Serie

Column

Apertura

54.4

Maximo

56.2

Minimo

53.93

Cierre

55.49

Volumen

58959 K

Ajustad0

55.49

Fecha

2023-03-31

Column

Precio Ajustado

Gráfico de velas

Gráfico OHLC

Base de datos

Apertura Maximo Minimo Cierre Volumen Ajustado
2016-01-01 30.47 30.59 29.19 29.44 9232 29.44
2016-01-08 29.42 29.68 29.01 29.68 61976 29.68
2016-01-15 29.79 30.26 29.42 29.94 196519 29.94
2016-01-22 29.94 31.24 29.91 30.69 292276 30.69
2016-01-29 30.71 31.45 30.47 31.24 248420 31.24
2016-02-05 31.34 31.70 30.48 31.59 333840 31.59
2016-02-12 31.54 32.20 31.31 31.83 211728 31.83
2016-02-19 31.84 31.94 30.45 30.65 223598 30.65
2016-02-26 30.71 31.21 29.97 30.41 49748 30.41
2016-03-04 30.52 31.54 30.52 31.41 2489 31.41
2016-03-11 31.99 33.55 31.93 33.41 232497 33.41
2016-03-18 33.41 34.18 32.83 33.18 237591 33.18
2016-03-25 33.24 34.37 33.24 34.22 204858 34.22
2016-04-01 34.21 34.74 33.76 34.10 309115 34.10
2016-04-08 34.10 34.32 33.32 33.69 359598 33.69
2016-04-15 33.80 35.14 33.13 34.21 362265 34.21
2016-04-22 34.10 34.30 33.02 33.05 262098 33.05
2016-04-29 33.05 33.43 31.94 32.01 22285 32.01
2016-05-06 32.03 33.37 32.03 32.30 2126 32.30
2016-05-13 32.17 33.13 31.08 31.91 302430 31.91
2016-05-20 31.91 31.99 30.79 31.04 289610 31.04
2016-05-27 31.00 32.63 30.91 32.26 258838 32.26
2016-06-03 32.25 33.23 31.85 33.03 313265 33.03
2016-06-10 33.03 33.33 31.06 31.16 290111 31.16
2016-06-17 31.21 32.08 31.12 31.75 212484 31.75
2016-06-24 31.74 31.78 30.74 31.38 152290 31.38
2016-07-01 31.38 31.82 29.69 29.73 9507 29.73
2016-07-08 29.77 31.12 29.73 31.12 31033 31.12
2016-07-15 30.67 31.28 30.15 31.06 107485 31.06
2016-07-22 31.13 31.24 29.28 29.49 171407 29.49
2016-07-29 29.59 30.77 29.42 30.54 16717 30.54
2016-08-05 30.49 31.71 30.36 31.71 2944 31.71
2016-08-12 31.58 34.30 31.58 34.19 95448 34.19
2016-08-19 34.19 34.41 32.79 32.91 82154 32.91
2016-08-26 32.93 33.18 31.95 32.20 76747 32.20
2016-09-02 32.23 33.17 32.23 32.94 3060 32.94
2016-09-09 33.01 33.15 31.47 32.04 35120 32.04
2016-09-16 32.09 34.03 31.94 33.96 87028 33.96
2016-09-23 33.92 34.01 32.44 33.09 136590 33.09
2016-09-30 33.07 33.52 32.33 33.10 8688 33.10
2016-10-07 33.26 33.78 32.73 33.16 937 33.16
2016-10-14 33.33 35.69 33.33 35.05 377449 35.05
2016-10-21 35.11 36.23 34.66 35.11 338418 35.11
2016-10-28 35.03 35.69 34.56 35.10 288137 35.10
2016-11-04 35.09 35.55 34.27 34.77 343767 34.77
2016-11-11 34.77 35.72 33.59 33.70 334038 33.70
2016-11-18 33.65 36.98 33.45 36.85 289678 36.85
2016-11-25 36.75 37.78 36.11 37.64 149524 37.64
2016-12-02 37.61 38.11 36.88 37.05 6886 37.05
2016-12-09 37.10 37.28 36.47 36.74 108582 36.74
2016-12-16 36.72 37.15 34.76 34.79 275076 34.79
2016-12-23 34.86 35.35 34.29 34.52 106347 34.52
2016-12-30 34.50 35.29 34.31 35.00 16688 35.00
2017-01-06 34.94 35.85 34.71 35.85 4507 35.85
2017-01-13 35.37 36.07 35.35 35.44 238637 35.44
2017-01-20 35.45 35.59 34.11 34.47 293604 34.47
2017-01-27 34.47 34.75 33.33 34.59 282642 34.59
2017-02-03 34.55 34.98 33.80 34.67 319794 34.67
2017-02-10 34.66 34.96 33.48 33.52 277950 33.52
2017-02-17 33.63 33.65 32.23 32.32 241934 32.32
2017-02-24 32.34 34.49 32.07 33.88 97942 33.88
2017-03-03 33.88 34.30 32.87 32.87 7781 32.87
2017-03-10 32.87 32.87 31.83 32.26 177217 32.26
2017-03-17 32.27 33.94 32.20 33.22 359415 33.22
2017-03-24 33.16 33.29 31.47 32.01 289733 32.01
2017-03-31 31.91 32.11 31.23 31.37 304427 31.37
2017-04-07 31.29 31.80 30.86 31.19 374039 31.19
2017-04-14 31.30 32.02 30.99 31.92 219796 31.92
2017-04-21 31.81 32.35 31.26 31.70 225458 31.70
2017-04-28 31.73 32.69 31.36 32.33 9714 32.33
2017-05-05 32.49 33.19 32.07 32.27 856 32.27
2017-05-12 32.63 33.39 32.25 32.44 272818 32.44
2017-05-19 32.50 33.44 32.01 32.04 231787 32.04
2017-05-26 32.10 32.13 31.14 31.25 235497 31.25
2017-06-02 31.29 31.93 30.89 31.85 291822 31.85
2017-06-09 31.79 32.82 31.61 32.74 329460 32.74
2017-06-16 32.70 33.38 31.52 31.55 312811 31.55
2017-06-23 31.59 32.69 31.40 32.42 249584 32.42
2017-06-30 32.36 33.54 32.01 32.83 14093 32.83
2017-07-07 32.80 33.83 32.59 33.01 2732 33.01
2017-07-14 32.93 34.03 32.93 33.97 108707 33.97
2017-07-21 33.89 34.20 33.23 33.85 171607 33.85
2017-07-28 33.76 35.16 33.24 33.38 47631 33.38
2017-08-04 33.37 34.60 33.26 33.74 3012 33.74
2017-08-11 33.70 33.70 32.62 33.21 95563 33.21
2017-08-18 33.19 35.13 33.13 34.78 100084 34.78
2017-08-25 34.79 34.90 34.08 34.71 116400 34.71
2017-09-01 34.73 35.60 34.71 35.08 14962 35.08
2017-09-08 35.00 35.07 34.59 34.66 30623 34.66
2017-09-15 34.80 34.95 33.99 34.10 83260 34.10
2017-09-22 34.10 34.37 32.56 32.59 167634 32.59
2017-09-29 32.59 33.17 32.12 32.77 7874 32.77
2017-10-06 32.88 33.10 32.59 33.07 1273 33.07
2017-10-13 33.50 33.91 33.28 33.83 227440 33.83
2017-10-20 33.78 34.69 33.72 34.50 339865 34.50
2017-10-27 34.50 35.13 34.35 34.86 280690 34.86
2017-11-03 34.85 35.44 34.26 35.14 325119 35.14
2017-11-10 35.07 35.16 34.01 34.43 296477 34.43
2017-11-17 34.52 34.65 33.69 34.05 214710 34.05
2017-11-24 34.06 34.55 33.44 33.75 196375 33.75
2017-12-01 33.86 33.94 32.81 33.25 8361 33.25
2017-12-08 33.16 33.54 32.92 33.02 40774 33.02
2017-12-15 33.16 33.66 32.51 32.67 273509 32.67
2017-12-22 32.65 33.45 32.32 32.50 119062 32.50
2017-12-29 32.48 33.76 32.44 33.74 9396 33.74
2018-01-05 33.73 33.74 32.97 32.97 1744 32.97
2018-01-12 32.93 33.34 32.21 32.23 235894 32.23
2018-01-19 32.28 32.85 32.10 32.50 289530 32.50
2018-01-26 32.59 33.20 32.50 32.90 288123 32.90
2018-02-02 32.90 33.31 32.19 32.21 424545 32.21
2018-02-09 32.25 32.53 31.40 31.70 444178 31.70
2018-02-16 31.78 32.26 31.42 32.04 232986 32.04
2018-02-23 32.10 32.72 31.66 32.12 155607 32.12
2018-03-02 32.09 32.63 31.67 31.67 2017 31.67
2018-03-09 31.47 32.15 31.28 32.06 131397 32.06
2018-03-16 32.08 32.50 31.52 31.88 313544 31.88
2018-03-23 31.86 32.15 31.35 31.87 287996 31.87
2018-03-30 32.03 32.73 31.37 31.78 284420 31.78
2018-04-06 31.63 31.92 31.29 31.63 380778 31.63
2018-04-13 31.68 31.81 31.14 31.41 227407 31.41
2018-04-20 31.42 31.49 30.73 30.81 258064 30.81
2018-04-27 30.78 30.81 29.95 30.58 39881 30.58
2018-05-04 30.35 31.00 30.31 30.98 1678 30.98
2018-05-11 31.00 31.36 30.55 30.94 222834 30.94
2018-05-18 30.96 32.05 30.94 31.71 280656 31.71
2018-05-25 31.68 31.73 31.04 31.12 213928 31.12
2018-06-01 31.14 31.50 30.57 30.60 317303 30.60
2018-06-08 30.57 30.73 29.78 30.14 378774 30.14
2018-06-15 30.08 30.20 27.79 29.19 407335 29.19
2018-06-22 29.20 29.46 28.86 29.01 223537 29.01
2018-06-29 28.95 29.38 28.45 28.47 13062 28.47
2018-07-06 28.40 28.90 28.17 28.17 8387 28.17
2018-07-13 27.80 28.12 27.57 27.83 102536 27.83
2018-07-20 27.83 28.69 27.71 28.15 107322 28.15
2018-07-27 28.15 28.80 27.96 28.12 95932 28.12
2018-08-03 28.20 28.72 28.03 28.42 5344 28.42
2018-08-10 28.50 28.51 27.74 28.15 48336 28.15
2018-08-17 28.15 28.76 27.96 28.03 71379 28.03
2018-08-24 28.03 28.57 27.91 28.28 123106 28.28
2018-08-31 28.20 28.58 28.10 28.16 4875 28.16
2018-09-07 28.10 28.10 27.44 27.44 2826 27.44
2018-09-14 27.43 27.90 26.88 27.60 68711 27.60
2018-09-21 27.60 28.90 27.37 28.86 177077 28.86
2018-09-28 28.80 29.66 28.52 29.28 6823 29.28
2018-10-05 29.14 29.34 28.47 28.73 1096 28.73
2018-10-12 29.04 29.88 29.00 29.02 244839 29.02
2018-10-19 29.17 29.44 28.29 28.39 239831 28.39
2018-10-26 28.39 28.47 27.75 28.32 266997 28.32
2018-11-02 28.34 28.56 27.76 28.02 282023 28.02
2018-11-09 28.02 28.06 27.39 27.69 305005 27.69
2018-11-16 27.76 27.87 27.17 27.80 249379 27.80
2018-11-23 27.75 27.84 26.95 27.68 242540 27.68
2018-11-30 27.74 28.71 27.63 28.47 13806 28.47
2018-12-07 28.45 28.80 28.41 28.64 1513 28.64
2018-12-14 28.39 28.82 28.15 28.20 274031 28.20
2018-12-21 28.19 28.28 27.27 27.31 128067 27.31
2018-12-28 27.34 28.18 27.31 28.18 32104 28.18
2019-01-04 28.22 28.55 27.88 27.94 2044 27.94
2019-01-11 28.10 28.79 28.10 28.77 175720 28.77
2019-01-18 28.74 29.54 28.66 29.51 208016 29.51
2019-01-25 29.55 30.48 29.47 30.17 286923 30.17
2019-02-01 30.39 31.01 29.65 30.81 333504 30.81
2019-02-08 30.84 30.95 29.81 29.89 385020 29.89
2019-02-15 29.87 30.66 29.62 30.49 224964 30.49
2019-02-22 30.48 30.81 29.76 29.96 168474 29.96
2019-03-01 29.96 30.32 29.25 29.41 8619 29.41
2019-03-08 29.30 29.78 29.22 29.40 52665 29.40
2019-03-15 29.57 29.69 29.08 29.10 246564 29.10
2019-03-22 29.12 29.19 28.52 28.63 284189 28.63
2019-03-29 28.62 29.25 28.34 29.20 282072 29.20
2019-04-05 29.20 29.40 28.78 28.98 326434 28.98
2019-04-12 28.97 29.13 28.40 28.80 275402 28.80
2019-04-19 28.80 28.84 27.57 27.64 211689 27.64
2019-04-26 27.60 28.02 26.97 27.23 109281 27.23
2019-05-03 27.12 27.21 26.30 26.34 3719 26.34
2019-05-10 26.37 27.75 26.11 27.72 191897 27.72
2019-05-17 27.80 27.80 26.74 26.78 288323 26.78
2019-05-24 26.93 28.23 26.79 27.78 271900 27.78
2019-05-31 27.80 27.86 27.01 27.76 301782 27.76
2019-06-07 27.81 28.07 26.93 28.02 310109 28.02
2019-06-14 28.10 28.65 27.59 28.59 342534 28.59
2019-06-21 28.59 28.72 27.65 27.81 222078 27.81
2019-06-28 27.85 28.53 27.65 28.02 14369 28.02
2019-07-05 28.03 28.08 27.42 28.07 1872 28.07
2019-07-12 28.11 28.49 27.47 27.64 110141 27.64
2019-07-19 27.69 28.61 27.61 28.27 132781 28.27
2019-07-26 28.50 28.72 27.50 27.68 122017 27.68
2019-08-02 27.67 28.96 27.48 28.96 6079 28.96
2019-08-09 29.60 29.64 28.97 29.07 29608 29.07
2019-08-16 29.08 29.54 28.30 28.54 83721 28.54
2019-08-23 28.57 28.63 27.90 28.37 149311 28.37
2019-08-30 28.53 28.90 28.29 28.47 5921 28.47
2019-09-06 28.49 29.02 28.10 29.02 818 29.02
2019-09-13 28.99 30.26 28.94 29.81 71540 29.81
2019-09-20 29.81 29.81 28.84 29.01 119482 29.01
2019-09-27 29.00 29.80 28.56 29.80 40844 29.80
2019-10-04 29.75 30.09 29.59 29.70 879 29.70
2019-10-11 29.83 30.76 29.83 30.39 257648 30.39
2019-10-18 30.45 31.42 30.25 31.34 295084 31.34
2019-10-25 31.39 31.52 30.57 30.75 317925 30.75
2019-11-01 30.78 31.96 30.65 31.43 311354 31.43
2019-11-08 31.41 31.89 30.46 30.78 363577 30.78
2019-11-15 30.81 31.39 30.41 30.69 318335 30.69
2019-11-22 30.69 31.10 30.12 30.37 167115 30.37
2019-11-29 30.47 30.68 29.94 30.29 21319 30.29
2019-12-06 30.70 32.03 30.61 32.03 3077 32.03
2019-12-13 32.27 34.09 32.27 33.79 371419 33.79
2019-12-20 33.87 34.58 33.54 34.38 156783 34.38
2019-12-27 34.36 35.36 34.12 34.97 85045 34.97
2020-01-03 35.08 35.12 34.20 34.35 7937 34.35
2020-01-10 34.44 34.44 32.89 33.03 227025 33.03
2020-01-17 33.10 33.61 32.45 32.48 266487 32.48
2020-01-24 32.54 32.54 30.56 30.63 378180 30.63
2020-01-31 30.78 31.96 29.81 31.24 420069 31.24
2020-02-07 31.50 31.50 30.40 30.72 382891 30.72
2020-02-14 30.72 31.02 29.78 30.12 238411 30.12
2020-02-21 30.10 30.69 28.63 28.83 239723 28.83
2020-02-28 28.68 29.73 28.02 29.10 10068 29.10
2020-03-06 29.08 29.08 26.15 26.15 771 26.15
2020-03-13 25.65 26.50 24.68 25.48 426040 25.48
2020-03-20 25.76 27.04 25.25 26.50 300157 26.50
2020-03-27 26.49 27.38 25.82 26.24 255168 26.24
2020-04-03 26.25 27.75 26.13 27.41 261217 27.41
2020-04-10 27.57 27.80 26.23 26.30 230662 26.30
2020-04-17 26.30 26.61 24.78 25.61 175628 25.61
2020-04-24 25.69 26.40 24.64 26.23 170295 26.23
2020-05-01 26.21 26.21 25.48 25.94 4620 25.94
2020-05-08 26.35 26.35 25.63 25.92 58086 25.92
2020-05-15 26.18 27.56 26.17 27.11 261596 27.11
2020-05-22 27.14 27.74 26.58 27.39 232181 27.39
2020-05-29 27.35 28.20 27.12 27.82 267237 27.82
2020-06-05 27.72 28.47 27.46 27.50 309877 27.50
2020-06-12 27.50 28.28 27.01 28.06 280955 28.06
2020-06-19 28.14 28.68 27.36 27.54 239440 27.54
2020-06-26 27.56 28.45 26.89 27.96 91490 27.96
2020-07-03 28.07 28.82 28.07 28.19 890 28.19
2020-07-10 28.11 29.40 27.76 29.27 87810 29.27
2020-07-17 29.27 30.44 29.26 29.79 122246 29.79
2020-07-24 29.76 30.23 29.04 29.98 125551 29.98
2020-07-31 30.26 31.86 30.21 31.52 3478 31.52
2020-08-07 31.03 32.00 31.03 31.60 182 31.60
2020-08-14 31.53 31.90 31.10 31.30 66015 31.30
2020-08-21 31.20 33.62 31.08 33.31 89377 33.31
2020-08-28 33.42 34.22 32.76 33.47 17056 33.47
2020-09-04 33.43 33.57 33.05 33.13 589 33.13
2020-09-11 33.33 35.20 33.30 34.91 56589 34.91
2020-09-18 34.91 35.51 32.02 32.36 79841 32.36
2020-09-25 32.41 33.52 32.22 32.65 36500 32.65
2020-10-02 32.70 33.62 31.81 33.24 498 33.24
2020-10-09 34.24 34.32 32.82 33.17 112497 33.17
2020-10-16 33.17 33.86 32.28 33.69 303457 33.69
2020-10-23 33.89 34.82 32.86 33.06 342943 33.06
2020-10-30 33.07 35.72 32.92 35.47 320852 35.47
2020-11-06 35.47 37.32 35.09 37.05 364460 37.05
2020-11-13 37.00 38.96 36.60 38.81 265629 38.81
2020-11-20 38.96 39.32 37.59 38.18 144102 38.18
2020-11-27 38.40 39.00 36.83 38.68 11876 38.68
2020-12-04 38.61 39.34 38.20 38.96 430 38.96
2020-12-11 39.25 40.11 38.27 39.93 218857 39.93
2020-12-18 39.93 42.01 39.07 41.84 176057 41.84
2020-12-25 42.06 43.55 41.26 43.33 40093 43.33
2021-01-01 43.63 45.27 42.50 44.35 2377 44.35
2021-01-08 44.60 44.67 42.68 43.27 76675 43.27
2021-01-15 43.17 43.53 41.01 43.43 267542 43.43
2021-01-22 43.30 45.43 41.92 44.65 325553 44.65
2021-01-29 44.76 45.58 43.33 44.94 282331 44.94
2021-02-05 44.83 46.67 44.54 45.63 327400 45.63
2021-02-12 45.63 47.64 45.58 46.91 193296 46.91
2021-02-19 46.91 52.13 46.56 50.96 159656 50.96
2021-02-26 50.70 53.25 50.00 52.38 4301 52.38
2021-03-05 52.57 56.87 52.57 56.46 203 56.46
2021-03-12 56.89 56.89 53.15 53.52 290254 53.52
2021-03-19 53.21 58.25 52.97 54.98 316531 54.98
2021-03-26 54.55 55.45 50.22 52.13 294082 52.13
2021-04-02 52.13 54.63 52.13 53.38 211539 53.38
2021-04-09 53.68 55.09 50.96 54.89 234104 54.89
2021-04-16 54.95 62.69 54.86 62.52 166334 62.52
2021-04-23 62.97 70.86 61.78 65.99 116195 65.99
2021-04-30 66.74 71.59 65.48 66.25 1934 66.25
2021-05-07 67.33 72.32 66.10 68.04 231 68.04
2021-05-14 68.41 70.49 64.28 65.76 264697 65.76
2021-05-21 65.76 67.26 64.23 66.81 211702 66.81
2021-05-28 66.81 72.13 65.71 68.85 220662 68.85
2021-06-04 69.10 73.74 68.73 70.46 320480 70.46
2021-06-11 70.30 70.60 56.57 56.57 327105 56.57
2021-06-18 56.15 62.93 55.49 62.70 175442 62.70
2021-06-25 62.99 67.86 59.20 65.04 75189 65.04
2021-07-02 65.20 67.10 63.76 64.25 809 64.25
2021-07-09 64.80 68.80 61.51 67.31 46239 67.31
2021-07-16 67.17 69.18 63.20 65.00 103853 65.00
2021-07-23 65.10 68.17 64.40 66.93 88653 66.93
2021-07-30 66.56 66.75 62.26 62.47 2059 62.47
2021-08-06 63.00 65.78 62.39 63.51 163 63.51
2021-08-13 63.51 64.45 60.26 60.60 68878 60.60
2021-08-20 60.60 62.16 57.12 61.33 105149 61.33
2021-08-27 61.19 61.72 57.70 59.01 40531 59.01
2021-09-03 59.10 59.66 56.02 56.02 303 56.02
2021-09-10 55.86 58.67 55.74 56.83 50522 56.83
2021-09-17 56.90 57.34 54.27 57.10 83619 57.10
2021-09-24 57.09 59.50 56.70 58.79 71948 58.79
2021-10-01 58.54 61.90 57.91 61.90 1255 61.90
2021-10-08 61.33 61.33 58.62 59.94 47430 59.94
2021-10-15 60.46 65.00 60.26 62.58 261223 62.58
2021-10-22 62.65 63.58 60.52 60.87 231102 60.87
2021-10-29 60.87 62.44 59.34 59.58 215197 59.58
2021-11-05 59.55 59.86 57.45 59.14 250480 59.14
2021-11-12 59.16 60.58 57.47 59.17 217296 59.17
2021-11-19 59.30 62.07 57.90 60.94 128710 60.94
2021-11-26 59.70 60.31 54.67 56.23 40386 56.23
2021-12-03 57.15 58.35 54.52 54.79 479 54.79
2021-12-10 53.59 55.23 51.00 54.65 138712 54.65
2021-12-17 54.65 55.80 52.28 55.44 139894 55.44
2021-12-24 56.00 57.69 55.35 55.85 60024 55.85
2021-12-31 55.82 59.50 55.71 58.78 2636 58.78
2022-01-07 59.03 59.37 57.76 58.18 296 58.18
2022-01-14 58.20 62.97 57.75 62.88 228633 62.88
2022-01-21 62.69 64.86 61.22 64.34 257208 64.34
2022-01-28 64.39 66.92 64.08 65.75 270194 65.75
2022-02-04 65.68 66.55 62.70 64.51 305990 64.51
2022-02-11 64.40 67.41 63.89 66.81 212151 66.81
2022-02-18 66.71 74.72 66.47 72.00 124082 72.00
2022-02-25 72.47 81.18 68.16 78.30 19881 78.30
2022-03-04 78.00 83.54 75.82 80.85 833 80.85
2022-03-11 79.87 82.18 72.29 74.63 148060 74.63
2022-03-18 74.83 76.63 71.32 74.29 189225 74.29
2022-03-25 74.35 75.08 69.80 69.94 198242 69.94
2022-04-01 70.04 73.30 68.84 73.02 210152 73.02
2022-04-08 73.02 79.17 72.67 78.91 233113 78.91
2022-04-15 79.50 81.95 78.91 81.50 123056 81.50
2022-04-22 81.54 90.69 80.21 90.60 124700 90.60
2022-04-29 90.50 91.40 82.23 86.50 5132 86.50
2022-05-06 85.20 89.45 84.70 88.52 206 88.52
2022-05-13 89.76 89.76 78.58 79.53 199097 79.53
2022-05-20 79.55 82.05 78.30 80.52 211909 80.52
2022-05-27 80.52 81.79 76.61 81.44 198794 81.44
2022-06-03 81.58 83.44 80.25 82.63 229946 82.63
2022-06-10 82.70 82.95 75.74 76.34 222077 76.34
2022-06-17 76.68 76.68 67.26 67.71 177978 67.71
2022-06-24 67.83 73.17 67.00 69.93 98428 69.93
2022-07-01 69.63 69.67 58.95 63.17 549 63.17
2022-07-08 63.25 66.51 59.80 59.80 24840 59.80
2022-07-15 58.32 64.00 57.65 58.60 89520 58.60
2022-07-22 58.87 66.71 58.18 65.84 94538 65.84
2022-07-29 65.84 69.75 64.00 66.04 2214 66.04
2022-08-05 67.00 71.97 67.00 71.97 47 71.97
2022-08-12 71.97 71.97 65.35 66.26 85145 66.26
2022-08-19 66.25 70.45 65.84 69.09 102734 69.09
2022-08-26 69.18 73.20 68.37 68.52 60453 68.52
2022-09-02 68.13 72.00 67.73 68.86 570 68.86
2022-09-09 70.00 72.44 65.60 66.79 39252 66.79
2022-09-16 66.87 69.66 66.70 69.43 80453 69.43
2022-09-23 69.32 69.40 64.16 67.48 96801 67.48
2022-09-30 67.16 69.67 65.06 69.67 1738 69.67
2022-10-07 70.45 70.45 68.34 70.01 183 70.01
2022-10-14 69.57 72.06 65.15 70.42 298293 70.42
2022-10-21 70.50 73.97 69.54 72.30 234195 72.30
2022-10-28 72.35 76.05 71.09 75.29 278762 75.29
2022-11-04 75.45 77.80 74.36 76.09 249517 76.09
2022-11-11 76.00 78.64 71.44 72.13 253500 72.13
2022-11-18 72.50 75.01 71.30 74.91 147422 74.91
2022-11-25 74.91 77.22 68.01 68.40 66057 68.40
2022-12-02 69.00 69.00 63.15 63.50 1403 63.50
2022-12-09 63.60 66.31 61.60 63.82 76929 63.82
2022-12-16 63.93 66.86 62.35 65.80 151188 65.80
2022-12-23 65.86 68.30 65.01 66.40 67401 66.40
2022-12-30 65.96 66.06 62.75 62.94 3536 62.94
2023-01-06 63.48 64.20 62.39 63.25 127 63.25
2023-01-13 63.25 64.75 62.47 63.15 221928 63.15
2023-01-20 63.28 63.95 60.00 60.79 271947 60.79
2023-01-27 60.80 62.46 59.90 60.94 302268 60.94
2023-02-03 60.90 61.48 58.43 59.04 377515 59.04
2023-02-10 59.15 62.15 58.87 61.90 229994 61.90
2023-02-17 61.91 63.67 61.01 62.04 141713 62.04
2023-02-24 62.10 62.59 59.64 61.39 55080 61.39
2023-03-03 60.93 61.15 56.57 56.57 588 56.57
2023-03-10 56.26 57.91 54.99 57.73 225429 57.73
2023-03-17 57.69 58.39 51.28 52.17 376531 52.17
2023-03-24 52.35 55.69 51.48 54.37 288139 54.37
2023-03-31 54.40 56.20 53.93 55.49 58959 55.49

Descomposicion

Column

Descomposicion

Grafico de estacionalidad

Modelos

Column

Arima

Redes Neuronales

Holt-Winters

Comparacion

Column

Ajustes

ARIMA RN HW REAL
2022-12-23 66.31 58.64 65.60 66.40
2022-12-30 67.35 54.18 66.27 62.94
2023-01-06 66.98 57.15 65.37 63.25
2023-01-13 68.42 58.53 65.22 63.15
2023-01-20 68.69 53.32 64.36 60.79
2023-01-27 69.12 54.13 64.32 60.94
2023-02-03 68.65 41.61 62.47 59.04
2023-02-10 69.22 47.15 61.21 61.90
2023-02-17 70.42 45.18 62.23 62.04
2023-02-24 72.27 50.07 61.74 61.39
2023-03-03 72.58 49.75 60.15 56.57
2023-03-10 70.90 44.22 59.16 57.73
2023-03-17 70.68 47.03 59.58 52.17
2023-03-24 69.59 47.26 57.72 54.37
2023-03-31 70.47 40.90 58.19 55.49

Errores

ARIMA RN HW
ME -9.56 9.94 -2.36
RMSE 10.81 10.80 3.11
MAE 9.58 9.94 2.56
MPE -16.56 16.65 -4.11
MAPE 16.58 16.65 4.42

Pronostico

Column

Gráfico

Column

Tabla

Pron Lo.80 Hi.80 Lo.95 Hi.95
2023-04-07 55.79 52.74 58.84 51.12 60.45
2023-04-14 55.98 51.92 60.05 49.76 62.20
2023-04-21 57.09 52.16 62.02 49.55 64.63
2023-04-28 56.04 50.50 61.58 47.57 64.51
2023-05-05 57.07 50.83 63.31 47.53 66.62
2023-05-12 55.74 49.08 62.41 45.55 65.94
2023-05-19 55.81 48.62 63.00 44.81 66.81
2023-05-26 56.05 48.34 63.75 44.27 67.82
2023-06-02 57.01 48.73 65.28 44.35 69.66
2023-06-09 54.51 46.15 62.88 41.72 67.30
2023-06-16 55.86 46.88 64.83 42.13 69.58
2023-06-23 55.68 46.34 65.02 41.40 69.96
2023-06-30 54.62 45.07 64.16 40.02 69.22
2023-07-07 55.43 45.38 65.47 40.06 70.79
2023-07-14 54.09 43.92 64.27 38.54 69.65
---
title: "Pronostico Aceite de Soja (ZL=F)"
output: 
  flexdashboard::flex_dashboard:
    orientation: columns
    vertical_layout: fill
    source_code: embed
    theme: flatly
---
  
```{r setup, include=FALSE}

#install.packages("quantmod")
#install.packages("ggplot2")
#install.packages("forecast")
#install.packages("nnfor")
#install.packages("plotly")

library(flexdashboard)
library(quantmod) #para importar la serie
library(ggplot2)
library(forecast)
library(nnfor) #redes neuronales
library(plotly)


soja.df=getSymbols("ZL=F",
                   from="2016-01-01",
                   to="2023-04-01",
                   env=NULL,
                   periodicity ="weekly",
                   return.class="data.frame")

soja.df$Fecha=as.Date(row.names(soja.df),format="%Y-%m-%d")
#row.names(soja.df)=NULL
names(soja.df)= c("Apertura","Maximo","Minimo","Cierre","Volumen","Ajustado","Fecha")

sum(is.na(soja.df))
soja.df=na.omit(soja.df)

soja.ts=ts(soja.df$Ajustado,start = c(2016,1),frequency = 52)

train=window(soja.ts,end=c(2022,52))
test=window(soja.ts,start=c(2023,1))
n=length(test)

m=dim(soja.df)[1]
f1=soja.df[(m-n+1):m,7]
f2=soja.df[m,7]+7*seq(1:15)
```

Serie
=======================================================================
Column {data-width=50}
-----------------------------------------------------------------------
### Apertura
```{r}
valueBox(value = round(soja.df[dim(soja.df)[1],]$Apertura,2), 
         caption = "Apertura", 
         icon = "fa-line-chart", 
         color = "#3cb371")
```


### Maximo
```{r}
valueBox(value = round(soja.df[dim(soja.df)[1],]$Maximo,2), 
         caption = "Maximo", 
         icon = "fa-line-chart", 
         color = "#3cb371")
```


### Minimo
```{r}
valueBox(value = round(soja.df[dim(soja.df)[1],]$Minimo,2), 
         caption = "Minimo", 
         icon = "fa-line-chart", 
         color = "#3cb371")
```


### Cierre
```{r}
valueBox(value = round(soja.df[dim(soja.df)[1],]$Cierre,2), 
         caption = "Cierre", 
         icon = "fa-line-chart", 
         color = "#3cb371")
```


### Volumen
```{r}
valueBox(value = paste(soja.df[dim(soja.df)[1],]$Volumen,"K"), 
         caption = "Volumen", 
         icon = "fa-line-chart", 
         color = "#3cb371")
```


### Ajustad0
```{r}
valueBox(value = round(soja.df[dim(soja.df)[1],]$Ajustado,2), 
         caption = "Volumen", 
         icon = "fa-line-chart", 
         color = "#3cb371")
```


### Fecha
```{r}
valueBox(value = soja.df[dim(soja.df)[1],]$Fecha,
         caption = "Ultima actualizacion", 
         icon = "fa-line-chart", 
         color = "#3cb371")
```



Column {data-width=950, .tabset}
-----------------------------------------------------------------------
### Precio Ajustado
```{r,fig.width=10, fig.height=6}
#ggplot(soja.df,aes(Fecha,Ajustado))+
#  geom_line(color = "#FC4E07")+
#  ggtitle("Precios de Futuros de Aceite de Soja")+
#  xlab("")+
#  ylab("")+
#  scale_x_date(date_breaks = "1 year", date_labels = "%Y")

fig <- plot_ly(soja.df, type = 'scatter', mode = 'lines')%>%
  add_trace(x = ~Fecha, y = ~Ajustado)%>%
  layout(showlegend = F,
         xaxis = list(rangeslider = list(visible = T),
                      rangeselector=list(
                        buttons=list(
                          list(count=1,
                               label="1m",
                               step="month",
                               stepmode="backward"),
                          list(count=6,
                               label="6m",
                               step="month",
                               stepmode="backward"),
                          list(count=1,
                               label="YTD",
                               step="year",
                               stepmode="todate"),
                          list(count=1,
                               label="1y",
                               step="year",
                               stepmode="backward"),
                          list(step="all")))))

#fig <- fig %>%
#  layout(
#    xaxis = list(zerolinecolor = '#ffff',
#                 zerolinewidth = 2,
#                 gridcolor = 'ffff'),
#    yaxis = list(zerolinecolor = '#ffff',
#                 zerolinewidth = 2,
#                 gridcolor = 'ffff'),
#    plot_bgcolor='#e5ecf6', width = 900)

fig

```


### Gráfico de velas
```{r,fig.width=10, fig.height=6}
fig <- soja.df %>% plot_ly(x = ~Fecha,
                           type="candlestick",
                           open = ~Apertura,
                           close = ~Cierre,
                           high = ~Maximo,
                           low = ~Minimo) 

fig
```


### Gráfico OHLC
```{r,fig.width=10, fig.height=6}
fig <- soja.df %>% plot_ly(x = ~Fecha,
                           type="ohlc",
                           open = ~Apertura,
                           close = ~Cierre,
                           high = ~Maximo,
                           low = ~Minimo) 

fig
```

### Base de datos
```{r,fig.width=10, fig.height=6}
knitr::kable(soja.df[,1:6])
```


Descomposicion
=======================================================================
Column{.tabset}
-----------------------------------------------------------------------
### Descomposicion
```{r,fig.width=7, fig.height=6}
ggplotly(forecast::autoplot(decompose(soja.ts,type = "multiplicative")))
```

### Grafico de estacionalidad
```{r,fig.width=7, fig.height=6}
ggplotly(ggseasonplot(soja.ts))
```


Modelos
=======================================================================
Column {data-width=700, .tabset}
-----------------------------------------------------------------------
### Arima
```{r,fig.width=10, fig.height=6}
am=auto.arima(train,
              stepwise=FALSE,
              allowdrift = FALSE)
m1=forecast::forecast(am,h=n)

forecast::autoplot(m1)+
  forecast::autolayer(fitted(m1),series="ARIMA")+
  xlim(2020,2023.5)+
  ylab("")
```


### Redes Neuronales
```{r,fig.width=10, fig.height=6}
rn=nnfor::mlp(train)
m2=forecast::forecast(rn,h=n)

forecast::autoplot(m2)+
  forecast::autolayer(rn$fitted,series="RN")+
  xlim(2020,2023.5)+
  ylab("")
```


### Holt-Winters
```{r,fig.width=10, fig.height=6}
hw=HoltWinters(train,seasonal = "multiplicative")
m3=forecast::forecast(hw,h=n)

forecast::autoplot(m3)+
  forecast::autolayer(fitted(m3),series="HW")+
  xlim(2020,2023.5)+
  ylab("")
```


### Comparacion
```{r,fig.width=10, fig.height=6}
forecast::autoplot(soja.ts)+
  forecast::autolayer(m1,series="Arima",PI=FALSE)+
  forecast::autolayer(m2,series="RN",PI=FALSE)+
  forecast::autolayer(m3,series="HW",PI=FALSE)+
  xlim(2020,2023.5)+
  ylab("")
```


Column {data-width=300, .tabset}
-----------------------------------------------------------------------
### Ajustes
```{r}
comp=round(data.frame(data.frame(m1)[1],data.frame(m2)[1],data.frame(m3)[1],data.frame(test)),2)
rownames(comp)=f1
names(comp)=c("ARIMA","RN","HW","REAL")

knitr::kable(comp)
```


### Errores
```{r}
errores=round(data.frame(
  "ARIMA"=t(accuracy(m1,test))[1:5,2],
  "RN"=t(accuracy(m2,test))[1:5,2],
  "HW"=t(accuracy(m3,test))[1:5,2]),2)

knitr::kable(errores)
```



Pronostico
=======================================================================
Column {data-width=700}
-----------------------------------------------------------------------
### Gráfico
```{r,fig.width=10, fig.height=6}
mod=HoltWinters(soja.ts,seasonal = "multiplicative")
pron=forecast::forecast(mod,h=n)

forecast::autoplot(pron)+
  forecast::autolayer(fitted(pron),series="HW")+
  xlim(2020,2023.5)+
  ylab("")
```


Column {data-width=300}
-----------------------------------------------------------------------
### Tabla
```{r}
pron.df=round(data.frame(pron),2)
rownames(pron.df)=f2
names(pron.df)=c("Pron", "Lo.80", "Hi.80", "Lo.95", "Hi.95")

knitr::kable(pron.df)
```