# Mindanao State University
# General Santos City
# Submitted by: Carren C. Sibongga
# Math Department
# March 16, 2023
# Processing of continuous data
# Using random number generators
# Exer1: generate data with mean 2 and standard deviation 1.5 using rnorm() command
data <- rnorm(1000,2,1.5) # 1 thousand values
length(data) # count number of elements
## [1] 1000
data[1:20]
##  [1]  1.0511219  1.6484431  1.7116414  3.4657927  2.9802089  1.6319889
##  [7] -1.5782971  5.7705469  0.6292199  5.7934519  0.3224348  3.0019272
## [13]  2.4683443  3.2173389  3.7784123  1.5973321  1.3226749  3.9594400
## [19]  1.0122077  0.7379540
data[1:300] 
##   [1]  1.05112185  1.64844305  1.71164141  3.46579274  2.98020887  1.63198892
##   [7] -1.57829706  5.77054695  0.62921992  5.79345187  0.32243479  3.00192724
##  [13]  2.46834434  3.21733890  3.77841233  1.59733210  1.32267486  3.95944003
##  [19]  1.01220772  0.73795399  3.71729088  2.31873913  0.30066782  0.82468362
##  [25]  1.65318229  2.72341851  1.39053000  1.50880028  3.94878725  2.34498058
##  [31] -0.58556836  0.51417491  2.15924687  1.54325822  1.18577153  2.81023558
##  [37]  6.07384037  3.72509786  0.34286086  1.47101149  4.23216790  3.38664242
##  [43]  4.00503789  2.83253996  3.49165449 -0.37840704  0.29797436  1.18918183
##  [49]  0.86034139  2.79037844  3.71973362 -0.50496260  3.92988589  4.60882404
##  [55]  0.10233427  2.27896629  1.46073011  1.85172229 -0.96700184  2.20165082
##  [61]  3.71586656  2.28128123  1.41098765  1.74828215  2.56713284  2.29183503
##  [67]  3.01495656  2.18147377  2.23293967  0.36734644  1.69172879 -0.08858575
##  [73]  2.20472940  1.38630188  1.80968984  0.35862628  3.44068045 -0.28281146
##  [79]  0.32434930  1.82266177  3.15839525  1.81398568  2.75511511  3.32271617
##  [85]  3.18256500  3.72003487  2.81528970  3.39997135  3.69172794  0.68314335
##  [91]  3.43658625  1.52395531  1.97587716  2.61430315  0.76898362  3.57168765
##  [97]  2.45398045  2.07130103  2.92458641  2.77111447  2.82132334 -0.81440911
## [103] -3.64417405  2.87902042  3.02966275  2.53477993  2.69746841  1.33360658
## [109]  2.12988666  2.23205496  2.27851296 -0.56802029  1.08115314  3.10278421
## [115]  3.20270848  3.79380409  0.80867055  1.49066971  3.88924486  1.65273907
## [121]  2.29631088  1.40081186  2.20246848  2.93985862  4.38775139 -1.32683035
## [127]  3.96856461 -0.57497575  1.49559887  1.74217704  0.17956846  0.32312993
## [133]  1.10170633 -0.70491220  1.88856706  2.62552258  3.79146173  0.39329506
## [139]  1.09801638  1.66590387  2.75170772  2.26963110 -0.03568655  2.43419494
## [145]  2.22855497  1.27591453  5.35432185  2.56025239  1.25111100  1.67314549
## [151]  3.88664087  0.45162624  1.54369211  0.36747755  1.74532699  1.75957411
## [157]  4.09562046 -0.56701887  2.82290925  0.25570028  0.86266926  3.69277664
## [163]  1.19193088  2.38536160  1.46768153  2.70357140  0.89688395  3.38229272
## [169]  4.48159136  0.80555701  2.28662265  2.29218028  2.82411020  0.42307110
## [175]  2.18057695 -2.24346460  3.11013137  3.21988025  1.96597024  2.29261011
## [181]  3.56285384  0.68416610  0.37331072  1.31144102 -0.70897585  2.00959065
## [187]  0.31278955  2.92106240  2.67432421  1.47762900  2.34285497  4.75906880
## [193]  3.21616180  3.39105487  3.75662484  2.18324575  0.43131817  1.36015573
## [199]  1.63424303  1.80198607  0.90665487  3.08498024  2.03095751  3.06597151
## [205]  2.18661135  4.01212791  1.62227378  3.26054562  3.36071885  1.65881124
## [211]  1.75265770  1.06009680  0.30790691  3.43551867  1.89651055  1.73830777
## [217]  1.84117461  4.33301998  2.89331285  1.67367573 -0.12539445  2.82331668
## [223]  3.28167888  3.14011604  1.62333264  0.31342161  5.20671793  3.54588424
## [229]  2.66247575  5.45375041  2.07426665  1.23616565  2.91503428  1.55533512
## [235]  2.10380839  1.16884783  3.72013402  2.28056990  1.22849257 -0.03922284
## [241]  0.97976704  2.45465075  1.81852553 -0.67751594  0.47549962  2.46380837
## [247]  2.49293870 -0.78718851  1.03410435  0.31580669  1.47126441  2.17672288
## [253]  2.93512034  2.13992332  2.33824489  2.29843598  0.41760948  1.44283280
## [259]  2.65647119  1.46878616  2.50644206  5.50432777  2.66500571  1.47152302
## [265] -2.49728409  1.67893220  1.38047422  1.26971957  2.92212251  2.54734283
## [271]  2.33247781  1.17878882  2.99995896  4.80544833  2.04082502  4.54374470
## [277]  3.96023751  2.04485024  3.99797183  1.87916682  0.37793245 -0.92274194
## [283]  2.37041898  2.78587214  3.55942777  2.50127998  1.12926645  2.14503925
## [289]  4.27578529  3.38961912  3.24354504  2.91390317  1.37211887  2.73679585
## [295] -0.46494779  2.57707312  4.79753463  0.15021592  1.86345372  1.89636687
# Exer2: Draw histogram with one main title and different thickness
maintitle <- "Histogram and Density Plot"
hist(data, breaks=20,col="lightblue",main = maintitle)

hist(data, breaks=40,col="lightblue",main = maintitle)

hist(data, breaks=100,col="gray",main = maintitle)

hist(data, breaks=300,col="gray",main = maintitle)

# Exer3: Draw histogram with one main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)

hist(data, breaks=40,col="lightblue",main = maintitle)

hist(data, breaks=100,col="gray",main = maintitle)

# Question: What causes the subtitle to be in the second line?
# Exer4: Draw histogram with main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)
# # Add density curve. We define the range of the density curve
x = seq(from=min(data), to=max(data), length.out=100)
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/ 20*length(data)
lines(x, norm_dist, col='violet',lwd=4)

# Exer5: Draw histogram with main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)
# Add density curve and the location of the mean value
(x = seq(from=min(data), to=max(data), length.out=100))
##   [1] -3.64417405 -3.54601229 -3.44785053 -3.34968877 -3.25152701 -3.15336524
##   [7] -3.05520348 -2.95704172 -2.85887996 -2.76071820 -2.66255643 -2.56439467
##  [13] -2.46623291 -2.36807115 -2.26990939 -2.17174763 -2.07358586 -1.97542410
##  [19] -1.87726234 -1.77910058 -1.68093882 -1.58277705 -1.48461529 -1.38645353
##  [25] -1.28829177 -1.19013001 -1.09196825 -0.99380648 -0.89564472 -0.79748296
##  [31] -0.69932120 -0.60115944 -0.50299767 -0.40483591 -0.30667415 -0.20851239
##  [37] -0.11035063 -0.01218886  0.08597290  0.18413466  0.28229642  0.38045818
##  [43]  0.47861994  0.57678171  0.67494347  0.77310523  0.87126699  0.96942875
##  [49]  1.06759052  1.16575228  1.26391404  1.36207580  1.46023756  1.55839932
##  [55]  1.65656109  1.75472285  1.85288461  1.95104637  2.04920813  2.14736990
##  [61]  2.24553166  2.34369342  2.44185518  2.54001694  2.63817870  2.73634047
##  [67]  2.83450223  2.93266399  3.03082575  3.12898751  3.22714928  3.32531104
##  [73]  3.42347280  3.52163456  3.61979632  3.71795808  3.81611985  3.91428161
##  [79]  4.01244337  4.11060513  4.20876689  4.30692866  4.40509042  4.50325218
##  [85]  4.60141394  4.69957570  4.79773747  4.89589923  4.99406099  5.09222275
##  [91]  5.19038451  5.28854627  5.38670804  5.48486980  5.58303156  5.68119332
##  [97]  5.77935508  5.87751685  5.97567861  6.07384037
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/ 20*length(data)
lines(x, norm_dist, col='violet',lwd=4)
abline(v = mean(data), col="black", lwd=3, lty=2)
# Add legend to top right position
legend("topright",
       legend = c("Histogram", "density curve", "Average"),
       col = c("lightblue", "violet", "black"),
       lty = 1)

# Compute Quartile values Q1,Q2 and Q3
# These quantities divide the data into 4 equal parts
hist(data, breaks=20,col="lightblue",main = maintitle)
Quantiles = quantile(data)
Quantiles
##        0%       25%       50%       75%      100% 
## -3.644174  1.009255  2.001096  2.940750  6.073840
# locate the quartiles Q1, Q2, Q3
abline(v = Quantiles[2], col="black", lwd=3, lty=3)
abline(v = Quantiles[3], col="red", lwd=3, lty=3)
abline(v = Quantiles[4], col="blue", lwd=3, lty=3)

# Exer6: Locate the lowest 5% and the highest 5% of the distribution
data
##    [1]  1.051121853  1.648443052  1.711641405  3.465792744  2.980208871
##    [6]  1.631988921 -1.578297058  5.770546949  0.629219922  5.793451871
##   [11]  0.322434789  3.001927239  2.468344340  3.217338900  3.778412332
##   [16]  1.597332096  1.322674865  3.959440026  1.012207722  0.737953989
##   [21]  3.717290876  2.318739130  0.300667823  0.824683620  1.653182285
##   [26]  2.723418515  1.390530001  1.508800282  3.948787254  2.344980576
##   [31] -0.585568356  0.514174908  2.159246869  1.543258215  1.185771529
##   [36]  2.810235576  6.073840369  3.725097856  0.342860864  1.471011495
##   [41]  4.232167900  3.386642419  4.005037893  2.832539962  3.491654491
##   [46] -0.378407038  0.297974356  1.189181834  0.860341395  2.790378438
##   [51]  3.719733616 -0.504962603  3.929885889  4.608824044  0.102334270
##   [56]  2.278966289  1.460730115  1.851722287 -0.967001843  2.201650817
##   [61]  3.715866555  2.281281230  1.410987648  1.748282154  2.567132841
##   [66]  2.291835026  3.014956565  2.181473769  2.232939671  0.367346435
##   [71]  1.691728795 -0.088585755  2.204729402  1.386301878  1.809689840
##   [76]  0.358626282  3.440680446 -0.282811461  0.324349298  1.822661773
##   [81]  3.158395249  1.813985684  2.755115112  3.322716174  3.182564996
##   [86]  3.720034868  2.815289699  3.399971350  3.691727945  0.683143350
##   [91]  3.436586247  1.523955307  1.975877156  2.614303149  0.768983623
##   [96]  3.571687649  2.453980452  2.071301027  2.924586413  2.771114466
##  [101]  2.821323341 -0.814409112 -3.644174053  2.879020421  3.029662750
##  [106]  2.534779929  2.697468414  1.333606578  2.129886664  2.232054961
##  [111]  2.278512960 -0.568020290  1.081153143  3.102784209  3.202708479
##  [116]  3.793804089  0.808670550  1.490669708  3.889244855  1.652739074
##  [121]  2.296310877  1.400811863  2.202468477  2.939858624  4.387751393
##  [126] -1.326830354  3.968564607 -0.574975755  1.495598874  1.742177036
##  [131]  0.179568457  0.323129927  1.101706325 -0.704912196  1.888567062
##  [136]  2.625522577  3.791461727  0.393295057  1.098016379  1.665903866
##  [141]  2.751707723  2.269631103 -0.035686548  2.434194945  2.228554966
##  [146]  1.275914528  5.354321851  2.560252387  1.251110995  1.673145487
##  [151]  3.886640872  0.451626238  1.543692108  0.367477551  1.745326986
##  [156]  1.759574112  4.095620457 -0.567018867  2.822909248  0.255700279
##  [161]  0.862669257  3.692776643  1.191930876  2.385361600  1.467681528
##  [166]  2.703571401  0.896883948  3.382292723  4.481591358  0.805557009
##  [171]  2.286622645  2.292180280  2.824110204  0.423071101  2.180576946
##  [176] -2.243464603  3.110131372  3.219880251  1.965970236  2.292610115
##  [181]  3.562853837  0.684166096  0.373310718  1.311441021 -0.708975853
##  [186]  2.009590648  0.312789548  2.921062399  2.674324215  1.477629000
##  [191]  2.342854966  4.759068798  3.216161800  3.391054866  3.756624844
##  [196]  2.183245749  0.431318167  1.360155728  1.634243027  1.801986072
##  [201]  0.906654871  3.084980240  2.030957509  3.065971505  2.186611349
##  [206]  4.012127913  1.622273783  3.260545618  3.360718854  1.658811245
##  [211]  1.752657705  1.060096801  0.307906911  3.435518669  1.896510546
##  [216]  1.738307774  1.841174605  4.333019985  2.893312851  1.673675734
##  [221] -0.125394451  2.823316676  3.281678877  3.140116039  1.623332638
##  [226]  0.313421606  5.206717932  3.545884237  2.662475749  5.453750405
##  [231]  2.074266653  1.236165652  2.915034281  1.555335124  2.103808385
##  [236]  1.168847826  3.720134020  2.280569904  1.228492572 -0.039222840
##  [241]  0.979767043  2.454650746  1.818525532 -0.677515940  0.475499625
##  [246]  2.463808373  2.492938700 -0.787188506  1.034104352  0.315806690
##  [251]  1.471264410  2.176722881  2.935120336  2.139923317  2.338244891
##  [256]  2.298435976  0.417609479  1.442832797  2.656471192  1.468786160
##  [261]  2.506442061  5.504327769  2.665005713  1.471523016 -2.497284094
##  [266]  1.678932200  1.380474221  1.269719573  2.922122514  2.547342831
##  [271]  2.332477807  1.178788815  2.999958963  4.805448328  2.040825018
##  [276]  4.543744697  3.960237509  2.044850236  3.997971835  1.879166823
##  [281]  0.377932445 -0.922741941  2.370418979  2.785872144  3.559427768
##  [286]  2.501279976  1.129266452  2.145039246  4.275785293  3.389619122
##  [291]  3.243545037  2.913903171  1.372118867  2.736795853 -0.464947787
##  [296]  2.577073122  4.797534632  0.150215920  1.863453717  1.896366874
##  [301]  0.262275387  2.097121177 -0.716237359  1.520269708  3.366986228
##  [306]  1.796807209  1.747512836  2.639835052  1.966863967  3.530474056
##  [311]  0.607248831  3.325844410  0.839441505  0.118624306  2.331104965
##  [316]  1.503945119  3.615312517  4.180444149  2.396946352  1.754392276
##  [321]  1.544044798  1.507083151  2.126155794  0.616003104  0.964845230
##  [326]  1.790833187  0.321721809  2.974714986  3.878000510  0.696731779
##  [331]  2.971493961  2.150832043  3.218842699  1.390378769  1.052681824
##  [336]  2.722300141  5.883971502  2.068378283  3.576695222  3.909652694
##  [341]  4.604385200  2.576243149  4.610330338  1.045026772  2.230467641
##  [346]  2.478456375  2.288624802  0.342938128  1.215755658 -0.964113840
##  [351]  1.766093804  0.002558338  0.084690631 -0.951715682  2.930617128
##  [356]  1.611806268  3.080736329  2.676006270  2.408157731  4.591462833
##  [361]  2.423660782  1.092080029  1.557939976  1.625969154  2.500799632
##  [366]  2.663700306  1.872351761  1.307090125  3.947778952 -0.805797019
##  [371] -0.499442266  0.715970872  2.512298881  1.370866073  1.965210117
##  [376]  1.659963299  2.194170274  1.069937201  1.498825061  3.279656198
##  [381]  0.888520402  3.129872048  0.382329435  0.152496231  1.113890513
##  [386] -1.584557672 -2.700052851  3.771320859  2.153663464  5.063265931
##  [391]  4.216505700  0.601748780  1.974492783  0.237145210  0.892495223
##  [396]  1.148657983  0.271497149  2.091587854  4.496270693  2.001430628
##  [401]  2.479937055 -1.138849999  2.612775320 -0.594836310  3.723483441
##  [406]  1.915220485 -1.557265139  1.904487051  2.230637652  1.906232630
##  [411] -0.488856303  2.999047256  0.047195492  2.343905562  1.629119713
##  [416]  3.740780940  3.725018124  1.736536556 -1.180751133  2.596387593
##  [421]  3.676427287  1.407849884  2.548641335  1.614341149  1.715417763
##  [426]  3.659445847  1.189357743 -0.237290324  2.512179183  1.137197379
##  [431]  2.622266254  4.279646794  0.799109590  0.051792082  1.221367105
##  [436]  1.991135155  4.147333355  1.030700899  2.255169564  4.508924503
##  [441]  0.377695534  2.256876784  3.088040801  3.040679522  0.188743524
##  [446]  1.572860172  1.533878052  3.948006729  5.102597199  2.834050614
##  [451]  2.324164703  3.742294509  0.473511581  3.275422461  2.152251099
##  [456]  3.934504940  4.081911484  1.214188211  1.541194420  3.572623038
##  [461]  2.611763819  2.160894388  2.502191404  0.221534525  2.717756700
##  [466]  0.587939241  0.434634981  1.198711786  0.996303982  2.431854134
##  [471]  1.038164039  0.779025872  3.148144459  4.632257347 -0.469741552
##  [476]  2.151595518  3.035542069  2.149431546 -1.086415182  1.751785615
##  [481]  0.873806837  4.206539366  0.311421544 -0.443284981  3.397578605
##  [486]  1.699207238  3.708662477  1.590331325  4.653996663  0.105246432
##  [491]  4.096921370 -0.402891002  3.293017300  0.887255326  4.015897229
##  [496]  2.283596573  0.386198271  1.985322932  2.078253878  4.789562286
##  [501]  1.696393445  1.308601382  4.541495981  2.829188468  2.622740996
##  [506]  0.861837223  3.480658300  4.118370527  2.880967564  1.957382074
##  [511]  2.917191793 -0.385060950  2.003299240  2.032156021  0.578349515
##  [516]  1.751895495  0.858553209  2.748124618  0.957842873  0.366838926
##  [521]  0.770278049  0.282217793  2.000761059  1.744102208  0.976404712
##  [526]  3.337081592  4.012964491  1.888059132  2.710758668  1.737881363
##  [531]  3.726236750 -0.345817800  3.413697404  2.821000298  3.022061525
##  [536]  0.216534334  2.747506980  1.168214364  0.749196246  3.090766567
##  [541]  2.447689784  3.745782091  2.531062994  2.603288694  1.161093148
##  [546]  1.092538607  3.731826482  2.112562257  0.132213893  3.062313590
##  [551]  1.089302187  0.104979847  2.977466755  1.299347318  4.894462267
##  [556]  2.453719388  0.476641974  0.577036999  1.005380084  3.448507777
##  [561] -1.469934030  1.667626377  3.700609353  0.120744080  0.729753090
##  [566]  1.241163958  2.401219662  2.629619590  1.930632558  2.097368421
##  [571]  1.784515505  4.100243186  0.843537253 -0.685746795  3.418811887
##  [576]  2.073683083  1.255615522 -0.554192079  2.110723554  0.577246608
##  [581]  2.530246219  0.488668206  2.341455068  1.538373242  3.269644156
##  [586]  2.232531968  3.642088499  1.825601402 -0.849526403  2.012711314
##  [591]  4.566123303 -0.537175614  1.883690824 -0.594452442  1.873018875
##  [596]  3.146151674 -0.229065704  3.598582804  0.797460896  1.388463495
##  [601]  0.295132918  0.507171719  2.283370825  1.760024498 -0.195620422
##  [606] -0.189775435  1.729101716  1.417459345  3.034184325  2.320720267
##  [611]  2.712359748  3.119984612  2.517874254  3.735414675  2.679679786
##  [616]  3.434127494  3.370971698  1.964390140  1.792909768  1.759199973
##  [621]  1.651525677  2.273911462  2.532236720 -0.498897977  0.357959358
##  [626]  4.825938474  0.440833830  2.206606278  3.867798961  1.517705449
##  [631] -0.898272557  1.533725629 -0.361845170 -0.806956191  3.876676424
##  [636]  2.672421916  1.096613659  1.950277023  0.114520063  0.864590694
##  [641]  2.344774015  3.648609408  2.234939204  1.194933993  0.923888028
##  [646]  2.581597993  0.944988330  2.531974216  1.725235618  1.092899198
##  [651]  2.262264818  1.590518513 -0.188019535  2.123482135  1.532994935
##  [656]  3.233182865  2.285408146  0.838144658  3.262833476  3.166983224
##  [661]  2.978842563  2.824489206  0.483882296  4.198055741  1.730986647
##  [666]  0.389576863 -0.200074429  2.231556290  3.699924910 -0.101612087
##  [671]  1.149951355  1.325678753  1.001907039  2.969530329  2.943424237
##  [676]  2.392887448  2.036734002  2.051642819  4.540813616  1.664787707
##  [681]  1.518047687  2.066301908  2.409878687  1.885513128  0.902878854
##  [686]  4.348388007  2.211644869  3.947894044 -0.199791239  1.236354358
##  [691]  5.050526649  0.931146199  1.806283329  1.081315855  2.491257738
##  [696]  3.608908314  1.141029993  1.809071310  4.570373744  3.157531626
##  [701]  3.475199348 -0.309046991  1.944909223  1.006838405  3.688828945
##  [706]  3.560516970  2.508604836  2.779810028  1.941674168  2.103482746
##  [711]  2.471656164 -1.696146090  1.009822778  2.288158526  3.966085805
##  [716]  1.185640029  1.445872721  2.274304677  2.711878943  1.194784985
##  [721]  1.263597307  1.884994403  2.858693440  1.816101142  1.843533130
##  [726]  1.321241388 -1.517836037  3.180858328  2.737125468  0.878549324
##  [731]  1.115536136  3.101286760  2.524989862  1.974384325 -0.022838562
##  [736]  1.891405580  4.951079019  1.230218645  0.840636631  3.173911265
##  [741]  3.321044916  2.922502289  2.235900859  2.605909267  3.321676305
##  [746]  3.075048519  0.950727822  2.520400819  3.263691737  0.302020315
##  [751]  4.400328165  1.220797723  1.388266128 -0.331407271  3.570553631
##  [756]  2.328860393  2.075686779 -0.379865516  0.918809829  2.452020713
##  [761]  0.908271080  0.338054968 -0.522490621  0.007433005  0.983663604
##  [766] -0.717553847  2.922281688  3.044202385  4.017476376  3.647595449
##  [771]  2.786301418 -0.338486953  0.750365767  1.512225779  5.008780013
##  [776]  1.572668938  3.297892016  2.064559629  2.465542954  1.818613691
##  [781]  1.632019632  3.308416296  0.128904572  0.689879936  2.041593454
##  [786]  3.011664246  2.358067543  2.318370970  1.832732512  0.427762589
##  [791]  0.764148379  1.726621777  1.057760043  1.564668629  4.168887586
##  [796]  2.477892398  2.771335811  1.686638479  2.379837911  0.896810311
##  [801]  0.516438162  0.529919437 -0.091864012  1.007553519  2.868167402
##  [806]  3.100957999  3.344020131  3.972053737  2.366029186  1.405078168
##  [811]  3.879420699 -0.171119922  3.020482874  2.956007851  1.032782813
##  [816]  4.380819188  3.801342771  1.996068101  0.009912741  1.256832222
##  [821]  1.144259295  2.020826375  1.936964891  3.503661711  1.937231760
##  [826] -0.296323808  1.989076547  0.440329780  2.562106191  0.626284366
##  [831]  0.959577754  2.199217888  1.107623500  1.066121976  2.979939230
##  [836]  0.570797661  0.618229117  2.905977733  2.167318883  1.952182534
##  [841]  2.758424325  2.841894921  2.120801172 -0.506216701 -0.349469107
##  [846]  2.143900752  4.234198849  2.768522971  1.556158619  3.918760714
##  [851]  0.796945545  0.761830751  1.765264984  0.501576644  0.287324678
##  [856]  1.737187453 -0.068833607  3.770925215  1.735352996  2.371293003
##  [861]  0.566132685  4.237688289  3.338079116 -1.201295722  2.284915323
##  [866]  0.837905154  3.964337843  4.393077347  1.933599979  2.348394982
##  [871]  3.327704007  2.261867421  2.937008198  2.529585787  4.137173853
##  [876]  0.122131429  0.988693950  3.905894539  1.460160009  1.912176733
##  [881]  1.943225395  4.015631068  2.160746642  1.664310987  5.268946137
##  [886]  1.119436567  1.850097851  0.499087143  2.264964786  0.349797626
##  [891]  2.734081240  2.416116949  1.827521312  0.021434515  2.137701200
##  [896]  2.986741454  1.006042065  0.651509254 -1.033893610  0.078296964
##  [901]  3.686192887  1.624868324  0.956519440  2.278137105  2.908018923
##  [906]  1.244862273  0.028659642  2.245814908  1.742297047  1.074906208
##  [911]  0.855078167 -0.021972484  1.930213388  2.866979748  4.249849903
##  [916]  3.890639354  2.930061488  3.636213947  3.385445696  3.748271731
##  [921]  0.234415205  4.024322997  0.727447375  2.821240879  2.033054681
##  [926] -0.547302807  1.275264477  0.554162379  2.998454054  1.665037851
##  [931]  2.711056008  5.755659838  0.047774556  0.117643092 -1.653375814
##  [936]  4.016767302  1.993875418  3.242992143  2.267971082  1.869935026
##  [941]  2.343035864 -0.389041798  3.245389183  1.239873377  3.173228051
##  [946]  3.019503037  1.225412900  2.697248011  4.120426815  0.774436455
##  [951]  2.031010947  1.277916079  3.683334541  3.223166993  3.744027843
##  [956]  0.267676174  0.378694416  1.374085374  4.194666875  0.916096910
##  [961]  4.439149838  4.906376025  1.394244070  3.448883128  2.316628364
##  [966]  2.550390267  5.169542912  1.923567699  4.874678836  3.741558145
##  [971]  0.531849745 -1.287747122  2.406131453  3.425019316  1.682056870
##  [976] -0.214728329  1.563584672  2.187441742  1.151593507  1.575595270
##  [981]  0.401313636  2.728285723  2.085032653  0.357241722  2.686406697
##  [986]  3.642403111  3.169983250  0.399562279 -0.108169502 -0.122936833
##  [991]  3.101560748 -1.079664891  4.928022110  3.994746625  1.866041050
##  [996]  2.931731243  2.804225704  2.890966511  1.963849634  1.187633062
summary(data)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  -3.644   1.009   2.001   1.972   2.941   6.074
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)
# Add density curve (define the range of the density curve)
x = seq(from=min(data), to=max(data), length.out=100)
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/ 20*length(data)
lines(x, norm_dist, col='violet',lwd=4)
abline(v = mean(data), col="black", lwd=3, lty=2)
# Add legend
legend("topright", # Add legend to plot
       legend = c("Histogram", "density curve", "Average"),
       col = c("lightblue", "violet", "black"),
       lty = 1)
# Locate lowest 5% and highest 5% of the data
quantile(data,prob = 0.05)
##         5% 
## -0.4706973
abline(v = quantile(data,prob = 0.05), col="red", lwd=3, lty=3)
# Area to the left of the red line is lowest 5% of the data
quantile(data,prob = 0.95)
##      95% 
## 4.234373
abline(v = quantile(data,prob = 0.95), col="blue", lwd=3, lty=3)

# Area to the right of the blue line is top 5% of the data
# Area in between the red line and the blue line is 90%
# of the data
# How to get the values (lowest 5%)
(Cutoff <- quantile(data,prob = 0.05))
##         5% 
## -0.4706973
# mark those values that is lower than -.42 as true
# and higher than -.42 as false
(Low5Percent <- (data < Cutoff))
##    [1] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##   [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [25] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##   [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [49] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##   [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [97] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [109] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [121] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [133] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [157] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [181] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [241] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [253] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [265]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [277] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [301] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [325] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [337] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [349] FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE
##  [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [385] FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [397] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE
##  [409] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [445] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [469] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [505] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [553] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [577] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [589]  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [625] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
##  [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [673] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [685] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [697] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [709] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [721] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [733] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [745] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [757] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
##  [769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [817] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [841] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [877] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [913] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [925] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [961] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [985] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [997] FALSE FALSE FALSE FALSE
# count all true values using the sum command
sum(Low5Percent[TRUE]) # there are 50 of them
## [1] 50
# filter those 50 values that are smaller than the cutoff
data[Low5Percent==TRUE]
##  [1] -1.5782971 -0.5855684 -0.5049626 -0.9670018 -0.8144091 -3.6441741
##  [7] -0.5680203 -1.3268304 -0.5749758 -0.7049122 -0.5670189 -2.2434646
## [13] -0.7089759 -0.6775159 -0.7871885 -2.4972841 -0.9227419 -0.7162374
## [19] -0.9641138 -0.9517157 -0.8057970 -0.4994423 -1.5845577 -2.7000529
## [25] -1.1388500 -0.5948363 -1.5572651 -0.4888563 -1.1807511 -1.0864152
## [31] -1.4699340 -0.6857468 -0.5541921 -0.8495264 -0.5371756 -0.5944524
## [37] -0.4988980 -0.8982726 -0.8069562 -1.6961461 -1.5178360 -0.5224906
## [43] -0.7175538 -0.5062167 -1.2012957 -1.0338936 -0.5473028 -1.6533758
## [49] -1.2877471 -1.0796649
# How to get the top 5%
(Cutoff <- quantile(data,prob = 0.95))
##      95% 
## 4.234373
(Top5Percent <- (data >= Cutoff))
##    [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE
##   [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [37]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [49] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##   [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [121] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [145] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [169]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [217] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [229] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [253] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE
##  [277] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [289]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [325] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [337]  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [385] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [397] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [445] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [469] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE
##  [505] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [553] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [577] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [589] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [625] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [673] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [685] FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [697] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [733] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [745] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [769] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [817] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [865] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [877] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [913] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [925] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [961]  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE
##  [973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [985] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [997] FALSE FALSE FALSE FALSE
sum(Top5Percent[TRUE]) # counts all the true values
## [1] 50
data[Top5Percent==TRUE]
##  [1] 5.770547 5.793452 6.073840 4.608824 4.387751 5.354322 4.481591 4.759069
##  [9] 4.333020 5.206718 5.453750 5.504328 4.805448 4.543745 4.275785 4.797535
## [17] 5.883972 4.604385 4.610330 4.591463 5.063266 4.496271 4.279647 4.508925
## [25] 5.102597 4.632257 4.653997 4.789562 4.541496 4.894462 4.566123 4.825938
## [33] 4.540814 4.348388 5.050527 4.570374 4.951079 4.400328 5.008780 4.380819
## [41] 4.237688 4.393077 5.268946 4.249850 5.755660 4.439150 4.906376 5.169543
## [49] 4.874679 4.928022