Installing libraries

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.1     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.2     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(plspm)
## 
## Attaching package: 'plspm'
## 
## The following object is masked from 'package:ggplot2':
## 
##     alpha
library(car)
## Loading required package: carData
## 
## Attaching package: 'car'
## 
## The following object is masked from 'package:dplyr':
## 
##     recode
## 
## The following object is masked from 'package:purrr':
## 
##     some

Captura de los datos

# read data from the web 

df_articulo_9 <- read.csv("https://docs.google.com/spreadsheets/d/1ahDwn5n9oYUJal3r7YnzSZC-OsdT-eT6BhaaVAo3kY4/export?format=csv&gid=1107365205", header = TRUE, sep = ",", stringsAsFactors = FALSE)

df_articulo_9_standardized <- data.frame(
  impact_sc = scale(df_articulo_9$impact),
  size_sc = scale(df_articulo_9$Size),
  tie_strength_sc = scale(df_articulo_9$tie_strength),
  networking_intensity_sc = scale(df_articulo_9$networking_intensity),
  structural_holes_sc = scale(df_articulo_9$structural_holes),
  CDI_sc = scale(df_articulo_9$CDI),
  tenure_sc = scale(df_articulo_9$tenure)
)

Análisis de los datos

# Inner model
inner_model <- matrix(c(
  0, 0, 0, 0,  # research_impact
  1, 0, 0, 0,  # social_capital
  1, 0, 0, 0,  # relational_capital
  1, 0, 0, 0   # cognitive_capital
), nrow = 4, ncol = 4, byrow = TRUE)

# Outer model
outer_model <- list(
  research_impact   = c("impact"),
  social_capital    = c("Size", "structural_holes"),
  relational_capital = c("tie_strength", "networking_intensity"),
  cognitive_capital = c("CDI", "tenure")
)

# Run the PLS-PM analysis
plspm_model <- plspm(df_articulo_9, inner_model, outer_model, modes = c("B", "A", "A", "A"))

# Get the summary of the results
summary(plspm_model)
## PARTIAL LEAST SQUARES PATH MODELING (PLS-PM) 
## 
## ---------------------------------------------------------- 
## MODEL SPECIFICATION 
## 1   Number of Cases      1098 
## 2   Latent Variables     4 
## 3   Manifest Variables   7 
## 4   Scale of Data        Standardized Data 
## 5   Non-Metric PLS       FALSE 
## 6   Weighting Scheme     centroid 
## 7   Tolerance Crit       1e-06 
## 8   Max Num Iters        100 
## 9   Convergence Iters    3 
## 10  Bootstrapping        FALSE 
## 11  Bootstrap samples    NULL 
## 
## ---------------------------------------------------------- 
## BLOCKS DEFINITION 
##     Block         Type   Size   Mode
## 1     LV1    Exogenous      1      B
## 2     LV2   Endogenous      2      A
## 3     LV3   Endogenous      2      A
## 4     LV4   Endogenous      2      A
## 
## ---------------------------------------------------------- 
## BLOCKS UNIDIMENSIONALITY 
##      Mode  MVs  C.alpha    DG.rho  eig.1st  eig.2nd
## LV1     B    1        1  1.00e+00     1.00    0.000
## LV2     A    2        0  4.89e-30     1.35    0.646
## LV3     A    2        0  5.10e-28     1.03    0.966
## LV4     A    2        0  1.13e-26     1.03    0.971
## 
## ---------------------------------------------------------- 
## OUTER MODEL 
##                           weight  loading  communality  redundancy
## LV1                                                               
##   1 impact                 1.000    1.000        1.000     0.00000
## LV2                                                               
##   2 Size                   0.737   -0.901        0.813     0.01515
##   2 structural_holes      -0.463    0.724        0.524     0.00978
## LV3                                                               
##   3 tie_strength           0.841    0.822        0.675     0.00482
##   3 networking_intensity   0.570    0.542        0.294     0.00209
## LV4                                                               
##   4 CDI                   -0.515    0.539        0.291     0.01813
##   4 tenure                 0.843   -0.857        0.735     0.04587
## 
## ---------------------------------------------------------- 
## CROSSLOADINGS 
##                               LV1      LV2      LV3     LV4
## LV1                                                        
##   1 impact                 1.0000  -0.1365   0.0845  -0.250
## LV2                                                        
##   2 Size                   0.1328  -0.9015   0.3154  -0.409
##   2 structural_holes      -0.0834   0.7242  -0.0926   0.531
## LV3                                                        
##   3 tie_strength           0.0688   0.0826   0.8217  -0.301
##   3 networking_intensity   0.0467  -0.6050   0.5419  -0.120
## LV4                                                        
##   4 CDI                   -0.1319   0.0128  -0.5468   0.539
##   4 tenure                 0.2159  -0.6423   0.0474  -0.857
## 
## ---------------------------------------------------------- 
## INNER MODEL 
## $LV2
##              Estimate   Std. Error     t value   Pr(>|t|)
## Intercept   -3.59e-17       0.0299   -1.20e-15   1.00e+00
## LV1         -1.37e-01       0.0299   -4.56e+00   5.63e-06
## 
## $LV3
##             Estimate   Std. Error    t value   Pr(>|t|)
## Intercept   6.43e-17       0.0301   2.14e-15    1.00000
## LV1         8.45e-02       0.0301   2.81e+00    0.00511
## 
## $LV4
##              Estimate   Std. Error     t value   Pr(>|t|)
## Intercept    1.44e-16       0.0292    4.91e-15   1.00e+00
## LV1         -2.50e-01       0.0292   -8.54e+00   4.43e-17
## 
## ---------------------------------------------------------- 
## CORRELATIONS BETWEEN LVs 
##          LV1     LV2      LV3     LV4
## LV1   1.0000  -0.137   0.0845  -0.250
## LV2  -0.1365   1.000  -0.2755   0.548
## LV3   0.0845  -0.276   1.0000  -0.321
## LV4  -0.2498   0.548  -0.3214   1.000
## 
## ---------------------------------------------------------- 
## SUMMARY INNER MODEL 
##            Type       R2  Block_Communality  Mean_Redundancy    AVE
## LV1   Exogenous  0.00000              1.000          0.00000  0.000
## LV2  Endogenous  0.01864              0.669          0.01246  0.669
## LV3  Endogenous  0.00713              0.484          0.00346  0.484
## LV4  Endogenous  0.06239              0.513          0.03200  0.513
## 
## ---------------------------------------------------------- 
## GOODNESS-OF-FIT 
## [1]  0.1277
## 
## ---------------------------------------------------------- 
## TOTAL EFFECTS 
##    relationships   direct  indirect    total
## 1     LV1 -> LV2  -0.1365         0  -0.1365
## 2     LV1 -> LV3   0.0845         0   0.0845
## 3     LV1 -> LV4  -0.2498         0  -0.2498
## 4     LV2 -> LV3   0.0000         0   0.0000
## 5     LV2 -> LV4   0.0000         0   0.0000
## 6     LV3 -> LV4   0.0000         0   0.0000

VIF

library(car)
# Create a linear model
linear_model <- lm(impact_sc ~ size_sc + structural_holes_sc + tie_strength_sc + networking_intensity_sc + CDI_sc + tenure_sc,
                   data = df_articulo_9_standardized)

# Calculate VIF
vif_values <- vif(linear_model)

# Print VIF values
print(vif_values)
##                 size_sc     structural_holes_sc         tie_strength_sc 
##                2.498131                1.690643                1.742728 
## networking_intensity_sc                  CDI_sc               tenure_sc 
##                2.012748                1.736952                2.096384

Correlation matrix

Correlation between variables

library(apaTables)
library(car)

# Compute VIF
vif_values <- vif(lm(impact ~ ., data = df_articulo_9))

# Create APA-style correlation table
apa_corr_table <- apaTables::apa.cor.table(df_articulo_9)

# Add VIF row to the APA-style correlation table
apa_corr_table$Table <- rbind(apa_corr_table$Table, c("VIF", sprintf("%.2f", vif_values)))

# Print the updated APA-style correlation table
print(apa_corr_table)
## 
## 
## Means, standard deviations, and correlations with confidence intervals
##  
## 
##   Variable                M      SD      1            2            3           
##   1. impact               4.32   8.84                                          
##                                                                                
##   2. Size                 68.87  146.59  .13**                                 
##                                          [.07, .19]                            
##                                                                                
##   3. structural_holes     0.29   0.32    -.08**       -.35**                   
##                                          [-.14, -.02] [-.41, -.30]             
##                                                                                
##   4. Density              0.42   0.32    -.12**       -.44**       .91**       
##                                          [-.17, -.06] [-.48, -.39] [.90, .92]  
##                                                                                
##   5. tie_strength         1.54   1.17    .07*         -.07*        .07*        
##                                          [.01, .13]   [-.13, -.01] [.01, .13]  
##                                                                                
##   6. total_weighted       709.81 1927.36 .12**        .98**        -.30**      
##                                          [.06, .18]   [.98, .98]   [-.35, -.24]
##                                                                                
##   7. CDI                  0.75   0.20    -.13**       .02          .05         
##                                          [-.19, -.07] [-.04, .08]  [-.01, .11] 
##                                                                                
##   8. tenure               25.72  21.26   .22**        .50**        -.60**      
##                                          [.16, .27]   [.45, .54]   [-.63, -.56]
##                                                                                
##   9. networking_intensity 22.08  48.90   .05          .65**        -.27**      
##                                          [-.01, .11]  [.62, .68]   [-.32, -.21]
##                                                                                
##   4            5            6           7           8         
##                                                               
##                                                               
##                                                               
##                                                               
##                                                               
##                                                               
##                                                               
##                                                               
##                                                               
##                                                               
##                                                               
##   .07*                                                        
##   [.01, .13]                                                  
##                                                               
##   -.36**       -.05                                           
##   [-.41, -.31] [-.11, .01]                                    
##                                                               
##   .08*         -.64**       .01                               
##   [.02, .14]   [-.68, -.61] [-.05, .07]                       
##                                                               
##   -.67**       -.04         .43**       -.03                  
##   [-.70, -.64] [-.10, .02]  [.39, .48]  [-.09, .03]           
##                                                               
##   -.20**       -.03         .70**       -.01        .14**     
##   [-.25, -.14] [-.09, .03]  [.67, .73]  [-.07, .05] [.08, .19]
##                                                               
## 
## Note. M and SD are used to represent mean and standard deviation, respectively.
## Values in square brackets indicate the 95% confidence interval.
## The confidence interval is a plausible range of population correlations 
## that could have caused the sample correlation (Cumming, 2014).
##  * indicates p < .05. ** indicates p < .01.
## 

Cohens d

# Standardize the dataset
df_articulo_9_standardized_new <- as.data.frame(scale(df_articulo_9))

# Full model with all predictors
full_model_new <- lm(impact ~ Size + structural_holes + tie_strength + networking_intensity + CDI + tenure, data = df_articulo_9_standardized_new)

# Models without each predictor
model_without_size <- lm(impact ~ structural_holes + tie_strength + networking_intensity + CDI + tenure, data = df_articulo_9_standardized_new)
model_without_sh <- lm(impact ~ Size + tie_strength + networking_intensity + CDI + tenure, data = df_articulo_9_standardized_new)
model_without_ts <- lm(impact ~ Size + structural_holes + networking_intensity + CDI + tenure, data = df_articulo_9_standardized_new)
model_without_ni <- lm(impact ~ Size + structural_holes + tie_strength + CDI + tenure, data = df_articulo_9_standardized_new)
model_without_cdi <- lm(impact ~ Size + structural_holes + tie_strength + networking_intensity + tenure, data = df_articulo_9_standardized_new)
model_without_tenure <- lm(impact ~ Size + structural_holes + tie_strength + networking_intensity + CDI, data = df_articulo_9_standardized_new)

# Calculate R² for each model
r2_full_new <- summary(full_model_new)$r.squared
r2_without_size <- summary(model_without_size)$r.squared
r2_without_sh <- summary(model_without_sh)$r.squared
r2_without_ts <- summary(model_without_ts)$r.squared
r2_without_ni <- summary(model_without_ni)$r.squared
r2_without_cdi <- summary(model_without_cdi)$r.squared
r2_without_tenure <- summary(model_without_tenure)$r.squared

# Calculate Cohen's f² for each predictor
f2_size <- (r2_full_new - r2_without_size) / (1 - r2_full_new)
f2_sh <- (r2_full_new - r2_without_sh) / (1 - r2_full_new)
f2_ts <- (r2_full_new - r2_without_ts) / (1 - r2_full_new)
f2_ni <- (r2_full_new - r2_without_ni) / (1 - r2_full_new)
f2_cdi <- (r2_full_new - r2_without_cdi) / (1 - r2_full_new)
f2_tenure <- (r2_full_new - r2_without_tenure) / (1 - r2_full_new)

# Print Cohen's f² values
cat("Cohen's f² for Size: ", f2_size, "\n")
## Cohen's f² for Size:  0.0006058365
cat("Cohen's f² for Structural_Holes: ", f2_sh, "\n")
## Cohen's f² for Structural_Holes:  0.004751385
cat("Cohen's f² for Tie_Strength: ", f2_ts, "\n")
## Cohen's f² for Tie_Strength:  0.0001580355
cat("Cohen's f² for Networking_Intensity: ", f2_ni, "\n")
## Cohen's f² for Networking_Intensity:  5.558707e-05
cat("Cohen's f² for CDI: ", f2_cdi, "\n")
## Cohen's f² for CDI:  0.01216687
cat("Cohen's f² for Tenure: ", f2_tenure, "\n")
## Cohen's f² for Tenure:  0.03020645