# Mindanao State University
# General Santos City
# Introduction to R base commands
# Submitted by:ANGGA,PRINCESS JOY C.
# Mat108
# Processing of continuous data
# Using random number generators
# Exer1: generate data with mean 2 and standard deviation 1.5 using rnorm() command
data <- rnorm(1000,2,1.5) # 1 thousand values
length(data) # count number of elements
## [1] 1000
data[1:20] # display first 20 elements
##  [1] 0.4817050 1.7748488 0.4185488 0.0938448 0.2204109 5.4289669 2.3465584
##  [8] 2.7493398 2.1488291 2.6874033 5.7012437 1.7341444 1.3355748 3.2351546
## [15] 2.0714138 0.3560184 2.1761205 3.0915067 2.7838319 1.5235322
data[1:300] # display the first 300 elements
##   [1]  0.48170498  1.77484879  0.41854877  0.09384480  0.22041086  5.42896692
##   [7]  2.34655841  2.74933984  2.14882915  2.68740333  5.70124368  1.73414441
##  [13]  1.33557479  3.23515458  2.07141379  0.35601837  2.17612048  3.09150671
##  [19]  2.78383189  1.52353223  2.83299546  1.57318595  1.52299520  0.76398933
##  [25]  1.48738688  1.44663268  1.52021096  1.66398787  1.29545700  3.46911811
##  [31]  4.36178306  0.21920191 -0.16661837  1.42697689  1.65290795  3.77251418
##  [37]  0.84518391  2.11996676  5.33489925 -0.87657204  2.33179981  0.62537081
##  [43]  0.04612595  1.35046850  3.26485985  2.80227657 -0.50235235  1.90486459
##  [49]  4.61075074 -0.78119649  1.67051839  0.95319468  0.82344464  4.15881704
##  [55]  1.15653194  3.54766661  0.74170573  3.56183483  1.54323273  2.65352690
##  [61] -0.33403946  2.16160583 -0.13222141  1.74631232  1.35931433  2.47067268
##  [67]  5.64479832  2.57799659  0.52834699  3.73273829 -1.36890662  3.94046113
##  [73]  3.33963719 -0.41688211  5.12841478  1.39961297  0.51626361  3.05984648
##  [79]  4.26562368  3.62038041  2.10304047  0.68679149  0.69720609  2.91259664
##  [85]  1.69744281  2.02166059  2.09982739  2.78913054  1.62891447  3.03484981
##  [91]  2.88278422  0.65903291  0.81979666  0.62423048  3.93027768  0.33408208
##  [97]  0.58160311  1.93479517  1.85107771  1.26413704  1.70040093  4.98741159
## [103]  1.90370026  1.72927391  0.34862855 -1.44051501 -1.84722989  0.57809664
## [109]  2.13602578  1.13742333  0.96429292  2.45658854  5.78444071  1.92481922
## [115]  1.96289696  0.15388045  2.71998189  1.11424378  2.20491383  0.82845129
## [121]  0.01858452  3.16130947  4.10287931  1.47622496  4.58689712  2.71916659
## [127]  1.95286600  2.29910721  1.98876421  3.19318324  1.79852430  1.21445840
## [133]  2.08754821  1.96478286  3.24498019  2.50082232  2.48587560  0.44650969
## [139]  0.78595734  3.05926702  1.58585501  1.18257762  2.44505895  2.90655843
## [145]  2.65638763  2.16201511 -0.66593240  3.29061568  1.67301067  1.62154405
## [151]  0.21645085  3.77333314  1.05025756  3.42293983  3.03258033  4.38548148
## [157]  2.67540198  0.97183311  1.10976865  2.65042120  1.02340908  4.15115698
## [163] -0.28542072  1.51748061  2.22160494  1.50393168  2.72323747  3.33319798
## [169]  0.32529349  4.43562547  4.18510219 -0.05260419  3.52466416 -0.39606630
## [175]  1.54739640  1.54886404  0.90792107  3.26221314  2.31992486  5.01442099
## [181]  2.83924292  3.20653503  3.19664534 -0.74940019  4.48421896  1.14650527
## [187]  1.80880142  0.87722266  1.08532637  1.93884302  0.43506124  2.07720414
## [193] -0.13565361  2.59959321  2.15945970  2.28336584  0.32037006  1.54636057
## [199]  1.66406760  1.98957991  2.43552884  1.80373700  1.32776220  1.61179871
## [205]  2.17258924  0.63883684  3.12684691  0.54963264  3.05180440  2.16575698
## [211]  1.13270369  0.69702324  1.77047924  4.68451108  3.09927388 -0.49141265
## [217]  4.44014422  1.65276733  3.36316511  3.56081433  1.24897780  2.92734146
## [223]  5.46395671  0.31914034  4.32261635  1.72575286  2.64351352  0.62722633
## [229] -0.56653794  2.53676523  1.45279196 -0.51116407  1.92753396  2.51201808
## [235]  1.94971492  1.06821067  0.26044263  3.12321285  4.90633681  0.19048035
## [241]  4.37970472 -0.22203361  3.30374363  1.80885073  2.32185691  0.05788919
## [247]  2.96334015  2.10590985  2.58309697  0.32274486  1.94045180  0.26880333
## [253]  1.34436585 -0.12681517  1.82677388  2.31431188  2.23681792  1.89030464
## [259]  1.77119517  0.22159893  1.71414107  1.98397962 -0.33646017  1.21776218
## [265]  0.86031035  2.09053772  2.01691564  2.21204085  4.15142869  1.89966790
## [271]  3.05701038  0.07849038  2.90216920  3.99552299  0.18990334  0.19705333
## [277]  2.80173006  1.56123623  0.77494205  0.15619080  3.79664031  0.48803891
## [283]  1.62344166 -0.04826490  3.13576431  0.81641774  1.60778859  1.72363248
## [289]  4.84600942  3.07600896  1.38467027  1.52529492  2.23988417  1.94799801
## [295]  0.92068393  5.35712295 -0.52422822  0.87493692  5.11732962  2.66823334
# Exer2: Draw histogram with one main title and different thickness
maintitle <- "Histogram and Density Plot"
hist(data, breaks=20,col="lightblue",main = maintitle)
hist(data, breaks=40,col="lightblue",main = maintitle)

hist(data, breaks=100,col="gray",main = maintitle)

hist(data, breaks=300,col="gray",main = maintitle)

# Exer3: Draw histogram with one main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)
hist(data, breaks=40,col="lightblue",main = maintitle)

hist(data, breaks=100,col="gray",main = maintitle)

# Question: What causes the subtitle to be in the second line?
# Exer4: Draw histogram with main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)
# # Add density curve. We define the range of the density curve
x = seq(from=min(data), to=max(data), length.out=100)
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/
  20*length(data)
lines(x, norm_dist, col='violet',lwd=4)

# Exer5: Draw histogram with main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)
# Add density curve and the location of the mean value
(x = seq(from=min(data), to=max(data), length.out=100))
##   [1] -3.65036584 -3.52543612 -3.40050641 -3.27557669 -3.15064698 -3.02571726
##   [7] -2.90078755 -2.77585784 -2.65092812 -2.52599841 -2.40106869 -2.27613898
##  [13] -2.15120926 -2.02627955 -1.90134984 -1.77642012 -1.65149041 -1.52656069
##  [19] -1.40163098 -1.27670127 -1.15177155 -1.02684184 -0.90191212 -0.77698241
##  [25] -0.65205269 -0.52712298 -0.40219327 -0.27726355 -0.15233384 -0.02740412
##  [31]  0.09752559  0.22245531  0.34738502  0.47231473  0.59724445  0.72217416
##  [37]  0.84710388  0.97203359  1.09696331  1.22189302  1.34682273  1.47175245
##  [43]  1.59668216  1.72161188  1.84654159  1.97147131  2.09640102  2.22133073
##  [49]  2.34626045  2.47119016  2.59611988  2.72104959  2.84597931  2.97090902
##  [55]  3.09583873  3.22076845  3.34569816  3.47062788  3.59555759  3.72048731
##  [61]  3.84541702  3.97034673  4.09527645  4.22020616  4.34513588  4.47006559
##  [67]  4.59499530  4.71992502  4.84485473  4.96978445  5.09471416  5.21964388
##  [73]  5.34457359  5.46950330  5.59443302  5.71936273  5.84429245  5.96922216
##  [79]  6.09415188  6.21908159  6.34401130  6.46894102  6.59387073  6.71880045
##  [85]  6.84373016  6.96865988  7.09358959  7.21851930  7.34344902  7.46837873
##  [91]  7.59330845  7.71823816  7.84316788  7.96809759  8.09302730  8.21795702
##  [97]  8.34288673  8.46781645  8.59274616  8.71767588
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/
  20*length(data)
lines(x, norm_dist, col='violet',lwd=4)
abline(v = mean(data), col="black", lwd=3, lty=2)
# Add legend to top right position
legend("topright",
       legend = c("Histogram", "density curve", "Average"),
       col = c("lightblue", "violet", "black"),
       lty = 1)

# Compute Quartile values Q1,Q2 and Q3
# These quantities divide the data into 4 equal parts
hist(data, breaks=20,col="lightblue",main = maintitle)
Quantiles = quantile(data)
Quantiles
##        0%       25%       50%       75%      100% 
## -3.650366  1.023408  2.008921  2.966392  8.717676
# locate the quartiles Q1, Q2, Q3
abline(v = Quantiles[2], col="black", lwd=3, lty=3)
abline(v = Quantiles[3], col="red", lwd=3, lty=3)
abline(v = Quantiles[4], col="blue", lwd=3, lty=3)

# Exer6: Locate the lowest 5% and the highest 5% of the distribution
data
##    [1]  0.481704981  1.774848787  0.418548767  0.093844799  0.220410856
##    [6]  5.428966917  2.346558411  2.749339837  2.148829146  2.687403333
##   [11]  5.701243676  1.734144413  1.335574789  3.235154584  2.071413788
##   [16]  0.356018373  2.176120484  3.091506706  2.783831894  1.523532227
##   [21]  2.832995461  1.573185953  1.522995203  0.763989331  1.487386879
##   [26]  1.446632684  1.520210957  1.663987870  1.295457005  3.469118113
##   [31]  4.361783057  0.219201910 -0.166618370  1.426976888  1.652907950
##   [36]  3.772514179  0.845183908  2.119966762  5.334899251 -0.876572043
##   [41]  2.331799813  0.625370807  0.046125946  1.350468498  3.264859849
##   [46]  2.802276568 -0.502352352  1.904864593  4.610750743 -0.781196485
##   [51]  1.670518386  0.953194678  0.823444641  4.158817035  1.156531941
##   [56]  3.547666606  0.741705733  3.561834829  1.543232733  2.653526897
##   [61] -0.334039465  2.161605827 -0.132221410  1.746312315  1.359314333
##   [66]  2.470672682  5.644798317  2.577996594  0.528346991  3.732738293
##   [71] -1.368906615  3.940461132  3.339637186 -0.416882111  5.128414782
##   [76]  1.399612975  0.516263612  3.059846477  4.265623675  3.620380412
##   [81]  2.103040466  0.686791494  0.697206092  2.912596637  1.697442810
##   [86]  2.021660594  2.099827389  2.789130542  1.628914472  3.034849809
##   [91]  2.882784218  0.659032907  0.819796660  0.624230477  3.930277679
##   [96]  0.334082076  0.581603114  1.934795172  1.851077706  1.264137035
##  [101]  1.700400932  4.987411590  1.903700257  1.729273908  0.348628549
##  [106] -1.440515010 -1.847229893  0.578096640  2.136025775  1.137423325
##  [111]  0.964292924  2.456588543  5.784440710  1.924819221  1.962896960
##  [116]  0.153880451  2.719981892  1.114243780  2.204913829  0.828451285
##  [121]  0.018584517  3.161309469  4.102879310  1.476224962  4.586897118
##  [126]  2.719166592  1.952866001  2.299107209  1.988764205  3.193183242
##  [131]  1.798524300  1.214458401  2.087548205  1.964782857  3.244980194
##  [136]  2.500822323  2.485875595  0.446509691  0.785957342  3.059267017
##  [141]  1.585855015  1.182577620  2.445058948  2.906558433  2.656387629
##  [146]  2.162015112 -0.665932404  3.290615680  1.673010670  1.621544050
##  [151]  0.216450851  3.773333135  1.050257560  3.422939830  3.032580332
##  [156]  4.385481479  2.675401978  0.971833110  1.109768648  2.650421205
##  [161]  1.023409076  4.151156977 -0.285420719  1.517480610  2.221604935
##  [166]  1.503931677  2.723237474  3.333197982  0.325293493  4.435625472
##  [171]  4.185102189 -0.052604193  3.524664159 -0.396066296  1.547396397
##  [176]  1.548864036  0.907921075  3.262213137  2.319924855  5.014420988
##  [181]  2.839242919  3.206535032  3.196645335 -0.749400191  4.484218965
##  [186]  1.146505273  1.808801418  0.877222657  1.085326371  1.938843019
##  [191]  0.435061236  2.077204136 -0.135653611  2.599593211  2.159459699
##  [196]  2.283365840  0.320370063  1.546360566  1.664067600  1.989579910
##  [201]  2.435528841  1.803737003  1.327762202  1.611798705  2.172589243
##  [206]  0.638836844  3.126846907  0.549632636  3.051804405  2.165756979
##  [211]  1.132703694  0.697023240  1.770479237  4.684511075  3.099273876
##  [216] -0.491412650  4.440144220  1.652767328  3.363165111  3.560814329
##  [221]  1.248977798  2.927341465  5.463956713  0.319140342  4.322616347
##  [226]  1.725752864  2.643513519  0.627226330 -0.566537940  2.536765231
##  [231]  1.452791960 -0.511164067  1.927533956  2.512018084  1.949714922
##  [236]  1.068210674  0.260442626  3.123212850  4.906336812  0.190480350
##  [241]  4.379704720 -0.222033610  3.303743627  1.808850726  2.321856905
##  [246]  0.057889194  2.963340146  2.105909851  2.583096965  0.322744855
##  [251]  1.940451797  0.268803330  1.344365855 -0.126815171  1.826773876
##  [256]  2.314311884  2.236817915  1.890304638  1.771195168  0.221598927
##  [261]  1.714141074  1.983979618 -0.336460169  1.217762183  0.860310347
##  [266]  2.090537720  2.016915639  2.212040854  4.151428694  1.899667902
##  [271]  3.057010383  0.078490381  2.902169198  3.995522988  0.189903338
##  [276]  0.197053331  2.801730061  1.561236226  0.774942048  0.156190800
##  [281]  3.796640312  0.488038915  1.623441656 -0.048264899  3.135764307
##  [286]  0.816417735  1.607788586  1.723632484  4.846009418  3.076008959
##  [291]  1.384670267  1.525294918  2.239884171  1.947998010  0.920683926
##  [296]  5.357122954 -0.524228222  0.874936917  5.117329615  2.668233342
##  [301]  3.208675303 -0.965178206  0.693962871  2.710457614  2.235866331
##  [306]  1.183155750  2.609132034  2.828117162  3.568707747  0.209384784
##  [311]  3.457839719  0.127108228  1.440192795  3.317777037  3.260930583
##  [316]  2.868618221  3.581580696  2.197592013  1.656170029  3.854710490
##  [321]  2.927615985  1.747069080  2.006212473  2.894450669  4.384279270
##  [326] -0.316671640  0.336442902  1.917589189  4.360937810  2.549282777
##  [331]  1.145634474  1.592357786  3.700987043  1.947893307  3.291059670
##  [336]  3.299159697  3.258390888  3.652947779  5.101956478  2.070214216
##  [341]  2.895354947  3.032150322  3.049624365 -0.740099027  1.690672371
##  [346]  0.452418826  1.969943697  1.446590515 -1.086354576  2.712271782
##  [351] -0.397916143  0.732985603  1.602576384  2.272355113  2.837611755
##  [356] -0.262399090  1.722892415  1.219710772  2.924332534  3.831376453
##  [361]  1.881309913  3.401524316  1.134307231  2.939725143  3.409858670
##  [366]  1.094921571  2.609804777  4.744106947  1.172122039  2.414759771
##  [371]  3.672599772  2.812625165  0.691587614  2.753272768  2.081118651
##  [376]  2.253220884  3.942227548  0.866211607  2.597957547  0.961990394
##  [381] -0.156342963  2.555456665  0.469673821  3.853568388  2.320300793
##  [386] -1.158693613  4.910360107 -0.024048518  2.409013802  3.275235034
##  [391]  2.533259238  4.080417438  2.774244788  0.591463414  2.383408418
##  [396]  3.930924923  1.810239620  2.840328050  2.865135417  3.507259439
##  [401]  2.864109788  0.466325168  2.188396051  2.562652696  2.878878336
##  [406]  0.759895553  2.328774974 -2.013443034  3.202399906  1.734792301
##  [411]  2.724593002  3.465437902  0.497044002  3.402413102  2.599705912
##  [416]  2.739616266  0.603170172 -1.209659612  1.327068968  1.481902263
##  [421]  0.588607862  1.310786985 -0.820302963  0.833202501  0.856362411
##  [426]  0.892668976  1.413956946  2.994008940  3.830921073  1.856519470
##  [431]  2.140998226  1.842699118  0.571658178  3.524214748  2.795711588
##  [436]  2.379067812  2.444299211  1.428808565  1.058774703  0.474307009
##  [441]  0.391050657  0.898551661 -1.308483161  0.468647024  3.045122723
##  [446]  3.176978827  1.404171273  2.753144887  2.638695269  0.248168046
##  [451] -0.078438868  8.717675875  2.933141634  2.699633457  3.196942566
##  [456]  0.489233379  2.469674370 -0.836406681  2.385899302  0.311716477
##  [461]  1.656136593  2.341431223  0.601007664  1.960113883  1.549799140
##  [466]  5.015235928  5.205189572  1.155224396  1.660006659  0.028148254
##  [471] -0.933097827  2.259424790  5.038925963  0.070471763  1.146912064
##  [476]  1.955445212  1.970158006  1.290222353  3.402649863  3.152610908
##  [481]  2.690219567 -0.222420191  0.954561774  1.823288035  4.036386223
##  [486]  3.042784570  3.021661619  2.814302851  2.419163231 -2.027389587
##  [491]  2.284190256  0.910599818  1.817961831  0.284106532  3.200408225
##  [496] -0.165248948  0.822842034  2.433229043  2.694270651  2.985532830
##  [501]  0.340499853  3.924383960  0.754322074  0.420091267  1.580158047
##  [506]  2.620399138  5.540570976 -0.107804456  2.433607423  1.632720777
##  [511]  2.646818266  2.147113818  1.592707146  4.082155030  0.777009644
##  [516]  0.247107103  1.306631902  1.534347557  1.033016640  0.603632343
##  [521] -0.053075434  2.186952713  1.292971860  4.228694702  1.328852252
##  [526]  2.033767534  3.893240730  2.063052610 -0.006492528  2.017041266
##  [531]  1.581946357  1.834364454 -0.327173934  2.562845865  3.411909212
##  [536]  2.788484008  3.339835859  3.041470428  2.459336646  2.161170855
##  [541]  1.673897398  1.591045897 -0.155815165  3.100115848  2.481048526
##  [546]  2.726377730 -0.597047250  2.000877671  2.536134731  3.945670532
##  [551]  0.175760886 -0.740779836  1.229167866  3.417480909  0.132326446
##  [556]  2.042850357  0.691584065  1.818133654 -0.276068889  0.004039847
##  [561] -0.059681804  2.713293400  2.222248433 -1.443668559  1.757711030
##  [566]  3.692907153  2.719174855  2.676965433  2.799031584  2.514023587
##  [571]  2.699081146  1.897021254  0.899732432  2.980184497 -0.604501293
##  [576]  2.880387056  1.169032822  2.702041259  1.031192680  1.349298960
##  [581]  1.036193510 -1.685333268  3.429272552  5.250581012 -0.305430084
##  [586]  2.734288433  2.244977173  3.109739842 -0.990452581  1.630436416
##  [591]  2.435776302  2.769207464  2.151439766  0.054057049  1.114511417
##  [596]  3.184450692  3.626313705  3.744044881  0.593138458  2.486237157
##  [601]  1.986764869  2.878445392  1.181925082  1.465597151  3.178048579
##  [606]  1.780926197  1.353936855  2.626541049 -0.210229442  0.409366886
##  [611]  4.569840440  1.588948556  1.126521095  1.260618667  1.574978424
##  [616]  0.650188563  2.981264317  1.386372702  1.874972002  2.997951391
##  [621]  1.689414716  2.201854425  4.421663944  1.920964046  2.483975047
##  [626]  0.791963881  0.849913586  2.520326718  1.277386460  2.436421448
##  [631]  0.488317389  3.969452922  2.567360219  2.191250691  1.123343549
##  [636]  1.355882220  2.039586469  1.207307197  3.248347235  2.843421173
##  [641]  4.883275672  3.836975818  2.879834994  2.909200300  0.802173234
##  [646]  3.941343597  2.569894641  2.025571677  3.547630472  0.994486975
##  [651]  1.876207186  0.782986642  4.797838283  1.044577595  1.360179425
##  [656]  1.352965504  5.598876683  0.329727432  3.876130777  2.878865572
##  [661]  3.938080400  0.929772520  2.987219057  2.938079190  1.399896776
##  [666]  3.661777473  0.545638145  3.893653868  1.504764466  3.494051360
##  [671]  1.326398816  1.684193424  2.593765240  4.349836602  4.263872365
##  [676]  2.484949024  1.886207550  2.312192086  3.781489319  1.964986277
##  [681]  3.305850643  2.101999759  3.252553486  4.030208027  1.180625569
##  [686]  1.808635794 -0.225961099 -0.305167700  4.039419814 -2.213391337
##  [691] -0.555483410  2.570878173  0.143683132  0.905315889 -0.725846035
##  [696]  1.309723724  2.204932876  2.963376302  2.049540561  1.514257437
##  [701]  2.277993156  2.295817479  3.024133225 -1.260149677  4.375088937
##  [706]  1.692260333  1.391706758  2.480481038  1.758539094  3.789658208
##  [711]  1.513894763  1.277243612  7.324345176  1.879972101  1.890738418
##  [716]  4.038855534  4.341459848  1.877346408  2.134600637 -1.634200890
##  [721]  0.626890772  0.290072884  2.420175855  4.012363554 -0.374430980
##  [726]  1.551029971  2.455346206  0.773572945  0.124223213  4.086731054
##  [731]  0.586948757  1.000560097 -3.650365836  2.480656508  3.719356911
##  [736]  1.161647770 -1.176246207  2.331148697  3.987433040  2.668766618
##  [741]  1.528779664  3.800781633  2.503586968  2.011629494  1.426210603
##  [746]  0.391703167  3.096234720  3.254614722  1.289492466  0.820673627
##  [751]  2.516027493  3.078940459 -0.377305918  1.174888391  3.004456574
##  [756]  1.275157232  2.575427722  3.301046455  2.562249218  0.551134929
##  [761] -1.090269203  3.704515797  1.428116752  2.363684065  0.548252210
##  [766]  1.738683679  2.388503769  2.413372676  3.765078904  2.969813094
##  [771]  0.412720568  2.708066407  0.860633627  2.505029663  2.573083169
##  [776]  4.073693844  1.695092412  3.043379768  3.265387721  4.328701899
##  [781]  0.779072094  1.756953492  3.704496079 -1.694484130  1.290636251
##  [786]  2.979381500  1.157915913  4.434888493  3.254805095 -0.069245304
##  [791]  2.112471799  3.734471834  4.306718784  5.349542242  0.898445548
##  [796]  4.584465548  1.544658240  4.338398649  2.125273711  0.878613131
##  [801]  3.957941349  0.853649091  2.376422934  3.471395103 -0.214285600
##  [806]  0.664977373  2.002328299  2.734979178  1.279646817  1.219165855
##  [811]  2.296221353  2.769735864  1.805297948  2.227617455  1.108903159
##  [816] -0.669508408  2.747807011  1.721510113  3.651537148  2.907265926
##  [821]  3.186140108  1.991282304  2.801830475  3.357885312  1.701506830
##  [826]  1.578655891  1.895899450  2.646712168  2.168825549  1.955032570
##  [831]  0.148245581  5.403237845  0.282184838  1.023775082  3.949690477
##  [836] -1.869745371 -0.785884630  3.181907434  2.310108149  0.770205806
##  [841]  0.865870981  4.624448224  3.348948181  1.484740188  1.205909291
##  [846]  4.646365177  0.354024511  4.578596612  2.497189952  4.919359649
##  [851]  1.320075150  1.357483634  5.736561937  0.446134270 -0.998528842
##  [856]  1.252462414  2.079751653 -0.247930996  2.930157093  1.910789220
##  [861]  2.854421815  2.949108153  3.823482900  2.170359000  2.497458302
##  [866]  3.314098882  2.221187190 -0.238842447  1.031022744  1.421862322
##  [871]  4.585707044  3.224990271  2.161258761  0.510155379  3.610311729
##  [876] -0.456109448  2.028856803  4.039257927 -0.814774462  4.420576081
##  [881]  1.178174032  1.697801631  4.213550025  3.090124483  2.422063566
##  [886]  2.235024393  1.822343186  3.066069219  1.319151196  3.388020703
##  [891]  1.279392887  2.336140852  2.603744088  2.157106406 -0.076405452
##  [896]  3.056663877  0.667506798  3.211589506 -0.012882765  2.700563206
##  [901]  3.485001542  1.881906670 -1.477055352  3.593204745  2.526739140
##  [906]  0.855586271  2.243515217  1.422238767  2.366832996  4.232504769
##  [911]  4.701712342  0.771923244  1.953312192  2.240127209  1.488703438
##  [916]  3.404344217  3.920273752  2.005064766  0.007363017  1.479508107
##  [921]  1.434895428  2.276126474 -0.663920764  1.187163412  0.443145509
##  [926]  1.038604808 -0.591458980  3.757836496  0.793375460  2.241262691
##  [931]  2.537942305  0.585810277  0.131034279  4.008565257  3.123246283
##  [936]  2.227205374  2.338544817  3.198695703  2.211906141  3.877464735
##  [941]  2.020126135  3.594105658  3.895033228  1.035001769 -0.474339600
##  [946]  1.802607993  3.530059894  1.915958278  2.849380646  2.977864774
##  [951]  4.206639773  1.570444650  3.015448430  4.032597768  0.716052082
##  [956]  4.859310207  2.527527259  3.945303431  1.269011605 -0.865522803
##  [961]  4.592089465  3.418654402  3.101006007  1.311853182 -0.762333952
##  [966]  0.187658129  1.171907336 -0.421006248 -0.265997427  2.106369575
##  [971]  2.965251224 -0.466287121  3.029978674  3.027622558  2.862610006
##  [976] -1.035257357  2.294223139  1.250090967  2.777991453 -0.505948545
##  [981]  3.456980084  1.711861353  5.216751108  2.509504562  2.620892539
##  [986]  1.023404633  3.973272197  0.643620214  1.567598912  1.240017884
##  [991]  2.570448268  2.117565534  3.817445022  1.089595460 -0.146013460
##  [996]  2.469293101  1.865330022  2.182833937  0.460975515  2.112281619
summary(data)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  -3.650   1.023   2.009   1.990   2.966   8.718
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)
# Add density curve (define the range of the density curve)
x = seq(from=min(data), to=max(data), length.out=100)
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/
  20*length(data)
lines(x, norm_dist, col='violet',lwd=4)
abline(v = mean(data), col="black", lwd=3, lty=2)
# Add legend
legend("topright", # Add legend to plot
       legend = c("Histogram", "density curve", "Average"),
       col = c("lightblue", "violet", "black"),
       lty = 1)
# Locate lowest 5% and highest 5% of the data
quantile(data,prob = 0.05)
##         5% 
## -0.4751933
abline(v = quantile(data,prob = 0.05), col="red", lwd=3, lty=3)
# Area to the left of the red line is lowest 5% of the data
quantile(data,prob = 0.95)
##      95% 
## 4.384339
abline(v = quantile(data,prob = 0.95), col="blue", lwd=3, lty=3)

# Area to the right of the blue line is top 5% of the data
# Area in between the red line and the blue line is 90%
# of the data
# How to get the values (lowest 5%)
(Cutoff <- quantile(data,prob = 0.05))
##         5% 
## -0.4751933
# mark those values that is lower than -.42 as true
# and higher than -.42 as false
(Low5Percent <- (data < Cutoff))
##    [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [37] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##   [49] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##   [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE
##  [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [145] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [181] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [229]  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [253] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [277] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [301] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [325] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [337] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [349]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [385] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [397] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [421] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [445] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [457] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [469] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [505] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [541] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE
##  [553] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [577] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [589]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [673] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [685] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE
##  [697] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [733]  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [745] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [757] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [781] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [817] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
##  [841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [853] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [877] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [901] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [913] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [925] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [961] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [973] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [985] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [997] FALSE FALSE FALSE FALSE
# count all true values using the sum command
sum(Low5Percent[TRUE]) # there are 50 of them
## [1] 50
# filter those 50 values that are smaller than the cutoff
data[Low5Percent==TRUE]
##  [1] -0.8765720 -0.5023524 -0.7811965 -1.3689066 -1.4405150 -1.8472299
##  [7] -0.6659324 -0.7494002 -0.4914127 -0.5665379 -0.5111641 -0.5242282
## [13] -0.9651782 -0.7400990 -1.0863546 -1.1586936 -2.0134430 -1.2096596
## [19] -0.8203030 -1.3084832 -0.8364067 -0.9330978 -2.0273896 -0.5970473
## [25] -0.7407798 -1.4436686 -0.6045013 -1.6853333 -0.9904526 -2.2133913
## [31] -0.5554834 -0.7258460 -1.2601497 -1.6342009 -3.6503658 -1.1762462
## [37] -1.0902692 -1.6944841 -0.6695084 -1.8697454 -0.7858846 -0.9985288
## [43] -0.8147745 -1.4770554 -0.6639208 -0.5914590 -0.8655228 -0.7623340
## [49] -1.0352574 -0.5059485
# How to get the top 5%
(Cutoff <- quantile(data,prob = 0.95))
##      95% 
## 4.384339
(Top5Percent <- (data >= Cutoff))
##    [1] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE
##   [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [37] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [49]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [61] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##   [73] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [97] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [109] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [121] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [169] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [181] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [217]  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [253] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [277] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [289]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE
##  [301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [325] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [337] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [385] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [397] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [445] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE
##  [469] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [505] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [553] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [577] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [589] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [637] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [649] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [673] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [685] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [697] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [709] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [733] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [745] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [793] FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [817] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [829] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [841] FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE
##  [853]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [865] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [877] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [913] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [925] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [961]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [985] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [997] FALSE FALSE FALSE FALSE
sum(Top5Percent[TRUE]) # counts all the true values
## [1] 50
data[Top5Percent==TRUE]
##  [1] 5.428967 5.701244 5.334899 4.610751 5.644798 5.128415 4.987412 5.784441
##  [9] 4.586897 4.385481 4.435625 5.014421 4.484219 4.684511 4.440144 5.463957
## [17] 4.906337 4.846009 5.357123 5.117330 5.101956 4.744107 4.910360 8.717676
## [25] 5.015236 5.205190 5.038926 5.540571 5.250581 4.569840 4.421664 4.883276
## [33] 4.797838 5.598877 7.324345 4.434888 5.349542 4.584466 5.403238 4.624448
## [41] 4.646365 4.578597 4.919360 5.736562 4.585707 4.420576 4.701712 4.859310
## [49] 4.592089 5.216751