint(modA.6)
## Computing profile confidence intervals ...
## 2.5 % 97.5 %
## .sig01 18.8126987 21.3089627
## .sigma 19.6435140 21.0107228
## (Intercept) 54.8430336 57.8334718
## Naturalness.c 0.3461825 0.4305892
## C1 -4.9927247 -1.4246943
## C2 -1.8076880 3.1496554
## C3 4.4085408 9.9322837
## C4 1.6785146 9.1775222
## C5 -15.6137199 -9.8449348
# Model 3
modA.7 <- lmer(Support ~ Naturalness.c + Risk.c + Benefit.c + C1 + C2 + C3 + C4 + C5 + (1|id), data = L)
summary(modA.7)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Naturalness.c + Risk.c + Benefit.c + C1 + C2 + C3 +
## C4 + C5 + (1 | id)
## Data: L
##
## REML criterion at convergence: 23048.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.8391 -0.3659 0.0895 0.4452 4.9929
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 79.89 8.938
## Residual 242.68 15.578
## Number of obs: 2691, groups: id, 1002
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 56.55918 0.42844 1012.07979 132.011 < 2e-16 ***
## Naturalness.c 0.09444 0.01706 2429.95086 5.534 3.46e-08 ***
## Risk.c -0.05006 0.01401 2450.02011 -3.573 0.000359 ***
## Benefit.c 0.80715 0.01436 2383.79904 56.202 < 2e-16 ***
## C1 -0.26934 0.68067 2093.89990 -0.396 0.692367
## C2 1.77549 0.93697 2142.81124 1.895 0.058238 .
## C3 -0.32842 1.04699 2285.11302 -0.314 0.753795
## C4 9.10408 1.40188 2333.04733 6.494 1.02e-10 ***
## C5 -2.73598 1.11153 2188.32855 -2.461 0.013914 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Ntrln. Risk.c Bnft.c C1 C2 C3 C4
## Naturlnss.c -0.018
## Risk.c -0.002 0.283
## Benefit.c 0.008 -0.214 0.226
## C1 -0.152 0.146 -0.057 0.055
## C2 -0.025 0.263 -0.013 0.010 0.067
## C3 -0.144 0.136 0.097 -0.092 0.159 0.040
## C4 -0.226 0.122 -0.029 0.037 0.298 0.076 0.285
## C5 -0.005 -0.335 -0.143 0.110 0.016 -0.104 -0.012 0.014
tab_model(modA.7,
show.stat = T, show.se = T)
| Support | |||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Error | CI | Statistic | p |
| (Intercept) | 56.56 | 0.43 | 55.72 – 57.40 | 132.01 | <0.001 |
| Naturalness c | 0.09 | 0.02 | 0.06 – 0.13 | 5.53 | <0.001 |
| Risk c | -0.05 | 0.01 | -0.08 – -0.02 | -3.57 | <0.001 |
| Benefit c | 0.81 | 0.01 | 0.78 – 0.84 | 56.20 | <0.001 |
| C1 | -0.27 | 0.68 | -1.60 – 1.07 | -0.40 | 0.692 |
| C2 | 1.78 | 0.94 | -0.06 – 3.61 | 1.89 | 0.058 |
| C3 | -0.33 | 1.05 | -2.38 – 1.72 | -0.31 | 0.754 |
| C4 | 9.10 | 1.40 | 6.36 – 11.85 | 6.49 | <0.001 |
| C5 | -2.74 | 1.11 | -4.92 – -0.56 | -2.46 | 0.014 |
| Random Effects | |||||
| σ2 | 242.68 | ||||
| τ00 id | 79.89 | ||||
| ICC | 0.25 | ||||
| N id | 1002 | ||||
| Observations | 2691 | ||||
| Marginal R2 / Conditional R2 | 0.620 / 0.714 | ||||
confint(modA.7)
## Computing profile confidence intervals ...
## 2.5 % 97.5 %
## .sig01 7.96639981 9.87924404
## .sigma 15.02983125 16.10015419
## (Intercept) 55.71943321 57.39813310
## Naturalness.c 0.06103335 0.12784468
## Risk.c -0.07812545 -0.02216429
## Benefit.c 0.77678432 0.83715971
## C1 -1.60166267 1.06306171
## C2 -0.05880171 3.61048875
## C3 -2.37960398 1.72196700
## C4 6.36006907 11.84832783
## C5 -4.91198833 -0.56030197
# In the analyses of perceived risk and benefit, we included the other outcome as a control given the negative correlation between risk and benefit (r = -0.26, p < .001).
cor.test(L$Ben, L$Risk, na.rm = TRUE)
##
## Pearson's product-moment correlation
##
## data: L$Ben and L$Risk
## t = -14.784, df = 2991, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.2940398 -0.2272572
## sample estimates:
## cor
## -0.2609607
modA.1 <- lmer(Support ~ C1 + C2 + C3 + C4 + C5 + (1|id), data = L)
summary(modA.1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ C1 + C2 + C3 + C4 + C5 + (1 | id)
## Data: L
##
## REML criterion at convergence: 28169.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.5456 -0.4179 0.0521 0.4301 3.3434
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 449.2 21.19
## Residual 431.8 20.78
## Number of obs: 3008, groups: id, 1003
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 56.4847 0.7747 1001.8182 72.908 < 2e-16 ***
## C1 -6.4914 0.8047 2201.0504 -8.066 1.18e-15 ***
## C2 -6.1986 1.2296 2292.4556 -5.041 4.99e-07 ***
## C3 5.1803 1.2795 2341.2427 4.049 5.32e-05 ***
## C4 0.2924 1.4180 2293.3067 0.206 0.836669
## C5 -5.1045 1.4401 2316.5191 -3.545 0.000401 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) C1 C2 C3 C4
## C1 -0.003
## C2 -0.020 0.006
## C3 -0.007 -0.057 0.027
## C4 -0.017 -0.063 0.051 0.000
## C5 -0.014 0.067 -0.029 0.064 0.074
tab_model(modA.1,
show.stat = T, show.se = T)
| Support | |||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Error | CI | Statistic | p |
| (Intercept) | 56.48 | 0.77 | 54.97 – 58.00 | 72.91 | <0.001 |
| C1 | -6.49 | 0.80 | -8.07 – -4.91 | -8.07 | <0.001 |
| C2 | -6.20 | 1.23 | -8.61 – -3.79 | -5.04 | <0.001 |
| C3 | 5.18 | 1.28 | 2.67 – 7.69 | 4.05 | <0.001 |
| C4 | 0.29 | 1.42 | -2.49 – 3.07 | 0.21 | 0.837 |
| C5 | -5.10 | 1.44 | -7.93 – -2.28 | -3.54 | <0.001 |
| Random Effects | |||||
| σ2 | 431.78 | ||||
| τ00 id | 449.18 | ||||
| ICC | 0.51 | ||||
| N id | 1003 | ||||
| Observations | 3008 | ||||
| Marginal R2 / Conditional R2 | 0.022 / 0.521 | ||||
confint(modA.1)
## Computing profile confidence intervals ...
## 2.5 % 97.5 %
## .sig01 19.962311 22.470893
## .sigma 20.130427 21.412665
## (Intercept) 54.966128 58.003963
## C1 -8.067509 -4.915172
## C2 -8.606936 -3.790127
## C3 2.674390 7.686242
## C4 -2.484845 3.069674
## C5 -7.924868 -2.283917
modA.2 <- lmer(Risk ~ Benefit.c + C1 + C2 + C3 + C4 + C5 + (1|id), data = L)
summary(modA.2)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Benefit.c + C1 + C2 + C3 + C4 + C5 + (1 | id)
## Data: L
##
## REML criterion at convergence: 27553.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.2328 -0.5024 0.0051 0.5075 3.9700
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 414.2 20.35
## Residual 353.9 18.81
## Number of obs: 2993, groups: id, 1003
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 44.7685 0.7293 941.2526 61.386 < 2e-16 ***
## Benefit.c -0.4238 0.0173 2805.7194 -24.494 < 2e-16 ***
## C1 3.9575 0.7607 2172.5107 5.203 2.15e-07 ***
## C2 4.9718 1.1186 2156.4956 4.445 9.24e-06 ***
## C3 -4.9123 1.1478 2151.5246 -4.280 1.95e-05 ***
## C4 3.4597 1.3046 2162.5878 2.652 0.00806 **
## C5 3.4698 1.2978 2148.3517 2.674 0.00756 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Bnft.c C1 C2 C3 C4
## Benefit.c -0.001
## C1 -0.006 0.151
## C2 -0.005 0.113 0.001
## C3 0.013 -0.098 -0.051 -0.008
## C4 0.004 0.135 0.018 0.022 -0.032
## C5 0.013 0.069 0.031 -0.026 0.007 -0.001
tab_model(modA.2,
show.stat = T, show.se = T)
| Risk | |||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Error | CI | Statistic | p |
| (Intercept) | 44.77 | 0.73 | 43.34 – 46.20 | 61.39 | <0.001 |
| Benefit c | -0.42 | 0.02 | -0.46 – -0.39 | -24.49 | <0.001 |
| C1 | 3.96 | 0.76 | 2.47 – 5.45 | 5.20 | <0.001 |
| C2 | 4.97 | 1.12 | 2.78 – 7.17 | 4.44 | <0.001 |
| C3 | -4.91 | 1.15 | -7.16 – -2.66 | -4.28 | <0.001 |
| C4 | 3.46 | 1.30 | 0.90 – 6.02 | 2.65 | 0.008 |
| C5 | 3.47 | 1.30 | 0.93 – 6.01 | 2.67 | 0.008 |
| Random Effects | |||||
| σ2 | 353.87 | ||||
| τ00 id | 414.23 | ||||
| ICC | 0.54 | ||||
| N id | 1003 | ||||
| Observations | 2993 | ||||
| Marginal R2 / Conditional R2 | 0.171 / 0.618 | ||||
#How does risk perception predict benefit, over and above burger contrasts?
modA.3 <- lmer(Ben ~ Risk.c + C1 + C2 + C3 + C4 + C5 + (1|id), data = L)
summary(modA.3)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Risk.c + C1 + C2 + C3 + C4 + C5 + (1 | id)
## Data: L
##
## REML criterion at convergence: 27337.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.5036 -0.4563 0.0628 0.5252 2.9538
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 346.2 18.61
## Residual 341.6 18.48
## Number of obs: 2993, groups: id, 1003
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 60.47669 0.67817 919.00276 89.176 < 2e-16 ***
## Risk.c -0.38395 0.01618 2908.99314 -23.728 < 2e-16 ***
## C1 -4.04456 0.74453 2180.61806 -5.432 6.18e-08 ***
## C2 -4.16715 1.09654 2155.51124 -3.800 0.000149 ***
## C3 3.55610 1.12577 2159.60273 3.159 0.001606 **
## C4 -7.18956 1.27241 2159.36233 -5.650 1.81e-08 ***
## C5 -2.95722 1.27155 2151.98526 -2.326 0.020128 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Risk.c C1 C2 C3 C4
## Risk.c -0.004
## C1 -0.005 -0.147
## C2 -0.004 -0.120 0.002
## C3 0.013 0.110 -0.052 -0.011
## C4 0.005 -0.100 0.012 0.018 -0.030
## C5 0.014 -0.072 0.032 -0.025 0.005 -0.003
tab_model(modA.3,
show.stat = T, show.se = T)
| Ben | |||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Error | CI | Statistic | p |
| (Intercept) | 60.48 | 0.68 | 59.15 – 61.81 | 89.18 | <0.001 |
| Risk c | -0.38 | 0.02 | -0.42 – -0.35 | -23.73 | <0.001 |
| C1 | -4.04 | 0.74 | -5.50 – -2.58 | -5.43 | <0.001 |
| C2 | -4.17 | 1.10 | -6.32 – -2.02 | -3.80 | <0.001 |
| C3 | 3.56 | 1.13 | 1.35 – 5.76 | 3.16 | 0.002 |
| C4 | -7.19 | 1.27 | -9.68 – -4.69 | -5.65 | <0.001 |
| C5 | -2.96 | 1.27 | -5.45 – -0.46 | -2.33 | 0.020 |
| Random Effects | |||||
| σ2 | 341.63 | ||||
| τ00 id | 346.19 | ||||
| ICC | 0.50 | ||||
| N id | 1003 | ||||
| Observations | 2993 | ||||
| Marginal R2 / Conditional R2 | 0.179 / 0.592 | ||||
modA.4 <- lmer(FR ~ C1 + C2 + C3 + C4 + C5 + (1|id), data = L)
summary(modA.4)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ C1 + C2 + C3 + C4 + C5 + (1 | id)
## Data: L
##
## REML criterion at convergence: 27647.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.4236 -0.5634 0.0586 0.6100 2.9557
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 227.8 15.09
## Residual 424.9 20.61
## Number of obs: 3004, groups: id, 1004
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 61.3993 0.6071 1002.1865 101.127 < 2e-16 ***
## C1 -13.7553 0.8062 2371.0178 -17.062 < 2e-16 ***
## C2 -3.5800 1.1928 2354.4503 -3.001 0.00272 **
## C3 -3.7042 1.2258 2346.5128 -3.022 0.00254 **
## C4 -7.1824 1.3886 2369.2537 -5.173 2.50e-07 ***
## C5 -6.8720 1.3877 2343.6548 -4.952 7.86e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) C1 C2 C3 C4
## C1 -0.009
## C2 -0.006 -0.014
## C3 0.015 -0.033 0.002
## C4 0.005 -0.004 0.005 -0.016
## C5 0.016 0.024 -0.033 0.010 -0.008
tab_model(modA.4,
show.stat = T, show.se = T)
| FR | |||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Error | CI | Statistic | p |
| (Intercept) | 61.40 | 0.61 | 60.21 – 62.59 | 101.13 | <0.001 |
| C1 | -13.76 | 0.81 | -15.34 – -12.17 | -17.06 | <0.001 |
| C2 | -3.58 | 1.19 | -5.92 – -1.24 | -3.00 | 0.003 |
| C3 | -3.70 | 1.23 | -6.11 – -1.30 | -3.02 | 0.003 |
| C4 | -7.18 | 1.39 | -9.91 – -4.46 | -5.17 | <0.001 |
| C5 | -6.87 | 1.39 | -9.59 – -4.15 | -4.95 | <0.001 |
| Random Effects | |||||
| σ2 | 424.94 | ||||
| τ00 id | 227.75 | ||||
| ICC | 0.35 | ||||
| N id | 1004 | ||||
| Observations | 3004 | ||||
| Marginal R2 / Conditional R2 | 0.083 / 0.403 | ||||
modA.5 <- lmer(Support ~ C1 + C2 + C3 + C4 + C5 + (1|id), data = L)
summary(modA.5)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ C1 + C2 + C3 + C4 + C5 + (1 | id)
## Data: L
##
## REML criterion at convergence: 28169.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.5456 -0.4179 0.0521 0.4301 3.3434
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 449.2 21.19
## Residual 431.8 20.78
## Number of obs: 3008, groups: id, 1003
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 56.4847 0.7747 1001.8182 72.908 < 2e-16 ***
## C1 -6.4914 0.8047 2201.0504 -8.066 1.18e-15 ***
## C2 -6.1986 1.2296 2292.4556 -5.041 4.99e-07 ***
## C3 5.1803 1.2795 2341.2427 4.049 5.32e-05 ***
## C4 0.2924 1.4180 2293.3067 0.206 0.836669
## C5 -5.1045 1.4401 2316.5191 -3.545 0.000401 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) C1 C2 C3 C4
## C1 -0.003
## C2 -0.020 0.006
## C3 -0.007 -0.057 0.027
## C4 -0.017 -0.063 0.051 0.000
## C5 -0.014 0.067 -0.029 0.064 0.074
tab_model(modA.5,
show.stat = T, show.se = T)
| Support | |||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Error | CI | Statistic | p |
| (Intercept) | 56.48 | 0.77 | 54.97 – 58.00 | 72.91 | <0.001 |
| C1 | -6.49 | 0.80 | -8.07 – -4.91 | -8.07 | <0.001 |
| C2 | -6.20 | 1.23 | -8.61 – -3.79 | -5.04 | <0.001 |
| C3 | 5.18 | 1.28 | 2.67 – 7.69 | 4.05 | <0.001 |
| C4 | 0.29 | 1.42 | -2.49 – 3.07 | 0.21 | 0.837 |
| C5 | -5.10 | 1.44 | -7.93 – -2.28 | -3.54 | <0.001 |
| Random Effects | |||||
| σ2 | 431.78 | ||||
| τ00 id | 449.18 | ||||
| ICC | 0.51 | ||||
| N id | 1003 | ||||
| Observations | 3008 | ||||
| Marginal R2 / Conditional R2 | 0.022 / 0.521 | ||||
confint(modA.5)
## Computing profile confidence intervals ...
## 2.5 % 97.5 %
## .sig01 19.962311 22.470893
## .sigma 20.130427 21.412665
## (Intercept) 54.966128 58.003963
## C1 -8.067509 -4.915172
## C2 -8.606936 -3.790127
## C3 2.674390 7.686242
## C4 -2.484845 3.069674
## C5 -7.924868 -2.283917
modA.6 <- lmer(Support ~ Naturalness.c + C1 + C2 + C3 + C4 + C5 + (1|id), data = L)
summary(modA.6)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Naturalness.c + C1 + C2 + C3 + C4 + C5 + (1 | id)
## Data: L
##
## REML criterion at convergence: 25168.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.8393 -0.4549 0.0449 0.4905 3.1256
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 401.6 20.04
## Residual 413.7 20.34
## Number of obs: 2697, groups: id, 1003
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 56.33807 0.76281 1068.40515 73.856 < 2e-16 ***
## Naturalness.c 0.38839 0.02155 2147.25231 18.023 < 2e-16 ***
## C1 -3.20872 0.91118 1942.24469 -3.521 0.000439 ***
## C2 0.67094 1.26579 1984.39274 0.530 0.596131
## C3 7.17041 1.41061 2064.02900 5.083 4.05e-07 ***
## C4 5.42802 1.91507 2091.24653 2.834 0.004636 **
## C5 -12.72932 1.47319 1998.79489 -8.641 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Ntrln. C1 C2 C3 C4
## Naturlnss.c -0.013
## C1 -0.116 0.206
## C2 -0.027 0.298 0.076
## C3 -0.117 0.085 0.174 0.056
## C4 -0.179 0.157 0.294 0.094 0.310
## C5 -0.020 -0.284 0.018 -0.114 0.048 0.034
tab_model(modA.6,
show.stat = T, show.se = T)
| Support | |||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Error | CI | Statistic | p |
| (Intercept) | 56.34 | 0.76 | 54.84 – 57.83 | 73.86 | <0.001 |
| Naturalness c | 0.39 | 0.02 | 0.35 – 0.43 | 18.02 | <0.001 |
| C1 | -3.21 | 0.91 | -5.00 – -1.42 | -3.52 | <0.001 |
| C2 | 0.67 | 1.27 | -1.81 – 3.15 | 0.53 | 0.596 |
| C3 | 7.17 | 1.41 | 4.40 – 9.94 | 5.08 | <0.001 |
| C4 | 5.43 | 1.92 | 1.67 – 9.18 | 2.83 | 0.005 |
| C5 | -12.73 | 1.47 | -15.62 – -9.84 | -8.64 | <0.001 |
| Random Effects | |||||
| σ2 | 413.74 | ||||
| τ00 id | 401.64 | ||||
| ICC | 0.49 | ||||
| N id | 1003 | ||||
| Observations | 2697 | ||||
| Marginal R2 / Conditional R2 | 0.097 / 0.542 | ||||
confint(modA.6)
## Computing profile confidence intervals ...
## 2.5 % 97.5 %
## .sig01 18.8126987 21.3089627
## .sigma 19.6435140 21.0107228
## (Intercept) 54.8430336 57.8334718
## Naturalness.c 0.3461825 0.4305892
## C1 -4.9927247 -1.4246943
## C2 -1.8076880 3.1496554
## C3 4.4085408 9.9322837
## C4 1.6785146 9.1775222
## C5 -15.6137199 -9.8449348
modA.7 <- lmer(Support ~ Naturalness.c + Risk.c + Benefit.c + C1 + C2 + C3 + C4 + C5 + (1|id), data = L)
summary(modA.7)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Naturalness.c + Risk.c + Benefit.c + C1 + C2 + C3 +
## C4 + C5 + (1 | id)
## Data: L
##
## REML criterion at convergence: 23048.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.8391 -0.3659 0.0895 0.4452 4.9929
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 79.89 8.938
## Residual 242.68 15.578
## Number of obs: 2691, groups: id, 1002
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 56.55918 0.42844 1012.07979 132.011 < 2e-16 ***
## Naturalness.c 0.09444 0.01706 2429.95086 5.534 3.46e-08 ***
## Risk.c -0.05006 0.01401 2450.02011 -3.573 0.000359 ***
## Benefit.c 0.80715 0.01436 2383.79904 56.202 < 2e-16 ***
## C1 -0.26934 0.68067 2093.89990 -0.396 0.692367
## C2 1.77549 0.93697 2142.81124 1.895 0.058238 .
## C3 -0.32842 1.04699 2285.11302 -0.314 0.753795
## C4 9.10408 1.40188 2333.04733 6.494 1.02e-10 ***
## C5 -2.73598 1.11153 2188.32855 -2.461 0.013914 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Ntrln. Risk.c Bnft.c C1 C2 C3 C4
## Naturlnss.c -0.018
## Risk.c -0.002 0.283
## Benefit.c 0.008 -0.214 0.226
## C1 -0.152 0.146 -0.057 0.055
## C2 -0.025 0.263 -0.013 0.010 0.067
## C3 -0.144 0.136 0.097 -0.092 0.159 0.040
## C4 -0.226 0.122 -0.029 0.037 0.298 0.076 0.285
## C5 -0.005 -0.335 -0.143 0.110 0.016 -0.104 -0.012 0.014
tab_model(modA.7,
show.stat = T, show.se = T)
| Support | |||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Error | CI | Statistic | p |
| (Intercept) | 56.56 | 0.43 | 55.72 – 57.40 | 132.01 | <0.001 |
| Naturalness c | 0.09 | 0.02 | 0.06 – 0.13 | 5.53 | <0.001 |
| Risk c | -0.05 | 0.01 | -0.08 – -0.02 | -3.57 | <0.001 |
| Benefit c | 0.81 | 0.01 | 0.78 – 0.84 | 56.20 | <0.001 |
| C1 | -0.27 | 0.68 | -1.60 – 1.07 | -0.40 | 0.692 |
| C2 | 1.78 | 0.94 | -0.06 – 3.61 | 1.89 | 0.058 |
| C3 | -0.33 | 1.05 | -2.38 – 1.72 | -0.31 | 0.754 |
| C4 | 9.10 | 1.40 | 6.36 – 11.85 | 6.49 | <0.001 |
| C5 | -2.74 | 1.11 | -4.92 – -0.56 | -2.46 | 0.014 |
| Random Effects | |||||
| σ2 | 242.68 | ||||
| τ00 id | 79.89 | ||||
| ICC | 0.25 | ||||
| N id | 1002 | ||||
| Observations | 2691 | ||||
| Marginal R2 / Conditional R2 | 0.620 / 0.714 | ||||
confint(modA.7)
## Computing profile confidence intervals ...
## 2.5 % 97.5 %
## .sig01 7.96639981 9.87924404
## .sigma 15.02983125 16.10015419
## (Intercept) 55.71943321 57.39813310
## Naturalness.c 0.06103335 0.12784468
## Risk.c -0.07812545 -0.02216429
## Benefit.c 0.77678432 0.83715971
## C1 -1.60166267 1.06306171
## C2 -0.05880171 3.61048875
## C3 -2.37960398 1.72196700
## C4 6.36006907 11.84832783
## C5 -4.91198833 -0.56030197
modA.18 <- lmer(Naturalness ~ C1 + C2 + C3 + C4 + C5 + (1|id), data = L)
summary(modA.18)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ C1 + C2 + C3 + C4 + C5 + (1 | id)
## Data: L
##
## REML criterion at convergence: 26923.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.92273 -0.65184 -0.03425 0.61938 3.08384
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 1.535 1.239
## Residual 455.241 21.336
## Number of obs: 3006, groups: id, 1004
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 50.3942 0.3914 1002.1120 128.753 < 2e-16 ***
## C1 -8.1457 0.7797 2793.3499 -10.447 < 2e-16 ***
## C2 -17.9940 1.1570 2769.4762 -15.552 < 2e-16 ***
## C3 -4.6214 1.1903 2759.6843 -3.883 0.000106 ***
## C4 -12.9528 1.3423 2791.1877 -9.650 < 2e-16 ***
## C5 19.8994 1.3486 2753.0710 14.755 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) C1 C2 C3 C4
## C1 -0.012
## C2 -0.009 -0.009
## C3 0.023 -0.024 0.000
## C4 0.008 -0.008 0.000 -0.008
## C5 0.025 0.025 -0.025 0.000 0.000
tab_model(modA.18,
show.stat = T, show.se = T)
| Naturalness | |||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Error | CI | Statistic | p |
| (Intercept) | 50.39 | 0.39 | 49.63 – 51.16 | 128.75 | <0.001 |
| C1 | -8.15 | 0.78 | -9.67 – -6.62 | -10.45 | <0.001 |
| C2 | -17.99 | 1.16 | -20.26 – -15.73 | -15.55 | <0.001 |
| C3 | -4.62 | 1.19 | -6.96 – -2.29 | -3.88 | <0.001 |
| C4 | -12.95 | 1.34 | -15.58 – -10.32 | -9.65 | <0.001 |
| C5 | 19.90 | 1.35 | 17.26 – 22.54 | 14.76 | <0.001 |
| Random Effects | |||||
| σ2 | 455.24 | ||||
| τ00 id | 1.54 | ||||
| ICC | 0.00 | ||||
| N id | 1004 | ||||
| Observations | 3006 | ||||
| Marginal R2 / Conditional R2 | 0.185 / 0.187 | ||||
confint(modA.18)
## Computing profile confidence intervals ...
## 2.5 % 97.5 %
## .sig01 0.000000 4.288493
## .sigma 20.671198 21.899854
## (Intercept) 49.626973 51.161193
## C1 -9.672896 -6.618552
## C2 -20.263487 -15.725963
## C3 -6.952757 -2.289708
## C4 -15.583835 -10.322855
## C5 17.257780 22.541756
modA.8 <- lmer(Risk ~ Naturalness.c + Benefit.c + C1 + C2 + C3 + C4 + C5 + (1|id), data = L)
summary(modA.8)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Naturalness.c + Benefit.c + C1 + C2 + C3 + C4 + C5 + (1 |
## id)
## Data: L
##
## REML criterion at convergence: 27296.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.7009 -0.5023 0.0214 0.5125 3.7111
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 336.5 18.34
## Residual 339.2 18.42
## Number of obs: 2992, groups: id, 1003
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 44.80176 0.67045 911.64095 66.823 < 2e-16 ***
## Naturalness.c -0.31493 0.01917 2479.94864 -16.426 < 2e-16 ***
## Benefit.c -0.32160 0.01758 2911.62820 -18.290 < 2e-16 ***
## C1 2.04713 0.75164 2172.57689 2.724 0.00651 **
## C2 0.33157 1.12910 2148.67917 0.294 0.76904
## C3 -7.11117 1.12747 2165.63425 -6.307 3.43e-10 ***
## C4 0.75027 1.28460 2158.22296 0.584 0.55925
## C5 10.16559 1.32882 2185.32793 7.650 2.99e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Ntrln. Bnft.c C1 C2 C3 C4
## Naturlnss.c -0.004
## Benefit.c 0.001 -0.313
## C1 -0.006 0.160 0.091
## C2 -0.006 0.256 0.023 0.043
## C3 0.012 0.116 -0.128 -0.031 0.021
## C4 0.004 0.138 0.083 0.039 0.056 -0.015
## C5 0.014 -0.304 0.156 -0.019 -0.101 -0.030 -0.042
tab_model(modA.8,
show.stat = T, show.se = T)
| Risk | |||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Error | CI | Statistic | p |
| (Intercept) | 44.80 | 0.67 | 43.49 – 46.12 | 66.82 | <0.001 |
| Naturalness c | -0.31 | 0.02 | -0.35 – -0.28 | -16.43 | <0.001 |
| Benefit c | -0.32 | 0.02 | -0.36 – -0.29 | -18.29 | <0.001 |
| C1 | 2.05 | 0.75 | 0.57 – 3.52 | 2.72 | 0.006 |
| C2 | 0.33 | 1.13 | -1.88 – 2.55 | 0.29 | 0.769 |
| C3 | -7.11 | 1.13 | -9.32 – -4.90 | -6.31 | <0.001 |
| C4 | 0.75 | 1.28 | -1.77 – 3.27 | 0.58 | 0.559 |
| C5 | 10.17 | 1.33 | 7.56 – 12.77 | 7.65 | <0.001 |
| Random Effects | |||||
| σ2 | 339.15 | ||||
| τ00 id | 336.50 | ||||
| ICC | 0.50 | ||||
| N id | 1003 | ||||
| Observations | 2992 | ||||
| Marginal R2 / Conditional R2 | 0.210 / 0.604 | ||||
#How does risk perception predict benefit, over and above naturalness and burger contrasts?
modA.9 <- lmer(Ben ~ Naturalness.c + Risk.c + C1 + C2 + C3 + C4 + C5 + (1|id), data = L)
summary(modA.9)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Naturalness.c + Risk.c + C1 + C2 + C3 + C4 + C5 + (1 | id)
## Data: L
##
## REML criterion at convergence: 27219.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.0229 -0.4473 0.0688 0.5333 2.9004
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 335.5 18.32
## Residual 328.0 18.11
## Number of obs: 2992, groups: id, 1003
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 60.41498 0.66691 922.24508 90.590 < 2e-16 ***
## Naturalness.c 0.20812 0.01934 2361.07102 10.759 < 2e-16 ***
## Risk.c -0.31577 0.01712 2894.21391 -18.442 < 2e-16 ***
## C1 -2.83392 0.73888 2181.20842 -3.835 0.000129 ***
## C2 -1.20861 1.11100 2153.27043 -1.088 0.276778
## C3 5.14392 1.11304 2170.29747 4.621 4.03e-06 ***
## C4 -5.19257 1.26076 2160.50132 -4.119 3.96e-05 ***
## C5 -7.41943 1.31360 2172.28671 -5.648 1.83e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Ntrln. Risk.c C1 C2 C3 C4
## Naturlnss.c -0.006
## Risk.c -0.006 0.375
## C1 -0.006 0.155 -0.076
## C2 -0.005 0.252 -0.013 0.042
## C3 0.011 0.131 0.150 -0.031 0.022
## C4 0.004 0.147 -0.037 0.035 0.054 -0.010
## C5 0.015 -0.316 -0.182 -0.019 -0.102 -0.037 -0.049
tab_model(modA.9,
show.stat = T, show.se = T)
| Ben | |||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Error | CI | Statistic | p |
| (Intercept) | 60.41 | 0.67 | 59.11 – 61.72 | 90.59 | <0.001 |
| Naturalness c | 0.21 | 0.02 | 0.17 – 0.25 | 10.76 | <0.001 |
| Risk c | -0.32 | 0.02 | -0.35 – -0.28 | -18.44 | <0.001 |
| C1 | -2.83 | 0.74 | -4.28 – -1.39 | -3.84 | <0.001 |
| C2 | -1.21 | 1.11 | -3.39 – 0.97 | -1.09 | 0.277 |
| C3 | 5.14 | 1.11 | 2.96 – 7.33 | 4.62 | <0.001 |
| C4 | -5.19 | 1.26 | -7.66 – -2.72 | -4.12 | <0.001 |
| C5 | -7.42 | 1.31 | -10.00 – -4.84 | -5.65 | <0.001 |
| Random Effects | |||||
| σ2 | 328.04 | ||||
| τ00 id | 335.47 | ||||
| ICC | 0.51 | ||||
| N id | 1003 | ||||
| Observations | 2992 | ||||
| Marginal R2 / Conditional R2 | 0.197 / 0.603 | ||||
#Note: Understanding/familiarity mean score taken from two item measure.
modA.10 <- lmer(Naturalness ~ FR.c + C1 + C2 + C3 + C4 + C5 + (1|id), data = L)
summary(modA.10)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ FR.c + C1 + C2 + C3 + C4 + C5 + (1 | id)
## Data: L
##
## REML criterion at convergence: 26716.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.2899 -0.6656 0.0078 0.6373 3.5292
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 18.22 4.268
## Residual 411.91 20.295
## Number of obs: 3003, groups: id, 1004
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 50.40808 0.39437 963.83987 127.819 < 2e-16 ***
## FR.c 0.21103 0.01502 2514.81302 14.047 < 2e-16 ***
## C1 -5.25836 0.77781 2805.72167 -6.760 1.67e-11 ***
## C2 -17.00442 1.11480 2696.05125 -15.253 < 2e-16 ***
## C3 -3.77019 1.14639 2682.13823 -3.289 0.00102 **
## C4 -11.38953 1.29667 2728.31341 -8.784 < 2e-16 ***
## C5 21.12909 1.29963 2690.35658 16.258 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) FR.c C1 C2 C3 C4
## FR.c 0.001
## C1 -0.011 0.263
## C2 -0.008 0.052 0.005
## C3 0.022 0.055 -0.009 0.003
## C4 0.008 0.080 0.014 0.005 -0.005
## C5 0.023 0.070 0.042 -0.022 0.006 0.004
tab_model(modA.10,
show.stat = T, show.se = T)
| Naturalness | |||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Error | CI | Statistic | p |
| (Intercept) | 50.41 | 0.39 | 49.63 – 51.18 | 127.82 | <0.001 |
| FR c | 0.21 | 0.02 | 0.18 – 0.24 | 14.05 | <0.001 |
| C1 | -5.26 | 0.78 | -6.78 – -3.73 | -6.76 | <0.001 |
| C2 | -17.00 | 1.11 | -19.19 – -14.82 | -15.25 | <0.001 |
| C3 | -3.77 | 1.15 | -6.02 – -1.52 | -3.29 | 0.001 |
| C4 | -11.39 | 1.30 | -13.93 – -8.85 | -8.78 | <0.001 |
| C5 | 21.13 | 1.30 | 18.58 – 23.68 | 16.26 | <0.001 |
| Random Effects | |||||
| σ2 | 411.91 | ||||
| τ00 id | 18.22 | ||||
| ICC | 0.04 | ||||
| N id | 1004 | ||||
| Observations | 3003 | ||||
| Marginal R2 / Conditional R2 | 0.234 / 0.266 | ||||
modA.11 <- lmer(Support ~ ATNS_Score.c + Naturalness.c + C1 + C2 + C3 + C4 + C5 + Naturalness.c*ATNS_Score.c + ATNS_Score.c*C1 + ATNS_Score.c*C2 + ATNS_Score.c*C3 + ATNS_Score.c*C4 + ATNS_Score.c*C5 + (1|id), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(modA.11)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ ATNS_Score.c + Naturalness.c + C1 + C2 + C3 + C4 +
## C5 + Naturalness.c * ATNS_Score.c + ATNS_Score.c * C1 + ATNS_Score.c *
## C2 + ATNS_Score.c * C3 + ATNS_Score.c * C4 + ATNS_Score.c *
## C5 + (1 | id)
## Data: L
##
## REML criterion at convergence: 25127.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.8873 -0.4293 0.0546 0.4777 3.0596
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 413.6 20.34
## Residual 397.5 19.94
## Number of obs: 2696, groups: id, 1002
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 5.641e+01 7.671e-01 1.064e+03 73.540 < 2e-16
## ATNS_Score.c 2.291e-02 4.405e-02 1.052e+03 0.520 0.603157
## Naturalness.c 3.787e-01 2.184e-02 2.130e+03 17.342 < 2e-16
## C1 -3.166e+00 8.990e-01 1.925e+03 -3.522 0.000438
## C2 4.718e-01 1.247e+00 1.964e+03 0.378 0.705260
## C3 7.090e+00 1.390e+00 2.040e+03 5.102 3.66e-07
## C4 5.310e+00 1.891e+00 2.064e+03 2.808 0.005039
## C5 -1.261e+01 1.449e+00 1.974e+03 -8.707 < 2e-16
## ATNS_Score.c:Naturalness.c 3.215e-03 1.061e-03 2.135e+03 3.031 0.002471
## ATNS_Score.c:C1 -2.216e-01 5.260e-02 1.936e+03 -4.214 2.63e-05
## ATNS_Score.c:C2 4.177e-03 7.386e-02 1.981e+03 0.057 0.954909
## ATNS_Score.c:C3 3.756e-02 7.975e-02 2.065e+03 0.471 0.637735
## ATNS_Score.c:C4 1.975e-01 1.049e-01 2.058e+03 1.883 0.059809
## ATNS_Score.c:C5 -4.186e-01 8.210e-02 1.991e+03 -5.098 3.75e-07
##
## (Intercept) ***
## ATNS_Score.c
## Naturalness.c ***
## C1 ***
## C2
## C3 ***
## C4 **
## C5 ***
## ATNS_Score.c:Naturalness.c **
## ATNS_Score.c:C1 ***
## ATNS_Score.c:C2
## ATNS_Score.c:C3
## ATNS_Score.c:C4 .
## ATNS_Score.c:C5 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation matrix not shown by default, as p = 14 > 12.
## Use print(x, correlation=TRUE) or
## vcov(x) if you need it
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
tab_model(modA.11,
show.stat = T, show.se = T)
| Support | |||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Error | CI | Statistic | p |
| (Intercept) | 56.41 | 0.77 | 54.91 – 57.91 | 73.54 | <0.001 |
| ATNS Score c | 0.02 | 0.04 | -0.06 – 0.11 | 0.52 | 0.603 |
| Naturalness c | 0.38 | 0.02 | 0.34 – 0.42 | 17.34 | <0.001 |
| C1 | -3.17 | 0.90 | -4.93 – -1.40 | -3.52 | <0.001 |
| C2 | 0.47 | 1.25 | -1.97 – 2.92 | 0.38 | 0.705 |
| C3 | 7.09 | 1.39 | 4.37 – 9.81 | 5.10 | <0.001 |
| C4 | 5.31 | 1.89 | 1.60 – 9.02 | 2.81 | 0.005 |
| C5 | -12.61 | 1.45 | -15.45 – -9.77 | -8.71 | <0.001 |
|
ATNS Score c × Naturalness c |
0.00 | 0.00 | 0.00 – 0.01 | 3.03 | 0.002 |
| ATNS Score c × C1 | -0.22 | 0.05 | -0.32 – -0.12 | -4.21 | <0.001 |
| ATNS Score c × C2 | 0.00 | 0.07 | -0.14 – 0.15 | 0.06 | 0.955 |
| ATNS Score c × C3 | 0.04 | 0.08 | -0.12 – 0.19 | 0.47 | 0.638 |
| ATNS Score c × C4 | 0.20 | 0.10 | -0.01 – 0.40 | 1.88 | 0.060 |
| ATNS Score c × C5 | -0.42 | 0.08 | -0.58 – -0.26 | -5.10 | <0.001 |
| Random Effects | |||||
| σ2 | 397.46 | ||||
| τ00 id | 413.59 | ||||
| ICC | 0.51 | ||||
| N id | 1002 | ||||
| Observations | 2696 | ||||
| Marginal R2 / Conditional R2 | 0.110 / 0.564 | ||||
confint(modA.11)
## Computing profile confidence intervals ...
## 2.5 % 97.5 %
## .sig01 19.106144482 21.590260548
## .sigma 19.221056740 20.560496225
## (Intercept) 54.908023989 57.912812196
## ATNS_Score.c -0.063356089 0.109221682
## Naturalness.c 0.335980826 0.421395658
## C1 -4.923854357 -1.408996235
## C2 -1.967507581 2.909821289
## C3 4.373704132 9.806531637
## C4 1.612364962 9.006804761
## C5 -15.444376050 -9.780673940
## ATNS_Score.c:Naturalness.c 0.001140975 0.005292175
## ATNS_Score.c:C1 -0.324499866 -0.118826611
## ATNS_Score.c:C2 -0.140184217 0.148591617
## ATNS_Score.c:C3 -0.118499714 0.193459736
## ATNS_Score.c:C4 -0.007533940 0.402506993
## ATNS_Score.c:C5 -0.579324401 -0.258063214
library (ggplot2)
# Interaction Plot
# +1 SD, -1 SD Aversion to Tampering with Nature Score
L$ATNS_sd <- sd(L$ATNS_Score, na.rm = TRUE)
L$MinusOneSD <- (L$ATNS_Score.c + L$ATNS_sd)
L$PlusOneSD <- (L$ATNS_Score.c - L$ATNS_sd)
L$MinusOneSD <- as.numeric(as.character(L$MinusOneSD))
L$PlusOneSD <- as.numeric(as.character(L$PlusOneSD))
#Look at coeffients for interaction at +1/-1 SD
M.MinusOne <- lmer(Support ~ Naturalness.c*MinusOneSD + C1*MinusOneSD + C2*MinusOneSD + C3*MinusOneSD + C4*MinusOneSD + C5*MinusOneSD + (1|id), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
M.PlusOne <- lmer(Support ~ Naturalness.c*PlusOneSD + C1*PlusOneSD + C2*PlusOneSD + C3*PlusOneSD + C4*PlusOneSD + C5*PlusOneSD + (1|id), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
M.MinusOne <- lmer(Support ~ Naturalness.c*MinusOneSD + C1 + C2 + C3 + C4 + C5 + (1|id), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
M.PlusOne <- lmer(Support ~ Naturalness.c*PlusOneSD + C1 + C2 + C3 + C4 + C5 + (1|id), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary(M.MinusOne)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Naturalness.c * MinusOneSD + C1 + C2 + C3 + C4 + C5 +
## (1 | id)
## Data: L
##
## REML criterion at convergence: 25164.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.8274 -0.4357 0.0464 0.4905 2.9816
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 405.5 20.14
## Residual 410.6 20.26
## Number of obs: 2696, groups: id, 1002
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 5.598e+01 1.069e+00 1.024e+03 52.390 < 2e-16 ***
## Naturalness.c 3.168e-01 3.045e-02 2.150e+03 10.404 < 2e-16 ***
## MinusOneSD 2.097e-02 4.321e-02 9.995e+02 0.485 0.627603
## C1 -3.355e+00 9.091e-01 1.938e+03 -3.690 0.000230 ***
## C2 7.938e-01 1.263e+00 1.978e+03 0.629 0.529650
## C3 7.009e+00 1.407e+00 2.058e+03 4.981 6.84e-07 ***
## C4 5.227e+00 1.910e+00 2.084e+03 2.737 0.006262 **
## C5 -1.279e+01 1.469e+00 1.991e+03 -8.705 < 2e-16 ***
## Naturalness.c:MinusOneSD 3.168e-03 9.553e-04 2.113e+03 3.317 0.000927 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Ntrln. MnsOSD C1 C2 C3 C4 C5
## Naturlnss.c -0.018
## MinusOneSD -0.698 0.014
## C1 -0.077 0.178 -0.008
## C2 -0.026 0.188 0.010 0.075
## C3 -0.076 0.084 -0.010 0.176 0.055
## C4 -0.116 0.131 -0.017 0.295 0.093 0.311
## C5 0.003 -0.195 -0.024 0.019 -0.115 0.049 0.035
## Ntrln.:MOSD 0.011 -0.709 -0.011 -0.046 0.031 -0.033 -0.029 -0.008
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
tab_model(M.MinusOne,
show.stat = T, show.se = T)
| Support | |||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Error | CI | Statistic | p |
| (Intercept) | 55.98 | 1.07 | 53.89 – 58.08 | 52.39 | <0.001 |
| Naturalness c | 0.32 | 0.03 | 0.26 – 0.38 | 10.40 | <0.001 |
| MinusOneSD | 0.02 | 0.04 | -0.06 – 0.11 | 0.49 | 0.628 |
| C1 | -3.35 | 0.91 | -5.14 – -1.57 | -3.69 | <0.001 |
| C2 | 0.79 | 1.26 | -1.68 – 3.27 | 0.63 | 0.530 |
| C3 | 7.01 | 1.41 | 4.25 – 9.77 | 4.98 | <0.001 |
| C4 | 5.23 | 1.91 | 1.48 – 8.97 | 2.74 | 0.006 |
| C5 | -12.79 | 1.47 | -15.67 – -9.91 | -8.70 | <0.001 |
|
Naturalness c × MinusOneSD |
0.00 | 0.00 | 0.00 – 0.01 | 3.32 | 0.001 |
| Random Effects | |||||
| σ2 | 410.57 | ||||
| τ00 id | 405.49 | ||||
| ICC | 0.50 | ||||
| N id | 1002 | ||||
| Observations | 2696 | ||||
| Marginal R2 / Conditional R2 | 0.099 / 0.547 | ||||
summary(M.PlusOne)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Naturalness.c * PlusOneSD + C1 + C2 + C3 + C4 + C5 +
## (1 | id)
## Data: L
##
## REML criterion at convergence: 25164.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.8274 -0.4357 0.0464 0.4905 2.9816
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 405.5 20.14
## Residual 410.6 20.26
## Number of obs: 2696, groups: id, 1002
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 5.671e+01 1.074e+00 1.039e+03 52.819 < 2e-16 ***
## Naturalness.c 4.268e-01 2.441e-02 2.114e+03 17.487 < 2e-16 ***
## PlusOneSD 2.097e-02 4.321e-02 9.995e+02 0.485 0.627603
## C1 -3.355e+00 9.091e-01 1.938e+03 -3.690 0.000230 ***
## C2 7.938e-01 1.263e+00 1.978e+03 0.629 0.529650
## C3 7.009e+00 1.407e+00 2.058e+03 4.981 6.84e-07 ***
## C4 5.227e+00 1.910e+00 2.084e+03 2.737 0.006262 **
## C5 -1.279e+01 1.469e+00 1.991e+03 -8.705 < 2e-16 ***
## Naturalness.c:PlusOneSD 3.168e-03 9.553e-04 2.113e+03 3.317 0.000927 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Ntrln. PlsOSD C1 C2 C3 C4 C5
## Naturlnss.c -0.005
## PlusOneSD 0.702 0.002
## C1 -0.087 0.160 -0.008
## C2 -0.012 0.277 0.010 0.075
## C3 -0.090 0.059 -0.010 0.176 0.055
## C4 -0.139 0.125 -0.017 0.295 0.093 0.311
## C5 -0.031 -0.254 -0.024 0.019 -0.115 0.049 0.035
## Ntrln.:POSD -0.005 0.475 -0.011 -0.046 0.031 -0.033 -0.029 -0.008
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
tab_model(M.PlusOne,
show.stat = T, show.se = T)
| Support | |||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Error | CI | Statistic | p |
| (Intercept) | 56.71 | 1.07 | 54.60 – 58.81 | 52.82 | <0.001 |
| Naturalness c | 0.43 | 0.02 | 0.38 – 0.47 | 17.49 | <0.001 |
| PlusOneSD | 0.02 | 0.04 | -0.06 – 0.11 | 0.49 | 0.628 |
| C1 | -3.35 | 0.91 | -5.14 – -1.57 | -3.69 | <0.001 |
| C2 | 0.79 | 1.26 | -1.68 – 3.27 | 0.63 | 0.530 |
| C3 | 7.01 | 1.41 | 4.25 – 9.77 | 4.98 | <0.001 |
| C4 | 5.23 | 1.91 | 1.48 – 8.97 | 2.74 | 0.006 |
| C5 | -12.79 | 1.47 | -15.67 – -9.91 | -8.70 | <0.001 |
| Naturalness c × PlusOneSD | 0.00 | 0.00 | 0.00 – 0.01 | 3.32 | 0.001 |
| Random Effects | |||||
| σ2 | 410.57 | ||||
| τ00 id | 405.49 | ||||
| ICC | 0.50 | ||||
| N id | 1002 | ||||
| Observations | 2696 | ||||
| Marginal R2 / Conditional R2 | 0.099 / 0.547 | ||||
# Etract predicted values from the models
L$M.PlusOne.pred <- predict(M.PlusOne, allow.new.levels = TRUE, newdata = L)
L$M.MinusOne.pred <- predict(M.MinusOne, allow.new.levels = TRUE, newdata = L)
# Plot the predicted values against the original data
library(ggplot2)
# Create plot of aversion to tampering with nature interacting with naturalness in predicting support of technologies.
m.w3 <- lmer(Support ~ Naturalness.c*ATNS_Score.c + C1 + C2 + C3 + C4 + C5 + (1|id), data = L)
## Warning: Some predictor variables are on very different scales: consider
## rescaling
## Warning: Some predictor variables are on very different scales: consider
## rescaling
summary (m.w3 )
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Naturalness.c * ATNS_Score.c + C1 + C2 + C3 + C4 +
## C5 + (1 | id)
## Data: L
##
## REML criterion at convergence: 25164.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.8274 -0.4357 0.0464 0.4905 2.9816
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 405.5 20.14
## Residual 410.6 20.26
## Number of obs: 2696, groups: id, 1002
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 5.635e+01 7.647e-01 1.064e+03 73.683 < 2e-16
## Naturalness.c 3.718e-01 2.206e-02 2.148e+03 16.856 < 2e-16
## ATNS_Score.c 2.097e-02 4.321e-02 9.995e+02 0.485 0.627603
## C1 -3.355e+00 9.091e-01 1.938e+03 -3.690 0.000230
## C2 7.938e-01 1.263e+00 1.978e+03 0.629 0.529650
## C3 7.009e+00 1.407e+00 2.058e+03 4.981 6.84e-07
## C4 5.227e+00 1.910e+00 2.084e+03 2.737 0.006262
## C5 -1.279e+01 1.469e+00 1.991e+03 -8.705 < 2e-16
## Naturalness.c:ATNS_Score.c 3.168e-03 9.553e-04 2.113e+03 3.317 0.000927
##
## (Intercept) ***
## Naturalness.c ***
## ATNS_Score.c
## C1 ***
## C2
## C3 ***
## C4 **
## C5 ***
## Naturalness.c:ATNS_Score.c ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Ntrln. ATNS_S C1 C2 C3 C4 C5
## Naturlnss.c -0.013
## ATNS_Scor.c 0.005 0.011
## C1 -0.115 0.211 -0.008
## C2 -0.026 0.283 0.010 0.075
## C3 -0.117 0.091 -0.010 0.176 0.055
## C4 -0.179 0.160 -0.017 0.295 0.093 0.311
## C5 -0.020 -0.275 -0.024 0.019 -0.115 0.049 0.035
## Nt.:ATNS_S. 0.004 -0.227 -0.011 -0.046 0.031 -0.033 -0.029 -0.008
## fit warnings:
## Some predictor variables are on very different scales: consider rescaling
#create plot
p <- plot_model(m.w3, type = "pred",
terms = c("Naturalness.c", "ATNS_Score.c [-17.36, 17.36]")) +
ggtitle("") +
ylab("Support (0-100)") +
xlab("Naturalness 0-100 (Mean Centered at 50.22)") +
theme_minimal() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.line = element_line(colour = "black"),
legend.background = element_rect(fill = "white", color = "white"))
p <- p + labs(color = "Aversion to Tampering with Nature")
(p.w3 <- p +
scale_color_manual(labels = c("-1 SD", "+1 SD"),
values = c("blue", "red")) +
scale_fill_manual(values = c("blue", "red")) +
scale_y_continuous(breaks = c(0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100), limits = c(20, 80)) +
scale_x_continuous(breaks = c(-50, -40, -30, -20, -10, 0, 10, 20, 30, 40, 50),
limits = c(-40, 40)))
## Scale for colour is already present.
## Adding another scale for colour, which will replace the existing scale.
## Scale for y is already present.
## Adding another scale for y, which will replace the existing scale.
## Warning: Removed 10 rows containing missing values (`geom_line()`).
# Note: Ideology score is the mean of political party (-3 Dem to +3 Rep) and political orientation (-3 Lib to +3 Con).
modA.13 <- lmer(Support ~ Ideology.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + Ideology.c*C1 + Ideology.c*C2 + Ideology.c*C3 + Ideology.c*C4 + Ideology.c*C5+ Naturalness.c*C1 + Naturalness.c*C2 + Naturalness.c*C3 + Naturalness.c*C4 + Naturalness.c*C5 + (1|id), data = L)
summary(modA.13)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Ideology.c * Naturalness.c + C1 + C2 + C3 + C4 + C5 +
## Ideology.c * C1 + Ideology.c * C2 + Ideology.c * C3 + Ideology.c *
## C4 + Ideology.c * C5 + Naturalness.c * C1 + Naturalness.c *
## C2 + Naturalness.c * C3 + Naturalness.c * C4 + Naturalness.c *
## C5 + (1 | id)
## Data: L
##
## REML criterion at convergence: 25033.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.2704 -0.4370 0.0380 0.4837 3.1912
##
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 400.6 20.01
## Residual 387.2 19.68
## Number of obs: 2696, groups: id, 1002
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 53.41375 1.10914 1121.69445 48.158 < 2e-16 ***
## Ideology.c -2.86070 0.44620 1035.56708 -6.411 2.19e-10 ***
## Naturalness.c 0.36948 0.02885 2099.56941 12.809 < 2e-16 ***
## C1 -3.78302 1.34778 1918.37250 -2.807 0.00505 **
## C2 3.95595 1.88914 1961.31846 2.094 0.03638 *
## C3 2.82170 2.02530 2008.99500 1.393 0.16371
## C4 5.84323 2.82966 2063.77659 2.065 0.03905 *
## C5 -10.76424 2.13430 1979.68390 -5.043 4.99e-07 ***
## Ideology.c:Naturalness.c 0.01924 0.01156 2110.09973 1.664 0.09621 .
## Ideology.c:C1 -0.56020 0.52752 1901.21314 -1.062 0.28839
## Ideology.c:C2 1.68907 0.72926 1928.94700 2.316 0.02065 *
## Ideology.c:C3 -0.96890 0.81646 2001.20950 -1.187 0.23549
## Ideology.c:C4 3.18819 1.09619 2052.70546 2.908 0.00367 **
## Ideology.c:C5 -1.21329 0.84870 1969.82266 -1.430 0.15299
## Naturalness.c:C1 0.01061 0.04520 2207.13679 0.235 0.81441
## Naturalness.c:C2 0.30724 0.06017 2137.16060 5.106 3.58e-07 ***
## Naturalness.c:C3 0.13352 0.06406 2156.51911 2.084 0.03725 *
## Naturalness.c:C4 0.60525 0.08418 2059.06130 7.190 9.03e-13 ***
## Naturalness.c:C5 -0.36607 0.07841 2223.87525 -4.668 3.21e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation matrix not shown by default, as p = 19 > 12.
## Use print(x, correlation=TRUE) or
## vcov(x) if you need it
tab_model(modA.13,
show.stat = T, show.se = T)
| Support | |||||
|---|---|---|---|---|---|
| Predictors | Estimates | std. Error | CI | Statistic | p |
| (Intercept) | 53.41 | 1.11 | 51.24 – 55.59 | 48.16 | <0.001 |
| Ideology c | -2.86 | 0.45 | -3.74 – -1.99 | -6.41 | <0.001 |
| Naturalness c | 0.37 | 0.03 | 0.31 – 0.43 | 12.81 | <0.001 |
| C1 | -3.78 | 1.35 | -6.43 – -1.14 | -2.81 | 0.005 |
| C2 | 3.96 | 1.89 | 0.25 – 7.66 | 2.09 | 0.036 |
| C3 | 2.82 | 2.03 | -1.15 – 6.79 | 1.39 | 0.164 |
| C4 | 5.84 | 2.83 | 0.29 – 11.39 | 2.06 | 0.039 |
| C5 | -10.76 | 2.13 | -14.95 – -6.58 | -5.04 | <0.001 |
|
Ideology c × Naturalness c |
0.02 | 0.01 | -0.00 – 0.04 | 1.66 | 0.096 |
| Ideology c × C1 | -0.56 | 0.53 | -1.59 – 0.47 | -1.06 | 0.288 |
| Ideology c × C2 | 1.69 | 0.73 | 0.26 – 3.12 | 2.32 | 0.021 |
| Ideology c × C3 | -0.97 | 0.82 | -2.57 – 0.63 | -1.19 | 0.235 |
| Ideology c × C4 | 3.19 | 1.10 | 1.04 – 5.34 | 2.91 | 0.004 |
| Ideology c × C5 | -1.21 | 0.85 | -2.88 – 0.45 | -1.43 | 0.153 |
| Naturalness c × C1 | 0.01 | 0.05 | -0.08 – 0.10 | 0.23 | 0.814 |
| Naturalness c × C2 | 0.31 | 0.06 | 0.19 – 0.43 | 5.11 | <0.001 |
| Naturalness c × C3 | 0.13 | 0.06 | 0.01 – 0.26 | 2.08 | 0.037 |
| Naturalness c × C4 | 0.61 | 0.08 | 0.44 – 0.77 | 7.19 | <0.001 |
| Naturalness c × C5 | -0.37 | 0.08 | -0.52 – -0.21 | -4.67 | <0.001 |
| Random Effects | |||||
| σ2 | 387.17 | ||||
| τ00 id | 400.58 | ||||
| ICC | 0.51 | ||||
| N id | 1002 | ||||
| Observations | 2696 | ||||
| Marginal R2 / Conditional R2 | 0.147 / 0.581 | ||||
confint(modA.13)
## Computing profile confidence intervals ...
## 2.5 % 97.5 %
## .sig01 18.777984081 21.27723829
## .sigma 18.939365360 20.27260590
## (Intercept) 51.243474180 55.58632645
## Ideology.c -3.734372403 -1.98698855
## Naturalness.c 0.313133732 0.42578747
## C1 -6.413265813 -1.14564217
## C2 0.252001147 7.64439868
## C3 -1.131114337 6.77876748
## C4 0.320322847 11.37172363
## C5 -14.930152006 -6.58349810
## Ideology.c:Naturalness.c -0.003341106 0.04179837
## Ideology.c:C1 -1.589645906 0.47084107
## Ideology.c:C2 0.263326728 3.11217239
## Ideology.c:C3 -2.562822880 0.62550316
## Ideology.c:C4 1.047253764 5.32810928
## Ideology.c:C5 -2.870338335 0.44377088
## Naturalness.c:C1 -0.079592978 0.09970263
## Naturalness.c:C2 0.189738705 0.42534906
## Naturalness.c:C3 0.008075963 0.25854762
## Naturalness.c:C4 0.440974134 0.77002250
## Naturalness.c:C5 -0.520201739 -0.21287406