Exit Models

Author

Sharon & Nir

Published

April 18, 2023

Code
knitr::opts_chunk$set(warning = FALSE, message = FALSE)
Code
library(sjPlot)
library(sjmisc)
library(sjlabelled)
library(lme4)
library(regclass)
library(stargazer)
library(dplyr)
library(tidyr)
library(effects)
library(lavaan)
library(ggplot2)
library(stringr)
library(labelled)
library(modelsummary)
Code
data <- read.csv("data_for_analysis_extended_17.4.csv", header = TRUE)
new_data <- read.csv("new_data.csv", header = TRUE)

A Distribution of Perceptions of Civil Service Exit

A Distribution of Perceptions of Influence (Future)

Code
Q5 <- as.data.frame(
  new_data %>%
    group_by(Q5) %>%
    filter(!is.na(Q5))%>%
    summarize(N = n()))

Q5_merged <- 
  Q5 %>%
  mutate(Q5 = case_when(Q5 %in% c("1","2") ~ "1",
                        Q5 %in% "3" ~ "2",
                        Q5 %in% c("4","5") ~ "3"))

Q5_new <- Q5_merged %>% 
  type.convert(as.is=TRUE) %>% 
  group_by(Q5) %>% 
  summarise(N=sum(N, na.rm = TRUE))%>% 
  mutate(freq = N / sum(N))%>% round(2)%>%
  mutate(freq.lab=str_c(100*freq,"%"))


ggplot(Q5_new) +
  geom_bar(aes(x=factor(Q5), y=freq), stat="identity")+
  geom_text(aes(x=factor(Q5), y=freq, label = freq.lab),vjust=-0.3,size=4)+
  scale_x_discrete(labels = c("החלשות והחלשות משמעותית", "ללא שינוי" ,"התחזקות והתחזקות משמעותית"))+
  scale_y_continuous(labels = function(x) paste0(x*100, "%"), limits=c(0,1))+
  theme(
        text = element_text(family="Optima"),
        strip.text = element_text(size=24),
        axis.text = element_text(size =12),
        axis.line = element_line(colour = "black"),
        panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
        legend.title=element_blank(),
        legend.text=element_text(size=14),
        legend.position='bottom',
        legend.direction ='horizontal',
        legend.key=element_blank(),
        legend.margin = unit(0.2, "line"),
        legend.key.height=unit(0.6,"line"), 
        plot.title=element_text(size=12,face="bold", hjust = 0.5),
        axis.title.x=element_text(size=24),
        axis.title.y=element_text(size=24))+
  xlab("")+
  ylab("")+
  ggtitle("במבט קדימה על חמש השנים הבאות, באיזו מידה אתה צופה שתהיה התחזקות או החלשות \n ?במידת ההשפעה של הדרג המקצועי ביחידה שלך על מדיניות המשרד בתחום הפעילות של היחידה")

A Distribution of Perceptions of Meritiocracy (Future)

Code
Q11 <- as.data.frame(
  new_data %>%
    group_by(Q11) %>%
    filter(!is.na(Q11))  %>%
    summarize(N = n()))

Q11_merged <- 
  Q11 %>%
  mutate(Q11 = case_when(Q11 %in% c("1","2") ~ "1",
                        Q11 %in% "3" ~ "2",
                        Q11 %in% c("4","5") ~ "3"))

Q11_new <- Q11_merged %>% 
  type.convert(as.is=TRUE) %>% 
  group_by(Q11) %>% 
  summarise(N=sum(N, na.rm = TRUE))%>% 
  mutate(freq = N / sum(N))%>% round(2)%>%
  mutate(freq.lab=str_c(100*freq,"%"))

ggplot(Q11_new) +
  geom_bar(aes(factor(x=Q11), y=freq), stat="identity")+
  geom_text(aes(x=factor(Q11), y=freq, label = freq.lab),vjust=-0.3,size=4)+
  scale_x_discrete(labels = c("שינוי לרעה ושינוי משמעותי לרעה", "ללא שינוי" ,"שינוי לטובה ושינוי משמעותי לטובה"))+
  scale_y_continuous(labels = function(x) paste0(x*100, "%"), limits=c(0,1))+
  theme(strip.text = element_text(size=24),
        axis.text = element_text(size =12),
        axis.line = element_line(colour = "black"),
        panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
        legend.title=element_blank(),
        legend.text=element_text(size=20),
        legend.position='bottom',
        legend.direction ='horizontal',
        legend.key=element_blank(),
        legend.margin = unit(0.2, "line"),
        legend.key.height=unit(0.6,"line"), 
        plot.title=element_text(size=12,face="bold", hjust = 0.5),
        axis.title.x=element_text(size=24),
        axis.title.y=element_text(size=24))+
  xlab("")+
  ylab("")+
  ggtitle("במבט קדימה על חמש השנים הבאות, באיזו מידה אתה צופה שיהיה שינוי לטובה\n ?או לרעה במידה שבה קידומים במשרד ייעשו בפועל על בסיס ניסיון רלוונטי, יכולת ועבודה קשה")

Code
t1<-new_data %>% group_by(Q11) %>%
  drop_na(Q11) %>% 
  summarize(n=n())%>%
mutate(freq=(n/sum(n))%>%round(2))%>%
  mutate(freq.lab=str_c(100*freq,"%"))

t1%>%
  #drop_na(trust_in_gov_lab)%>%
  ggplot(aes(x=Q11 %>% as_factor(),y=n))+geom_col(width=0.75,alpha=0.8,fill="dodgerblue2")+
  geom_text(aes(label=freq.lab),colour="gray20",hjust=-0.1,size=3)+
  scale_x_discrete(labels = c("שינוי משמעותי לרעה", "שינוי לרעה", "ללא שינוי", "שינוי לטובה", "שינוי משמעותי לטובה"))+
  theme_classic()+
  labs(title=var_label(new_data$Q11) %>% stringr::str_wrap(),x="",y="")+
  coord_flip()  +
  theme_classic()+
  theme(
  plot.title = element_text(hjust = 1),
  plot.subtitle = element_text(hjust = 1),
  plot.caption = element_text(hjust = 0)
  )+
  ylab("כמות משיבים")+
  ggtitle("במבט קדימה על חמש השנים הבאות, באיזו מידה אתה צופה שיהיה שינוי לטובה\n ?או לרעה במידה שבה קידומים במשרד ייעשו בפועל על בסיס ניסיון רלוונטי, יכולת ועבודה קשה")

A Distribution of Perceptions of Backsliding Democracy

Code
data=mutate(data,demo_backsliding_original = (Q16_1 + Q16_2 + Q16_3 + Q16_4 + Q16_5)/5) # without Q15 for graph
ggplot(data = data,aes(x=demo_backsliding_original))+geom_histogram(binwidth = 0.3)+
  scale_x_continuous(breaks = 1:7)+
  xlab("אמונה שהדמוקרטיה הישראלית בסכנה עקב הרפורמה המשפטית (1 = סכנה נמוכה; 7 = סכנה גבוהה)")+
  ylab("כמות משיבים")

Models

Code
data_1 <- select(data, c(PAST_INFLUENCE, PAST_MERITOCRATIC,
                         PROJECT_MERITOCRATIC,BACKSLIDING_2,PROJECT_INFLUENCE,
                         INTENT_EXIT_2,position_type,ranking,tenure,ministry,age,gender,religiosity,education))

data_2 <- na.omit(data_1)

Descriptive Statistics

# A tibble: 2 x 2
  gender     N
  <chr>  <int>
1 female   206
2 male     155
# A tibble: 4 x 2
  ranking         N
  <chr>       <int>
1 junior         56
2 middle        180
3 senior        107
4 very senior    18
# A tibble: 5 x 2
  education       N
  <chr>       <int>
1 bachelor       51
2 high-school     3
3 master        274
4 other           6
5 phd            27
# A tibble: 5 x 2
  tenure     N
  <chr>  <int>
1 1-        10
2 1-5      103
3 11-20     91
4 20+       61
5 6-10      96
# A tibble: 4 x 2
  position_type          N
  <chr>              <int>
1 competitive tender   310
2 other                 28
3 replacement           12
4 trust based           11

Multi-level Models

Code
m1 <- lme4::lmer(INTENT_EXIT_2 ~ 
                   tenure + 
                   position_type + 
                   ranking + 
                   gender + 
                   age + 
                   factor(education)+
                   factor(religiosity) + 
                   (1|ministry), 
                 data_2)


m2 <- lme4::lmer(INTENT_EXIT_2 ~ 
                   BACKSLIDING_2+
                   tenure + 
                   position_type + 
                   ranking + 
                   gender + 
                   age + 
                   factor(education)+
                   factor(religiosity) + 
                   (1|ministry), 
                 data_2)

m3 <- lme4::lmer(INTENT_EXIT_2 ~ 
                   PROJECT_INFLUENCE + 
                   PAST_INFLUENCE+
                   tenure + 
                   position_type + 
                   ranking + 
                   gender + 
                   age + 
                   factor(education)+
                   factor(religiosity) + 
                   (1|ministry), 
                 data_2)

m4 <- lme4::lmer(INTENT_EXIT_2 ~ 
                   PROJECT_MERITOCRATIC +
                   PAST_MERITOCRATIC + 
                   tenure + 
                   position_type + 
                   ranking + 
                   gender + 
                   age + 
                   factor(education)+
                   factor(religiosity) + 
                   (1|ministry), 
                 data_2)

m5 <- lme4::lmer(INTENT_EXIT_2 ~ 
                   PROJECT_INFLUENCE + 
                   PROJECT_MERITOCRATIC +
                   PAST_MERITOCRATIC + 
                   PAST_INFLUENCE+
                   tenure + 
                   position_type + 
                   ranking + 
                   gender + 
                   age + 
                   factor(education)+
                   factor(religiosity) + 
                   (1|ministry), 
                 data_2)

m6 <- lme4::lmer(INTENT_EXIT_2 ~ 
                   BACKSLIDING_2+
                   PROJECT_INFLUENCE + 
                   PROJECT_MERITOCRATIC+ 
                   PAST_INFLUENCE  + 
                   PAST_MERITOCRATIC + 
                   tenure + 
                   position_type + 
                   ranking + 
                   gender + 
                   age + 
                   factor(education)+
                   factor(religiosity) + 
                   (1|ministry), 
                 data_2)

m7 <- lme4::lmer(INTENT_EXIT_2 ~ 
                   BACKSLIDING_2+
                   PROJECT_MERITOCRATIC+ 
                   PAST_MERITOCRATIC + 
                   tenure + 
                   position_type + 
                   ranking + 
                   gender + 
                   age + 
                   factor(education)+
                   factor(religiosity) + 
                   (1|ministry), 
                 data_2)


#Predictions from model 6
data_2$religiosity <- as.factor(data_2$religiosity)
data_2$education <- as.factor(data_2$education)
m6 <- lme4::lmer(INTENT_EXIT_2 ~ 
                   BACKSLIDING_2+
                   PROJECT_INFLUENCE + 
                   PROJECT_MERITOCRATIC+ 
                   PAST_INFLUENCE  + 
                   PAST_MERITOCRATIC + 
                   tenure + 
                   position_type + 
                   ranking + 
                   gender + 
                   age + 
                   education+
                   religiosity + 
                   (1|ministry), 
                 data_2)

models <- list(m1, m2, m3, m4, m5, m6, m7)
modelsummary(models, stars = TRUE)
 (1)   (2)   (3)   (4)   (5)   (6)   (7)
(Intercept) 0.092 0.047 0.040 -0.043 -0.060 -0.084 -0.067
(0.151) (0.149) (0.160) (0.150) (0.164) (0.163) (0.149)
tenure1-5 -0.112 -0.110 -0.135 -0.125 -0.127 -0.121 -0.122
(0.108) (0.106) (0.107) (0.104) (0.104) (0.104) (0.103)
tenure11-20 -0.039 -0.048 -0.068 -0.088 -0.089 -0.085 -0.086
(0.112) (0.110) (0.111) (0.108) (0.109) (0.108) (0.107)
tenure20+ -0.128 -0.133 -0.150 -0.169 -0.170 -0.166 -0.166
(0.118) (0.116) (0.117) (0.114) (0.114) (0.113) (0.113)
tenure6-10 -0.092 -0.101 -0.115 -0.131 -0.132 -0.130 -0.131
(0.111) (0.109) (0.110) (0.107) (0.107) (0.106) (0.106)
position_typeother 0.053 0.037 0.044 0.041 0.042 0.036 0.034
(0.066) (0.065) (0.065) (0.063) (0.064) (0.063) (0.063)
position_typereplacement 0.016 -0.013 -0.015 -0.018 -0.021 -0.032 -0.033
(0.095) (0.094) (0.095) (0.092) (0.093) (0.092) (0.092)
position_typetrust based 0.094 0.133 0.106 0.107 0.106 0.130 0.132
(0.100) (0.099) (0.099) (0.096) (0.097) (0.097) (0.096)
rankingmiddle 0.045 0.034 0.050 0.040 0.038 0.031 0.035
(0.055) (0.054) (0.055) (0.053) (0.054) (0.053) (0.052)
rankingsenior 0.026 0.018 0.029 0.037 0.034 0.033 0.036
(0.062) (0.060) (0.062) (0.060) (0.061) (0.061) (0.060)
rankingvery senior 0.066 0.027 0.053 0.052 0.048 0.036 0.040
(0.096) (0.095) (0.097) (0.094) (0.096) (0.095) (0.094)
gendermale 0.014 0.033 0.021 0.022 0.021 0.034 0.035
(0.034) (0.034) (0.034) (0.033) (0.033) (0.033) (0.033)
age31-40 0.134+ 0.131+ 0.118 0.127+ 0.128+ 0.124+ 0.121+
(0.072) (0.071) (0.072) (0.070) (0.071) (0.070) (0.070)
age41-50 0.199* 0.206** 0.195* 0.192* 0.193* 0.190* 0.188*
(0.080) (0.078) (0.079) (0.078) (0.079) (0.078) (0.078)
age51-60 0.256** 0.268** 0.252** 0.243** 0.245** 0.243** 0.241**
(0.091) (0.089) (0.091) (0.090) (0.091) (0.090) (0.090)
age60+ 0.194 0.225+ 0.201 0.207+ 0.213+ 0.217+ 0.210+
(0.127) (0.125) (0.130) (0.125) (0.128) (0.127) (0.124)
factor(education)high-school 0.431* 0.395* 0.409* 0.369+ 0.369+ 0.358+
(0.202) (0.198) (0.200) (0.195) (0.195) (0.193)
factor(education)master 0.055 0.057 0.063 0.080 0.080 0.081
(0.053) (0.052) (0.052) (0.051) (0.051) (0.051)
factor(education)other -0.038 -0.041 -0.028 -0.036 -0.037 -0.037
(0.146) (0.144) (0.145) (0.141) (0.141) (0.140)
factor(education)phd -0.049 -0.048 -0.059 -0.041 -0.041 -0.037
(0.080) (0.079) (0.079) (0.078) (0.078) (0.077)
factor(religiosity)other 0.036 0.001 0.002 0.048 0.045 0.034
(0.176) (0.173) (0.175) (0.170) (0.171) (0.169)
factor(religiosity)religious 0.084 0.050 0.045 -0.002 -0.005 -0.008
(0.092) (0.090) (0.092) (0.089) (0.090) (0.089)
factor(religiosity)secular 0.209* 0.036 0.132 0.058 0.054 -0.026
(0.086) (0.095) (0.089) (0.087) (0.088) (0.094)
factor(religiosity)traditional-religious 0.197+ 0.107 0.150 0.122 0.118 0.076
(0.107) (0.108) (0.108) (0.104) (0.105) (0.105)
factor(religiosity)traditional-unsecular 0.174+ 0.054 0.118 0.047 0.045 -0.008
(0.097) (0.100) (0.098) (0.096) (0.097) (0.099)
BACKSLIDING_2 0.258*** 0.172* 0.165*
(0.067) (0.073) (0.071)
PROJECT_INFLUENCE 0.224** 0.013 -0.029
(0.074) (0.087) (0.088)
PAST_INFLUENCE -0.020 0.020 0.027
(0.081) (0.083) (0.082)
PROJECT_MERITOCRATIC 0.398*** 0.393*** 0.350*** 0.330***
(0.073) (0.089) (0.090) (0.077)
PAST_MERITOCRATIC 0.056 0.060 0.091 0.083
(0.063) (0.066) (0.067) (0.064)
educationhigh-school 0.357+
(0.194)
educationmaster 0.081
(0.051)
educationother -0.040
(0.140)
educationphd -0.034
(0.077)
religiosityother 0.035
(0.170)
religiosityreligious -0.010
(0.090)
religiositysecular -0.029
(0.094)
religiositytraditional-religious 0.075
(0.106)
religiositytraditional-unsecular -0.011
(0.099)
SD (Intercept ministry) 0.000 0.000 0.000 0.023 0.023 0.020 0.018
SD (Observations) 0.309 0.303 0.305 0.296 0.297 0.295 0.294
Num.Obs. 361 361 361 361 361 361 361
R2 Marg. 0.117 0.152 0.140 0.186 0.185 0.197 0.198
R2 Cond. 0.191 0.190 0.201 0.201
AIC 297.5 288.5 298.1 279.3 289.5 289.4 279.5
BIC 402.5 397.3 410.9 392.1 410.1 413.9 396.1
ICC 0.0 0.0 0.0 0.0
RMSE 0.30 0.29 0.29 0.28 0.28 0.28 0.28
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Plot of Intention to Leave and Politization of Appointment System

Code
predict <- as.data.frame(effect("BACKSLIDING_2",m6))
predict <- rename(predict,Intention_to_leave ="fit")
predict <- rename(predict,democratic_backsliding ="BACKSLIDING_2")

ggplot(data=predict, aes(x=democratic_backsliding, y=Intention_to_leave))+
  geom_pointrange(aes(ymin=Intention_to_leave-se, ymax=Intention_to_leave+se))+
  scale_x_continuous(breaks = c(0,0.2, 0.5, 0.8,1))+
  xlab("democratic backsliding")+
  ylab("intention to leave")

Plot intention to leave

Code
predict <- as.data.frame(effect("PROJECT_MERITOCRATIC",m6))
predict <- rename(predict,Intention_to_leave ="fit")
predict <- rename(predict,expectation_of_future_meritocracy ="PROJECT_MERITOCRATIC")

ggplot(data=predict, aes(x=expectation_of_future_meritocracy, y=Intention_to_leave))+
  geom_pointrange(aes(ymin=Intention_to_leave-se, ymax=Intention_to_leave+se))+
  scale_x_continuous(breaks = c(0,0.2, 0.5, 0.8,1)) +
  xlab("expectation of future politicization of appointments and recruitments in the civil service")+
  ylab("intention to leave")

#FE modelling without demographics and ministry affilliations (including regression table as html)

Code
m1 <- lm(INTENT_EXIT_2 ~ 
                   tenure + 
                   position_type + 
                   ranking + 
                   gender + 
                   age + 
                   factor(religiosity) + 
                   factor(education)+
                   factor(ministry), 
                   data=data_2)


m2 <-lm(INTENT_EXIT_2 ~ 
                   BACKSLIDING_2+
                   tenure + 
                   position_type + 
                   ranking + 
                   gender + 
                   age + 
                  factor(education)+
                   factor(religiosity) + 
                   factor(ministry), 
                   data=data_2)

m3 <- lm(INTENT_EXIT_2 ~ 
                   PROJECT_INFLUENCE + 
                   PAST_INFLUENCE+
                   tenure + 
                   position_type + 
                   ranking + 
                   gender + 
                   age + 
                   factor(education)+
                   factor(religiosity) +
                   factor(ministry), 
                  data=data_2)

m4 <- lm(INTENT_EXIT_2 ~ 
                   PROJECT_MERITOCRATIC +
                   PAST_MERITOCRATIC + 
                   tenure + 
                   position_type + 
                   ranking + 
                   gender + 
                   age + 
                   factor(education)+
                   factor(religiosity) +
                   factor(ministry), 
                   data=data_2)

m5 <- lm(INTENT_EXIT_2 ~ 
                   PROJECT_INFLUENCE + 
                   PROJECT_MERITOCRATIC +
                   PAST_MERITOCRATIC + 
                   PAST_INFLUENCE+
                   tenure + 
                   position_type + 
                   ranking + 
                   gender + 
                   age + 
                   factor(education)+
                   factor(religiosity) +
                  factor(ministry), 
                  data=data_2)

m6 <- lm(INTENT_EXIT_2 ~ 
                   BACKSLIDING_2+
                   PROJECT_INFLUENCE + 
                   PROJECT_MERITOCRATIC+ 
                   PAST_INFLUENCE  + 
                   PAST_MERITOCRATIC + 
                   tenure + 
                   position_type + 
                   ranking + 
                   gender + 
                   age + 
                   factor(education)+
                   factor(religiosity) +
                   factor(ministry), 
                   data=data_2)


m7 <- lm(INTENT_EXIT_2 ~ 
                   BACKSLIDING_2+
                   PROJECT_MERITOCRATIC+ 
                   PAST_MERITOCRATIC + 
                   tenure + 
                   position_type + 
                   ranking + 
                   gender + 
                   age + 
                  factor(education)+
                  factor(religiosity) +
                  factor(ministry), 
                  data=data_2)

models <- list(m1, m2, m3, m4, m5, m6, m7)
modelsummary(models, stars = TRUE)
 (1)   (2)   (3)   (4)   (5)   (6)   (7)
(Intercept) 0.127 0.013 0.057 -0.018 -0.042 -0.105 -0.079
(0.196) (0.194) (0.199) (0.192) (0.199) (0.201) (0.193)
tenure1-5 -0.144 -0.141 -0.166 -0.143 -0.146 -0.140 -0.142
(0.112) (0.110) (0.111) (0.107) (0.108) (0.107) (0.107)
tenure11-20 -0.049 -0.069 -0.076 -0.096 -0.097 -0.100 -0.100
(0.117) (0.114) (0.116) (0.112) (0.112) (0.112) (0.111)
tenure20+ -0.128 -0.145 -0.150 -0.164 -0.165 -0.167 -0.167
(0.125) (0.122) (0.123) (0.120) (0.120) (0.119) (0.119)
tenure6-10 -0.102 -0.114 -0.125 -0.134 -0.136 -0.136 -0.137
(0.115) (0.112) (0.113) (0.110) (0.110) (0.110) (0.109)
position_typeother 0.065 0.051 0.054 0.041 0.042 0.039 0.037
(0.072) (0.071) (0.071) (0.069) (0.069) (0.069) (0.069)
position_typereplacement 0.042 0.007 0.004 0.002 -0.002 -0.014 -0.014
(0.099) (0.097) (0.098) (0.095) (0.095) (0.095) (0.094)
position_typetrust based 0.124 0.159 0.125 0.108 0.104 0.128 0.132
(0.106) (0.104) (0.105) (0.101) (0.102) (0.102) (0.101)
rankingmiddle 0.066 0.054 0.065 0.058 0.055 0.048 0.052
(0.057) (0.056) (0.057) (0.054) (0.055) (0.055) (0.054)
rankingsenior 0.029 0.023 0.025 0.042 0.037 0.038 0.042
(0.065) (0.063) (0.065) (0.063) (0.064) (0.063) (0.062)
rankingvery senior 0.069 0.038 0.058 0.060 0.053 0.046 0.053
(0.100) (0.098) (0.100) (0.097) (0.099) (0.098) (0.096)
gendermale 0.043 0.064+ 0.049 0.041 0.041 0.054 0.055
(0.036) (0.036) (0.036) (0.035) (0.035) (0.036) (0.035)
age31-40 0.083 0.085 0.072 0.084 0.086 0.083 0.079
(0.075) (0.074) (0.075) (0.073) (0.073) (0.073) (0.072)
age41-50 0.148+ 0.159+ 0.145+ 0.148+ 0.150+ 0.148+ 0.146+
(0.084) (0.083) (0.084) (0.082) (0.083) (0.082) (0.082)
age51-60 0.193+ 0.213* 0.186+ 0.188+ 0.191* 0.194* 0.191*
(0.099) (0.097) (0.098) (0.096) (0.097) (0.096) (0.096)
age60+ 0.150 0.186 0.162 0.171 0.181 0.186 0.175
(0.135) (0.132) (0.136) (0.131) (0.134) (0.133) (0.131)
factor(religiosity)other -0.033 -0.050 -0.044 0.028 0.022 0.019 0.020
(0.189) (0.185) (0.187) (0.182) (0.183) (0.182) (0.181)
factor(religiosity)religious 0.063 0.030 0.028 -0.013 -0.019 -0.024 -0.019
(0.101) (0.100) (0.101) (0.098) (0.099) (0.099) (0.097)
factor(religiosity)secular 0.198* 0.022 0.122 0.052 0.045 -0.033 -0.026
(0.095) (0.104) (0.097) (0.095) (0.096) (0.103) (0.102)
factor(religiosity)traditional-religious 0.196+ 0.091 0.149 0.124 0.116 0.068 0.075
(0.116) (0.117) (0.116) (0.112) (0.114) (0.115) (0.114)
factor(religiosity)traditional-unsecular 0.154 0.030 0.097 0.029 0.023 -0.029 -0.022
(0.105) (0.108) (0.106) (0.103) (0.104) (0.107) (0.106)
factor(education)high-school 0.415* 0.367+ 0.397+ 0.373+ 0.370+ 0.353+ 0.356+
(0.210) (0.206) (0.207) (0.201) (0.202) (0.201) (0.200)
factor(education)master 0.054 0.055 0.057 0.069 0.069 0.072 0.072
(0.054) (0.053) (0.054) (0.053) (0.053) (0.053) (0.052)
factor(education)other 0.049 0.032 0.043 0.024 0.020 0.015 0.020
(0.152) (0.149) (0.150) (0.146) (0.146) (0.146) (0.145)
factor(education)phd -0.046 -0.046 -0.057 -0.048 -0.049 -0.042 -0.043
(0.085) (0.083) (0.084) (0.081) (0.082) (0.081) (0.081)
factor(ministry)Aliyah and Integration 0.154 0.240 0.187 0.228 0.219 0.273 0.281
(0.347) (0.340) (0.343) (0.333) (0.335) (0.334) (0.332)
factor(ministry)Communications -0.087 -0.025 -0.108 -0.085 -0.095 -0.052 -0.047
(0.336) (0.330) (0.333) (0.322) (0.323) (0.322) (0.321)
factor(ministry)Construction and Housing 0.056 0.107 0.049 0.054 0.049 0.078 0.080
(0.145) (0.143) (0.144) (0.139) (0.140) (0.140) (0.139)
factor(ministry)Culture and Sports 0.420 0.480+ 0.456+ 0.294 0.296 0.320 0.331
(0.255) (0.250) (0.252) (0.247) (0.249) (0.248) (0.246)
factor(ministry)Defense 0.038 0.115 0.016 0.038 0.036 0.091 0.086
(0.178) (0.175) (0.176) (0.170) (0.171) (0.172) (0.171)
factor(ministry)Economy 0.008 0.056 0.000 0.019 0.012 0.041 0.045
(0.131) (0.128) (0.130) (0.125) (0.126) (0.126) (0.125)
factor(ministry)Education -0.031 0.049 -0.027 0.020 0.018 0.060 0.057
(0.146) (0.145) (0.144) (0.140) (0.141) (0.142) (0.141)
factor(ministry)Energy 0.222 0.286+ 0.224 0.235 0.232 0.275+ 0.276+
(0.158) (0.156) (0.156) (0.152) (0.152) (0.153) (0.152)
factor(ministry)Environmental Protection 0.187 0.234 0.160 0.115 0.108 0.144 0.150
(0.163) (0.160) (0.161) (0.156) (0.157) (0.157) (0.156)
factor(ministry)Foreign Affairs 0.079 0.054 0.002 -0.019 -0.023 -0.022 -0.025
(0.226) (0.221) (0.224) (0.217) (0.219) (0.217) (0.216)
factor(ministry)Health -0.006 0.053 -0.018 -0.010 -0.010 0.024 0.021
(0.132) (0.130) (0.131) (0.127) (0.127) (0.128) (0.127)
factor(ministry)Independent Authorities -0.147 -0.089 -0.179 -0.193 -0.202 -0.148 -0.144
(0.169) (0.166) (0.168) (0.162) (0.164) (0.165) (0.163)
factor(ministry)Interior -0.046 0.014 -0.052 0.002 -0.004 0.029 0.029
(0.152) (0.150) (0.150) (0.146) (0.147) (0.147) (0.146)
factor(ministry)Law 0.069 0.151 0.041 0.077 0.071 0.124 0.123
(0.128) (0.127) (0.127) (0.122) (0.123) (0.125) (0.123)
factor(ministry)Local Authorities -0.028 0.041 0.001 0.060 0.052 0.078 0.085
(0.222) (0.218) (0.220) (0.213) (0.214) (0.214) (0.212)
factor(ministry)Ministry of Labor -0.001 0.054 -0.006 -0.023 -0.028 0.006 0.010
(0.144) (0.141) (0.142) (0.138) (0.139) (0.139) (0.138)
factor(ministry)National Security -0.162 -0.077 -0.128 -0.123 -0.127 -0.094 -0.087
(0.169) (0.167) (0.167) (0.162) (0.163) (0.163) (0.162)
factor(ministry)Other -0.065 0.028 -0.077 -0.065 -0.069 -0.009 -0.009
(0.149) (0.148) (0.147) (0.143) (0.143) (0.145) (0.144)
factor(ministry)Population and Immigration Authority 0.413 0.483 0.394 0.515 0.512 0.542+ 0.533+
(0.336) (0.330) (0.332) (0.322) (0.324) (0.323) (0.321)
factor(ministry)Prime Minister 0.028 0.089 0.041 0.059 0.056 0.080 0.083
(0.132) (0.130) (0.130) (0.127) (0.128) (0.128) (0.127)
factor(ministry)Religious Services -0.229 -0.163 -0.261 -0.219 -0.236 -0.203 -0.193
(0.344) (0.337) (0.340) (0.329) (0.332) (0.331) (0.328)
factor(ministry)Science and Technology -0.159 -0.111 -0.166 -0.119 -0.126 -0.093 -0.091
(0.168) (0.165) (0.167) (0.161) (0.163) (0.162) (0.161)
factor(ministry)Social Equality 0.234 0.290 0.253 0.304 0.299 0.324 0.328
(0.256) (0.251) (0.253) (0.246) (0.247) (0.246) (0.245)
factor(ministry)Transportation 0.079 0.134 0.063 0.040 0.036 0.075 0.077
(0.152) (0.150) (0.151) (0.146) (0.147) (0.147) (0.146)
factor(ministry)Treasury -0.077 0.008 -0.095 -0.108 -0.113 -0.052 -0.051
(0.133) (0.132) (0.131) (0.127) (0.128) (0.130) (0.129)
factor(ministry)Welfare and Social Security 0.050 0.129 0.054 0.043 0.037 0.079 0.085
(0.134) (0.132) (0.132) (0.128) (0.129) (0.130) (0.129)
BACKSLIDING_2 0.267*** 0.164* 0.156*
(0.070) (0.078) (0.076)
PROJECT_INFLUENCE 0.246** 0.018 -0.028
(0.077) (0.091) (0.093)
PAST_INFLUENCE 0.005 0.038 0.041
(0.085) (0.086) (0.085)
PROJECT_MERITOCRATIC 0.424*** 0.420*** 0.378*** 0.357***
(0.076) (0.095) (0.096) (0.083)
PAST_MERITOCRATIC 0.028 0.036 0.073 0.061
(0.068) (0.071) (0.072) (0.069)
Num.Obs. 361 361 361 361 361 361 361
R2 0.190 0.227 0.217 0.264 0.265 0.275 0.274
R2 Adj. 0.060 0.099 0.085 0.140 0.135 0.145 0.149
AIC 226.0 211.3 217.7 195.4 199.1 196.0 192.4
BIC 428.2 417.4 427.7 405.4 416.9 417.6 406.3
Log.Lik. -61.003 -52.648 -54.865 -43.687 -43.557 -40.982 -41.198
F 1.457 1.779 1.645 2.129 2.042 2.107 2.191
RMSE 0.29 0.28 0.28 0.27 0.27 0.27 0.27
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001