90 days survival
death only
coxph(Surv(death_in_90days_time,death_in_90days_status) ~ repsonse_cat, data = master)%>% tbl_regression(exp = TRUE)
Characteristic |
HR |
95% CI |
p-value |
repsonse_cat |
|
|
|
no response |
— |
— |
|
overall response |
0.39 |
0.22, 0.69 |
0.001 |
death only multivariate
coxph(Surv(death_in_90days_time,death_in_90days_status) ~ repsonse_cat+age_admission+sex+White+hispanic_race+etiology_cirrhosis+MELD_Na_baseline+site, data = master)%>% tbl_regression(exp = TRUE)
Characteristic |
HR |
95% CI |
p-value |
repsonse_cat |
|
|
|
no response |
— |
— |
|
overall response |
0.30 |
0.16, 0.56 |
<0.001 |
age_admission |
1.02 |
0.99, 1.05 |
0.15 |
sex |
|
|
|
1 |
— |
— |
|
2 |
1.18 |
0.67, 2.10 |
0.6 |
White |
|
|
|
0 |
— |
— |
|
1 |
1.72 |
0.69, 4.27 |
0.2 |
hispanic_race |
|
|
|
0 |
— |
— |
|
1 |
0.78 |
0.26, 2.35 |
0.7 |
etiology_cirrhosis |
|
|
|
Alcohol |
— |
— |
|
HCV |
1.04 |
0.21, 5.23 |
>0.9 |
Multifactorial |
1.66 |
0.60, 4.60 |
0.3 |
NASH |
1.33 |
0.59, 2.98 |
0.5 |
Other |
2.50 |
1.08, 5.81 |
0.033 |
MELD_Na_baseline |
1.02 |
0.98, 1.07 |
0.3 |
site |
|
|
|
baylor |
— |
— |
|
indiana |
5.82 |
0.70, 48.0 |
0.10 |
jacksonville |
1.07 |
0.10, 10.9 |
>0.9 |
kentukey |
2.60 |
0.22, 31.2 |
0.5 |
MCW |
9.35 |
1.09, 80.2 |
0.042 |
mgh |
3.48 |
0.40, 30.3 |
0.3 |
michigan |
4.12 |
0.45, 38.0 |
0.2 |
oschner |
4.51 |
0.39, 52.2 |
0.2 |
rochester |
2.35 |
0.28, 19.5 |
0.4 |
usc |
2.30 |
0.24, 21.5 |
0.5 |
yale |
8.27 |
0.82, 83.2 |
0.073 |
death or transplant
coxph(Surv(time_90days,status_90days!=0) ~ repsonse_cat, data = master)%>% tbl_regression(exp = TRUE)
Characteristic |
HR |
95% CI |
p-value |
repsonse_cat |
|
|
|
no response |
— |
— |
|
overall response |
0.30 |
0.22, 0.41 |
<0.001 |
death or transplant multivariate
coxph(Surv(time_90days,status_90days!=0) ~ repsonse_cat+age_admission+sex+White+hispanic_race+etiology_cirrhosis+MELD_Na_baseline+site, data = master)%>% tbl_regression(exp = TRUE)
Characteristic |
HR |
95% CI |
p-value |
repsonse_cat |
|
|
|
no response |
— |
— |
|
overall response |
0.35 |
0.25, 0.50 |
<0.001 |
age_admission |
1.00 |
0.98, 1.01 |
0.8 |
sex |
|
|
|
1 |
— |
— |
|
2 |
1.00 |
0.72, 1.38 |
>0.9 |
White |
|
|
|
0 |
— |
— |
|
1 |
0.92 |
0.59, 1.43 |
0.7 |
hispanic_race |
|
|
|
0 |
— |
— |
|
1 |
0.75 |
0.45, 1.26 |
0.3 |
etiology_cirrhosis |
|
|
|
Alcohol |
— |
— |
|
HCV |
0.80 |
0.34, 1.91 |
0.6 |
Multifactorial |
1.39 |
0.78, 2.47 |
0.3 |
NASH |
1.66 |
1.05, 2.63 |
0.031 |
Other |
1.74 |
1.08, 2.80 |
0.023 |
MELD_Na_baseline |
1.07 |
1.04, 1.10 |
<0.001 |
site |
|
|
|
baylor |
— |
— |
|
indiana |
2.90 |
0.99, 8.50 |
0.053 |
jacksonville |
5.22 |
1.75, 15.6 |
0.003 |
kentukey |
2.04 |
0.59, 7.03 |
0.3 |
MCW |
2.04 |
0.65, 6.42 |
0.2 |
mgh |
1.55 |
0.51, 4.71 |
0.4 |
michigan |
1.66 |
0.49, 5.60 |
0.4 |
oschner |
1.08 |
0.24, 4.94 |
>0.9 |
rochester |
1.67 |
0.57, 4.90 |
0.3 |
usc |
6.71 |
2.21, 20.3 |
<0.001 |
yale |
2.74 |
0.73, 10.3 |
0.14 |
Fine and Gray event: death competing risk: liver transplant
test <- master
test$status_90days <- as.factor(test$status_90days)
tidycmprsk::crr(Surv(time_90days,status_90days) ~ repsonse_cat,failcode=1,cencode=0, data = test) %>% tbl_regression(exp = TRUE)
Characteristic |
HR |
95% CI |
p-value |
repsonse_cat |
|
|
|
no response |
— |
— |
|
overall response |
0.42 |
0.24, 0.74 |
0.003 |
Fine and Gray event: death competing risk: liver transplant
multivariate
test <- master
test$status_90days <- as.factor(test$status_90days)
tidycmprsk::crr(Surv(time_90days,status_90days) ~ repsonse_cat+age_admission+sex+White+hispanic_race+etiology_cirrhosis+MELD_Na_baseline+site,failcode=1,cencode=0, data = test) %>% tbl_regression(exp = TRUE)
Characteristic |
HR |
95% CI |
p-value |
repsonse_cat |
|
|
|
no response |
— |
— |
|
overall response |
0.34 |
0.18, 0.65 |
0.001 |
age_admission |
1.03 |
0.99, 1.07 |
0.2 |
sex |
|
|
|
1 |
— |
— |
|
2 |
1.03 |
0.57, 1.89 |
>0.9 |
White |
|
|
|
0 |
— |
— |
|
1 |
1.67 |
0.62, 4.47 |
0.3 |
hispanic_race |
|
|
|
0 |
— |
— |
|
1 |
0.78 |
0.22, 2.76 |
0.7 |
etiology_cirrhosis |
|
|
|
Alcohol |
— |
— |
|
HCV |
1.04 |
0.16, 6.87 |
>0.9 |
Multifactorial |
1.33 |
0.50, 3.54 |
0.6 |
NASH |
1.23 |
0.54, 2.79 |
0.6 |
Other |
2.47 |
1.10, 5.53 |
0.028 |
MELD_Na_baseline |
1.03 |
0.97, 1.09 |
0.4 |
site |
|
|
|
baylor |
— |
— |
|
indiana |
4.28 |
0.42, 43.8 |
0.2 |
jacksonville |
1.04 |
0.08, 13.9 |
>0.9 |
kentukey |
2.28 |
0.14, 37.1 |
0.6 |
MCW |
8.77 |
0.84, 91.5 |
0.069 |
mgh |
3.33 |
0.29, 38.1 |
0.3 |
michigan |
4.12 |
0.38, 45.0 |
0.3 |
oschner |
4.21 |
0.31, 57.9 |
0.3 |
rochester |
2.34 |
0.24, 22.6 |
0.5 |
usc |
2.11 |
0.17, 26.8 |
0.6 |
yale |
8.15 |
0.74, 90.3 |
0.087 |
Fine and Gray event: liver transplant competing risk: death
tidycmprsk::crr(Surv(time_90days,status_90days) ~ repsonse_cat,failcode=2,cencode=0, data = test) %>% tbl_regression(exp = TRUE)
Characteristic |
HR |
95% CI |
p-value |
repsonse_cat |
|
|
|
no response |
— |
— |
|
overall response |
0.38 |
0.26, 0.55 |
<0.001 |
Fine and Gray event: liver transplant competing risk: death
tidycmprsk::crr(Surv(time_90days,status_90days) ~ repsonse_cat+age_admission+sex+White+hispanic_race+etiology_cirrhosis+MELD_Na_baseline+site,failcode=2,cencode=0, data = test) %>% tbl_regression(exp = TRUE)
Characteristic |
HR |
95% CI |
p-value |
repsonse_cat |
|
|
|
no response |
— |
— |
|
overall response |
0.55 |
0.37, 0.84 |
0.005 |
age_admission |
1.00 |
0.98, 1.01 |
0.6 |
sex |
|
|
|
1 |
— |
— |
|
2 |
0.83 |
0.56, 1.24 |
0.4 |
White |
|
|
|
0 |
— |
— |
|
1 |
0.81 |
0.49, 1.34 |
0.4 |
hispanic_race |
|
|
|
0 |
— |
— |
|
1 |
1.00 |
0.63, 1.59 |
>0.9 |
etiology_cirrhosis |
|
|
|
Alcohol |
— |
— |
|
HCV |
0.67 |
0.27, 1.66 |
0.4 |
Multifactorial |
1.42 |
0.76, 2.68 |
0.3 |
NASH |
1.41 |
0.84, 2.36 |
0.2 |
Other |
1.05 |
0.59, 1.85 |
0.9 |
MELD_Na_baseline |
1.06 |
1.03, 1.09 |
<0.001 |
site |
|
|
|
baylor |
— |
— |
|
indiana |
1.95 |
0.56, 6.80 |
0.3 |
jacksonville |
4.63 |
1.32, 16.2 |
0.016 |
kentukey |
1.83 |
0.45, 7.49 |
0.4 |
MCW |
0.95 |
0.23, 3.87 |
>0.9 |
mgh |
1.11 |
0.31, 3.97 |
0.9 |
michigan |
1.03 |
0.23, 4.69 |
>0.9 |
oschner |
0.41 |
0.04, 3.71 |
0.4 |
rochester |
1.35 |
0.38, 4.78 |
0.6 |
usc |
5.05 |
1.41, 18.1 |
0.013 |
yale |
1.14 |
0.20, 6.63 |
0.9 |
death only vasoconstrictor
coxph(Surv(death_in_90days_time,death_in_90days_status) ~ repsonse_cat, data = master_vasoconstrictor)%>% tbl_regression(exp = TRUE)
Characteristic |
HR |
95% CI |
p-value |
repsonse_cat |
|
|
|
no response |
— |
— |
|
overall response |
0.41 |
0.21, 0.79 |
0.008 |
death only vasoconstrictor multivariate
coxph(Surv(death_in_90days_time,death_in_90days_status) ~ repsonse_cat+age_admission+sex+White+hispanic_race+etiology_cirrhosis+MELD_Na_baseline+site, data = master_vasoconstrictor)%>% tbl_regression(exp = TRUE)
Characteristic |
HR |
95% CI |
p-value |
repsonse_cat |
|
|
|
no response |
— |
— |
|
overall response |
0.25 |
0.12, 0.52 |
<0.001 |
age_admission |
1.02 |
0.99, 1.05 |
0.3 |
sex |
|
|
|
1 |
— |
— |
|
2 |
1.22 |
0.62, 2.41 |
0.6 |
White |
|
|
|
0 |
— |
— |
|
1 |
1.78 |
0.60, 5.26 |
0.3 |
hispanic_race |
|
|
|
0 |
— |
— |
|
1 |
0.70 |
0.22, 2.21 |
0.5 |
etiology_cirrhosis |
|
|
|
Alcohol |
— |
— |
|
HCV |
0.85 |
0.14, 5.01 |
0.9 |
Multifactorial |
1.81 |
0.61, 5.40 |
0.3 |
NASH |
1.28 |
0.47, 3.45 |
0.6 |
Other |
2.67 |
0.93, 7.66 |
0.068 |
MELD_Na_baseline |
0.97 |
0.91, 1.03 |
0.3 |
site |
|
|
|
baylor |
— |
— |
|
indiana |
1.81 |
0.21, 15.6 |
0.6 |
jacksonville |
0.26 |
0.02, 3.34 |
0.3 |
kentukey |
1.44 |
0.12, 16.9 |
0.8 |
MCW |
3.24 |
0.35, 29.8 |
0.3 |
mgh |
1.30 |
0.15, 11.6 |
0.8 |
michigan |
0.62 |
0.04, 10.7 |
0.7 |
oschner |
1.08 |
0.09, 13.5 |
>0.9 |
rochester |
1.08 |
0.12, 9.74 |
>0.9 |
usc |
0.65 |
0.06, 6.88 |
0.7 |
yale |
2.47 |
0.22, 28.0 |
0.5 |
death or transplant vasoconstrictor
coxph(Surv(time_90days,status_90days!=0) ~ repsonse_cat, data = master_vasoconstrictor)%>% tbl_regression(exp = TRUE)
Characteristic |
HR |
95% CI |
p-value |
repsonse_cat |
|
|
|
no response |
— |
— |
|
overall response |
0.23 |
0.15, 0.35 |
<0.001 |
death or transplant vasoconstrictor multivariate
coxph(Surv(time_90days,status_90days!=0) ~ repsonse_cat+age_admission+sex+White+hispanic_race+etiology_cirrhosis+MELD_Na_baseline+site, data = master_vasoconstrictor)%>% tbl_regression(exp = TRUE)
Characteristic |
HR |
95% CI |
p-value |
repsonse_cat |
|
|
|
no response |
— |
— |
|
overall response |
0.23 |
0.14, 0.36 |
<0.001 |
age_admission |
1.00 |
0.98, 1.02 |
>0.9 |
sex |
|
|
|
1 |
— |
— |
|
2 |
0.86 |
0.57, 1.30 |
0.5 |
White |
|
|
|
0 |
— |
— |
|
1 |
0.89 |
0.52, 1.51 |
0.7 |
hispanic_race |
|
|
|
0 |
— |
— |
|
1 |
0.66 |
0.36, 1.18 |
0.2 |
etiology_cirrhosis |
|
|
|
Alcohol |
— |
— |
|
HCV |
0.64 |
0.23, 1.73 |
0.4 |
Multifactorial |
1.28 |
0.63, 2.59 |
0.5 |
NASH |
1.43 |
0.80, 2.55 |
0.2 |
Other |
1.83 |
1.01, 3.33 |
0.046 |
MELD_Na_baseline |
1.02 |
0.98, 1.06 |
0.3 |
site |
|
|
|
baylor |
— |
— |
|
indiana |
2.11 |
0.46, 9.65 |
0.3 |
jacksonville |
4.61 |
0.99, 21.5 |
0.052 |
kentukey |
2.42 |
0.45, 13.1 |
0.3 |
MCW |
1.40 |
0.29, 6.68 |
0.7 |
mgh |
2.17 |
0.48, 9.83 |
0.3 |
michigan |
1.32 |
0.21, 8.16 |
0.8 |
oschner |
0.69 |
0.09, 5.16 |
0.7 |
rochester |
1.40 |
0.30, 6.44 |
0.7 |
usc |
6.28 |
1.35, 29.2 |
0.019 |
yale |
1.73 |
0.29, 10.4 |
0.6 |
Fine and Gray event: death competing risk: liver transplant
vasoconstrictor
test_vasco <- master_vasoconstrictor
test_vasco$status_90days <- as.factor(test_vasco$status_90days)
tidycmprsk::crr(Surv(time_90days,status_90days) ~ repsonse_cat,failcode=1,cencode=0, data = test_vasco) %>% tbl_regression(exp = TRUE)
Characteristic |
HR |
95% CI |
p-value |
repsonse_cat |
|
|
|
no response |
— |
— |
|
overall response |
0.44 |
0.23, 0.86 |
0.016 |
Fine and Gray event: death competing risk: liver transplant
vasoconstrictor multivariate
tidycmprsk::crr(Surv(time_90days,status_90days) ~ repsonse_cat+age_admission+sex+White+hispanic_race+etiology_cirrhosis+MELD_Na_baseline+site,failcode=1,cencode=0, data = test_vasco) %>% tbl_regression(exp = TRUE)
Characteristic |
HR |
95% CI |
p-value |
repsonse_cat |
|
|
|
no response |
— |
— |
|
overall response |
0.28 |
0.13, 0.60 |
<0.001 |
age_admission |
1.02 |
0.98, 1.07 |
0.3 |
sex |
|
|
|
1 |
— |
— |
|
2 |
1.03 |
0.51, 2.08 |
>0.9 |
White |
|
|
|
0 |
— |
— |
|
1 |
1.67 |
0.51, 5.48 |
0.4 |
hispanic_race |
|
|
|
0 |
— |
— |
|
1 |
0.73 |
0.20, 2.59 |
0.6 |
etiology_cirrhosis |
|
|
|
Alcohol |
— |
— |
|
HCV |
0.85 |
0.10, 7.27 |
0.9 |
Multifactorial |
1.42 |
0.52, 3.88 |
0.5 |
NASH |
1.17 |
0.40, 3.40 |
0.8 |
Other |
2.57 |
0.93, 7.07 |
0.068 |
MELD_Na_baseline |
0.98 |
0.90, 1.06 |
0.5 |
site |
|
|
|
baylor |
— |
— |
|
indiana |
1.29 |
0.13, 12.5 |
0.8 |
jacksonville |
0.26 |
0.01, 5.13 |
0.4 |
kentukey |
1.28 |
0.09, 17.5 |
0.9 |
MCW |
2.97 |
0.31, 28.8 |
0.4 |
mgh |
1.26 |
0.12, 13.4 |
0.9 |
michigan |
0.65 |
0.03, 13.3 |
0.8 |
oschner |
1.05 |
0.08, 14.6 |
>0.9 |
rochester |
1.07 |
0.10, 11.4 |
>0.9 |
usc |
0.58 |
0.04, 8.38 |
0.7 |
yale |
2.50 |
0.27, 22.8 |
0.4 |
Fine and Gray event: liver transplant competing risk: death
vasoconstrictor
tidycmprsk::crr(Surv(time_90days,status_90days) ~ repsonse_cat,failcode=2,cencode=0, data = test_vasco) %>% tbl_regression(exp = TRUE)
Characteristic |
HR |
95% CI |
p-value |
repsonse_cat |
|
|
|
no response |
— |
— |
|
overall response |
0.33 |
0.20, 0.54 |
<0.001 |
Fine and Gray event: liver transplant competing risk: death
vasoconstrictor multivariate
tidycmprsk::crr(Surv(time_90days,status_90days) ~ repsonse_cat+age_admission+sex+White+hispanic_race+etiology_cirrhosis+MELD_Na_baseline+site,failcode=2,cencode=0, data = test_vasco) %>% tbl_regression(exp = TRUE)
Characteristic |
HR |
95% CI |
p-value |
repsonse_cat |
|
|
|
no response |
— |
— |
|
overall response |
0.49 |
0.28, 0.86 |
0.012 |
age_admission |
1.00 |
0.98, 1.02 |
0.8 |
sex |
|
|
|
1 |
— |
— |
|
2 |
0.69 |
0.40, 1.19 |
0.2 |
White |
|
|
|
0 |
— |
— |
|
1 |
0.85 |
0.49, 1.48 |
0.6 |
hispanic_race |
|
|
|
0 |
— |
— |
|
1 |
1.07 |
0.58, 1.97 |
0.8 |
etiology_cirrhosis |
|
|
|
Alcohol |
— |
— |
|
HCV |
0.68 |
0.26, 1.78 |
0.4 |
Multifactorial |
1.42 |
0.60, 3.37 |
0.4 |
NASH |
1.29 |
0.70, 2.35 |
0.4 |
Other |
0.99 |
0.51, 1.93 |
>0.9 |
MELD_Na_baseline |
1.05 |
1.00, 1.09 |
0.029 |
site |
|
|
|
baylor |
— |
— |
|
indiana |
1.71 |
0.17, 17.3 |
0.7 |
jacksonville |
5.31 |
0.51, 55.3 |
0.2 |
kentukey |
1.80 |
0.14, 22.8 |
0.7 |
MCW |
0.91 |
0.08, 10.1 |
>0.9 |
mgh |
2.01 |
0.20, 20.7 |
0.6 |
michigan |
1.74 |
0.13, 24.2 |
0.7 |
oschner |
0.00 |
0.00, 0.00 |
<0.001 |
rochester |
1.33 |
0.12, 14.2 |
0.8 |
usc |
5.74 |
0.54, 61.3 |
0.2 |
yale |
1.53 |
0.08, 29.9 |
0.8 |
#4/13/2023 # create new variables for two cohorts
master <- master %>% mutate(liver_transplant_after_discharge=ifelse((days_liver-los)<=90,"<=90 days",">90 days")) %>%
mutate(meld_cat=case_when(
MELD_Na_baseline>=25 ~ "MELD 25 or greater",
MELD_Na_baseline>=19 & MELD_Na_baseline<=24 ~ "MELD 19-24",
MELD_Na_baseline <=18 ~ "MELD 18 or less"
)) %>%
mutate(trasnplant_before_after_discharge=case_when(
days_liver<los ~ "days_liver<los",
days_liver>=los ~ "days_liver>=los"
)) %>%
mutate(days_from_discharge_to_transplant = days_liver-los)
master_vasoconstrictor <- master_vasoconstrictor%>% mutate(liver_transplant_after_discharge=ifelse((days_liver-los)<=90,"<=90 days",">90 days")) %>%
mutate(meld_cat=case_when(
MELD_Na_baseline>=25 ~ "MELD 25 or greater",
MELD_Na_baseline>=19 & MELD_Na_baseline<=24 ~ "MELD 19-24",
MELD_Na_baseline <=18 ~ "MELD 18 or less"
)) %>%
mutate(trasnplant_before_after_discharge=case_when(
days_liver<los ~ "days_liver<los",
days_liver>=los ~ "days_liver>=los"
)) %>%
mutate(days_from_discharge_to_transplant = days_liver-los)
2) Get numbers for those transplanted after discharge
table(master$liver_transplant_after_discharge)
##
## <=90 days >90 days
## 123 45
table(master_vasoconstrictor$liver_transplant_after_discharge)
##
## <=90 days >90 days
## 79 19
3) Obtain mean number of readmissions [SD] within 90 days for
overall response, no response and overall groups, for patients who
survived to discharge and excluding those transplanted within 90
days
subgroup <- master %>% filter(!days_liver<90,!death_discharge==1)
subgroup$readmissions <- as.numeric(subgroup$readmissions)
# Use the aggregate function to calculate the mean and standard deviation by group
aggregate(readmissions ~ repsonse_cat, data = subgroup, FUN = function(x) c(mean = mean(x), sd = sd(x)))
## repsonse_cat readmissions.mean readmissions.sd
## 1 no response 3.214286 2.547354
## 2 overall response 2.406250 1.477997
mean(subgroup$readmissions)
## [1] 2.652174
sd(subgroup$readmissions)
## [1] 1.876372
5) Breakdown of MELD-Na distribution for overall response, no
response and overall groups for raw outcomes of 90-day survival, 90-day
transplant free survival, number of transplants (during admission and
after discharge), median days from discharge to transplant
#6) MELD breakdown analysis
## status_90days 0:censored 1:death 2:transplant
master_MELD_25 <- master %>% filter(meld_cat=="MELD 25 or greater")
master_MELD_19_24<- master %>% filter(meld_cat=="MELD 19-24")
master_MELD_18<- master %>% filter(meld_cat=="MELD 18 or less")
table_MELD_breakdown_ge_25 <- CreateTableOne(vars = c("status_90days"),strata = "repsonse_cat",includeNA = F,addOverall = TRUE,data = master_MELD_25, factorVars = c("status_90days"))
table_MELD_breakdown_ge_25_csv <- print(table_MELD_breakdown_ge_25,showAllLevels = F,missing = T,quote = FALSE, noSpaces = TRUE, printToggle = FALSE)
write.csv(table_MELD_breakdown_ge_25_csv , file = "table_MELD_breakdown_ge_25.csv")
table_MELD_breakdown_19_24 <- CreateTableOne(vars = c("status_90days"),strata = "repsonse_cat",includeNA = F,addOverall = TRUE,data = master_MELD_19_24, factorVars = c("status_90days"))
table_MELD_breakdown_19_24_csv <- print(table_MELD_breakdown_19_24,showAllLevels = F,missing = T,quote = FALSE, noSpaces = TRUE, printToggle = FALSE)
write.csv(table_MELD_breakdown_19_24_csv , file = "table_MELD_breakdown_19_24.csv")
table_MELD_breakdown_18 <- CreateTableOne(vars = c("status_90days"),strata = "repsonse_cat",includeNA = F,addOverall = TRUE,data = master_MELD_18, factorVars = c("status_90days"))
table_MELD_breakdown_18_csv <- print(table_MELD_breakdown_18,showAllLevels = F,missing = T,quote = FALSE, noSpaces = TRUE, printToggle = FALSE)
write.csv(table_MELD_breakdown_18_csv , file = "table_MELD_breakdown_18.csv")
#6) MELD breakdown analysis
## status_90days 0:censored 1:death 2:transplant
master_MELD_25_vasoconstrictor <- master_vasoconstrictor %>% filter(meld_cat=="MELD 25 or greater")
master_MELD_19_24_vasoconstrictor<- master_vasoconstrictor %>% filter(meld_cat=="MELD 19-24")
master_MELD_18_vasoconstrictor<- master_vasoconstrictor %>% filter(meld_cat=="MELD 18 or less")
table_MELD_breakdown_ge_25_vaso <- CreateTableOne(vars = c("status_90days"),strata = "repsonse_cat",includeNA = F,addOverall = TRUE,data = master_MELD_25_vasoconstrictor, factorVars = c("status_90days"))
table_MELD_breakdown_ge_25_vaso_csv <- print(table_MELD_breakdown_ge_25_vaso,showAllLevels = F,missing = T,quote = FALSE, noSpaces = TRUE, printToggle = FALSE)
write.csv(table_MELD_breakdown_ge_25_vaso_csv , file = "table_MELD_breakdown_ge_25_vaso_.csv")
table_MELD_breakdown_19_24_vaso <- CreateTableOne(vars = c("status_90days"),strata = "repsonse_cat",includeNA = F,addOverall = TRUE,data = master_MELD_19_24_vasoconstrictor, factorVars = c("status_90days"))
table_MELD_breakdown_19_24_vaso_csv <- print(table_MELD_breakdown_19_24_vaso,showAllLevels = F,missing = T,quote = FALSE, noSpaces = TRUE, printToggle = FALSE,exact = "status_90days")
write.csv(table_MELD_breakdown_19_24_vaso_csv , file = "table_MELD_breakdown_19_24_vaso.csv")
table_MELD_breakdown_18_vaso <- CreateTableOne(vars = c("status_90days"),strata = "repsonse_cat",includeNA = F,addOverall = TRUE,data = master_MELD_18_vasoconstrictor, factorVars = c("status_90days"))
table_MELD_breakdown_18_vaso_csv <- print(table_MELD_breakdown_18_vaso,showAllLevels = F,missing = T,quote = FALSE, noSpaces = TRUE, printToggle = FALSE,exact = "status_90days")
write.csv(table_MELD_breakdown_18_vaso_csv , file = "table_MELD_breakdown_18_vaso.csv")