# Mindanao State University
# General Santos City
# Introduction to R base commands
# Prepared by: Prof. Carlito O. Daarol
# Faculty
# Math Department
# March 16, 2023
#Submitted by: Jovel Jade Casidsid

# Processing of continuous data
# Using random number generators

# Exer1: generate data with mean 2 and standard deviation 1.5 using rnorm() command
data <- rnorm(1000,2,1.5) # 1 thousand values
length(data) # count number of elements
## [1] 1000
data[1:20] # display first 20 elements
##  [1]  2.1677187  2.3869106  2.3832399  0.6474248  0.6936942  3.5092479
##  [7] -0.0631861  2.2292847  0.2159811 -0.6124755  2.9760238  0.8910585
## [13] -1.1081320  2.8546589  2.6302404  3.3258438  3.8037318  1.5507332
## [19]  0.8673013  0.8133797
data[1:300] # display the first 300 elements
##   [1]  2.16771868  2.38691057  2.38323991  0.64742476  0.69369417  3.50924791
##   [7] -0.06318610  2.22928471  0.21598115 -0.61247550  2.97602383  0.89105854
##  [13] -1.10813201  2.85465885  2.63024040  3.32584375  3.80373175  1.55073320
##  [19]  0.86730133  0.81337972  1.14642481  0.11038864  1.42365515  2.76213761
##  [25]  0.49600380  2.76725257  3.87733213  3.53056355  1.22189434  0.03834107
##  [31]  2.99773680  3.56112644  2.99428605  1.57594624  2.67358113  1.55448125
##  [37]  0.87270660  1.28091487  1.46157253  3.41666848  2.94716610  1.32706812
##  [43]  1.82911985  0.73940459  1.22572875 -0.18707629  0.54938563  0.63817377
##  [49]  1.44658542  3.06611041  3.29440513  2.75862542  4.48961241  1.76440698
##  [55]  0.37819797  1.72093245  2.90199769 -0.44618441  0.94257976 -0.54774580
##  [61]  2.52715319  2.18116404 -0.11212984 -0.89372508 -0.49707722  1.28646739
##  [67]  2.01363067  1.43763007  0.83464956  2.02086015  1.70189828  3.45113571
##  [73]  1.80479229 -0.29999611  3.47667735  3.27904189  2.63797809  3.31378691
##  [79]  4.38457396  1.57568024 -1.51324614  1.40090184  2.76250957  0.63846166
##  [85]  2.39550741  3.05414698 -1.56593468  2.36060481  4.84192607  3.06930346
##  [91]  4.52699838  0.35439871  3.99412259  4.64583025  0.62658949  2.86132694
##  [97]  2.77922623  1.72409457  3.41426591 -1.28383756  2.22276108  2.87756495
## [103]  1.29237666  1.15749551  2.10490424  2.92550201  3.57369158  2.77334418
## [109]  0.14160658  2.56843810  1.13728323  1.74775023  2.14514618  1.35814215
## [115]  3.44312324  0.13543795  1.15947623  0.06893855  0.11611272  1.63375061
## [121]  1.89307227  0.94606819  1.80570214  1.34001334  1.81938443  3.15552438
## [127]  2.07594479  3.03579306 -0.40791873 -0.16499957  2.20145394  1.42305486
## [133]  0.36087368  4.95646759  4.29617149  1.38479258  1.39056087 -0.78650731
## [139]  3.33769590  1.22423021  2.42048668  0.77206503  2.34793883  3.85510108
## [145] -0.05754593  2.03883682  3.12745975  1.10559550  2.55112119 -0.43449541
## [151]  2.58073561  0.88254127  3.96553569 -0.31734083  3.11077817  3.31405375
## [157]  0.28025715  3.71758100  1.24330537  1.01497307  1.64931371  2.53923188
## [163] -0.07400937  0.81574990  1.76464117  3.41670337  1.57239412  2.52205756
## [169] -0.25484215  4.33229016  0.40621424  3.08803642  0.72897756  1.50109670
## [175]  2.92983280  1.60900040  1.76211611  2.19973600  0.80097206  2.98026736
## [181]  3.31270996 -2.29008059  2.74129009  0.36348712 -0.10783457  3.67773881
## [187]  3.46640411  0.53767381  2.00747739 -2.68491969  4.99805414  1.50371536
## [193]  1.32862328  0.94065823 -0.85301569  3.33886288  0.34709119  3.38535988
## [199]  2.44477269  3.19218942  3.59157722  3.41647724  1.79466886  3.93437534
## [205]  1.79334601  2.20623339  1.26987529  0.51783931  0.54435153  6.40180093
## [211]  1.10974985  2.13840664  1.50323371  1.23550244  1.39218452  2.50262950
## [217]  2.32080601  2.32350114 -0.64186623 -0.27414630  0.19775871 -1.84978554
## [223]  3.49011409  0.24214506  2.13598723  2.16154609  2.95120892  2.13003073
## [229]  5.60451712  1.08586916  1.18427984  0.35551930  5.05908890  4.10193366
## [235] -0.73585899  0.87759106 -0.04053743  3.02290172  2.88587511  3.99896311
## [241]  1.80932767  2.44393339  2.42112238  0.63081151  3.64838104  1.09907073
## [247]  4.29256350  0.16056861  1.91365713  5.40783096  1.94207139  3.36273589
## [253]  2.58180278  0.85276259  3.95643003  0.70934800  3.04169197  4.43277400
## [259]  2.79143039  1.58738469  0.73218332  1.36790817  0.62875571  7.05930526
## [265]  0.91089076  1.73353415  2.69334397  0.43013203  0.10486883  2.09770382
## [271]  0.06243005  5.30272634  0.66482141  1.31738767  3.46643962  3.05940907
## [277]  1.34279717  0.91627646  0.02054827  1.54012144  2.58693529  1.32907573
## [283]  2.45297716 -0.24860889  0.49366631  3.35173767  2.11006598  1.68159353
## [289]  2.07883159  2.09107096  4.03792796  2.12885698  3.05376042  2.51386413
## [295]  2.89990056  3.61845104  2.82304525 -0.12271252  4.67717155  0.61265628
# Exer2: Draw histogram with one main title and different thickness
maintitle <- "Histogram and Density Plot"
hist(data, breaks=20,col="lightblue",main = maintitle)

hist(data, breaks=40,col="lightblue",main = maintitle)

hist(data, breaks=100,col="gray",main = maintitle)

hist(data, breaks=300,col="gray",main = maintitle)

# Exer3: Draw histogram with one main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)

hist(data, breaks=40,col="lightblue",main = maintitle)

hist(data, breaks=100,col="gray",main = maintitle)

# Question: What causes the subtitle to be in the second line?

# Exer4: Draw histogram with main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)

# # Add density curve. We define the range of the density curve 
x = seq(from=min(data), to=max(data), length.out=100)
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/
  20*length(data)
lines(x, norm_dist, col='violet',lwd=4)

# Exer5: Draw histogram with main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)

# Add density curve and the location of the mean value 
(x = seq(from=min(data), to=max(data), length.out=100))
##   [1] -3.065036762 -2.962770680 -2.860504599 -2.758238518 -2.655972437
##   [6] -2.553706356 -2.451440275 -2.349174194 -2.246908113 -2.144642032
##  [11] -2.042375951 -1.940109870 -1.837843789 -1.735577708 -1.633311627
##  [16] -1.531045546 -1.428779464 -1.326513383 -1.224247302 -1.121981221
##  [21] -1.019715140 -0.917449059 -0.815182978 -0.712916897 -0.610650816
##  [26] -0.508384735 -0.406118654 -0.303852573 -0.201586492 -0.099320411
##  [31]  0.002945671  0.105211752  0.207477833  0.309743914  0.412009995
##  [36]  0.514276076  0.616542157  0.718808238  0.821074319  0.923340400
##  [41]  1.025606481  1.127872562  1.230138643  1.332404724  1.434670806
##  [46]  1.536936887  1.639202968  1.741469049  1.843735130  1.946001211
##  [51]  2.048267292  2.150533373  2.252799454  2.355065535  2.457331616
##  [56]  2.559597697  2.661863778  2.764129859  2.866395941  2.968662022
##  [61]  3.070928103  3.173194184  3.275460265  3.377726346  3.479992427
##  [66]  3.582258508  3.684524589  3.786790670  3.889056751  3.991322832
##  [71]  4.093588913  4.195854994  4.298121076  4.400387157  4.502653238
##  [76]  4.604919319  4.707185400  4.809451481  4.911717562  5.013983643
##  [81]  5.116249724  5.218515805  5.320781886  5.423047967  5.525314048
##  [86]  5.627580129  5.729846211  5.832112292  5.934378373  6.036644454
##  [91]  6.138910535  6.241176616  6.343442697  6.445708778  6.547974859
##  [96]  6.650240940  6.752507021  6.854773102  6.957039183  7.059305264
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/
  20*length(data)
lines(x, norm_dist, col='violet',lwd=4)
abline(v = mean(data), col="black", lwd=3, lty=2)

# Add legend to top right position
legend("topright",
       legend = c("Histogram", "density curve", "Average"),
       col = c("lightblue", "violet", "black"),
       lty = 1)

# Compute Quartile values Q1,Q2 and Q3
# These quantities divide the data into 4 equal parts 
hist(data, breaks=20,col="lightblue",main = maintitle)
Quantiles = quantile(data)
Quantiles
##         0%        25%        50%        75%       100% 
## -3.0650368  0.9074813  1.9597486  3.0248912  7.0593053
# locate the quartiles Q1, Q2, Q3
abline(v = Quantiles[2], col="black", lwd=3, lty=3)
abline(v = Quantiles[3], col="red", lwd=3, lty=3)
abline(v = Quantiles[4], col="blue", lwd=3, lty=3)

# Exer6: Locate the lowest 5% and the highest 5% of the distribution
data
##    [1]  2.167718684  2.386910565  2.383239909  0.647424759  0.693694174
##    [6]  3.509247913 -0.063186095  2.229284707  0.215981146 -0.612475501
##   [11]  2.976023828  0.891058545 -1.108132014  2.854658855  2.630240402
##   [16]  3.325843754  3.803731751  1.550733204  0.867301327  0.813379718
##   [21]  1.146424810  0.110388640  1.423655151  2.762137608  0.496003796
##   [26]  2.767252569  3.877332128  3.530563549  1.221894342  0.038341066
##   [31]  2.997736802  3.561126443  2.994286049  1.575946245  2.673581128
##   [36]  1.554481251  0.872706596  1.280914869  1.461572530  3.416668481
##   [41]  2.947166102  1.327068119  1.829119846  0.739404588  1.225728752
##   [46] -0.187076290  0.549385626  0.638173771  1.446585423  3.066110407
##   [51]  3.294405129  2.758625419  4.489612413  1.764406975  0.378197970
##   [56]  1.720932451  2.901997695 -0.446184410  0.942579764 -0.547745804
##   [61]  2.527153191  2.181164041 -0.112129836 -0.893725084 -0.497077224
##   [66]  1.286467394  2.013630670  1.437630072  0.834649558  2.020860154
##   [71]  1.701898284  3.451135709  1.804792286 -0.299996110  3.476677346
##   [76]  3.279041894  2.637978092  3.313786914  4.384573956  1.575680245
##   [81] -1.513246145  1.400901842  2.762509567  0.638461663  2.395507409
##   [86]  3.054146978 -1.565934684  2.360604813  4.841926065  3.069303456
##   [91]  4.526998377  0.354398715  3.994122594  4.645830254  0.626589494
##   [96]  2.861326937  2.779226226  1.724094566  3.414265907 -1.283837561
##  [101]  2.222761084  2.877564948  1.292376659  1.157495510  2.104904235
##  [106]  2.925502009  3.573691583  2.773344183  0.141606580  2.568438103
##  [111]  1.137283232  1.747750228  2.145146177  1.358142148  3.443123236
##  [116]  0.135437952  1.159476235  0.068938546  0.116112716  1.633750612
##  [121]  1.893072274  0.946068194  1.805702139  1.340013339  1.819384431
##  [126]  3.155524378  2.075944789  3.035793057 -0.407918733 -0.164999573
##  [131]  2.201453940  1.423054856  0.360873679  4.956467588  4.296171485
##  [136]  1.384792579  1.390560867 -0.786507306  3.337695904  1.224230205
##  [141]  2.420486677  0.772065033  2.347938830  3.855101081 -0.057545927
##  [146]  2.038836820  3.127459755  1.105595504  2.551121194 -0.434495415
##  [151]  2.580735610  0.882541270  3.965535686 -0.317340825  3.110778168
##  [156]  3.314053754  0.280257152  3.717581003  1.243305375  1.014973071
##  [161]  1.649313708  2.539231877 -0.074009370  0.815749896  1.764641170
##  [166]  3.416703374  1.572394120  2.522057556 -0.254842152  4.332290161
##  [171]  0.406214236  3.088036416  0.728977558  1.501096701  2.929832795
##  [176]  1.609000401  1.762116111  2.199736005  0.800972063  2.980267364
##  [181]  3.312709955 -2.290080588  2.741290093  0.363487119 -0.107834566
##  [186]  3.677738814  3.466404115  0.537673814  2.007477393 -2.684919693
##  [191]  4.998054141  1.503715361  1.328623283  0.940658227 -0.853015693
##  [196]  3.338862876  0.347091185  3.385359882  2.444772686  3.192189422
##  [201]  3.591577224  3.416477238  1.794668855  3.934375343  1.793346009
##  [206]  2.206233387  1.269875287  0.517839312  0.544351529  6.401800933
##  [211]  1.109749855  2.138406636  1.503233708  1.235502443  1.392184522
##  [216]  2.502629497  2.320806013  2.323501143 -0.641866232 -0.274146303
##  [221]  0.197758708 -1.849785543  3.490114088  0.242145062  2.135987234
##  [226]  2.161546088  2.951208922  2.130030734  5.604517115  1.085869162
##  [231]  1.184279839  0.355519303  5.059088897  4.101933663 -0.735858993
##  [236]  0.877591056 -0.040537427  3.022901716  2.885875108  3.998963115
##  [241]  1.809327667  2.443933389  2.421122375  0.630811515  3.648381041
##  [246]  1.099070730  4.292563497  0.160568611  1.913657129  5.407830961
##  [251]  1.942071388  3.362735894  2.581802777  0.852762590  3.956430033
##  [256]  0.709347999  3.041691970  4.432773999  2.791430389  1.587384685
##  [261]  0.732183323  1.367908169  0.628755706  7.059305264  0.910890757
##  [266]  1.733534149  2.693343973  0.430132029  0.104868831  2.097703823
##  [271]  0.062430046  5.302726345  0.664821407  1.317387674  3.466439621
##  [276]  3.059409073  1.342797171  0.916276461  0.020548268  1.540121436
##  [281]  2.586935290  1.329075731  2.452977161 -0.248608888  0.493666307
##  [286]  3.351737670  2.110065979  1.681593531  2.078831592  2.091070960
##  [291]  4.037927957  2.128856981  3.053760415  2.513864131  2.899900564
##  [296]  3.618451038  2.823045252 -0.122712521  4.677171548  0.612656282
##  [301]  0.587440614  2.325776327  1.585885157  4.569200335  1.406383904
##  [306]  0.075658195  2.498961782  3.483129920  3.803211352  1.615864442
##  [311]  2.841190976  1.643706727  3.629971122  3.592617558  3.386786744
##  [316]  2.369964182  0.862304107  2.397777819  2.439075893 -1.243509601
##  [321]  1.422890365  0.002976181  2.623384341  1.239845443  1.253386787
##  [326]  0.899777115  1.706151291 -0.083045138  0.602103256  0.877007001
##  [331]  0.570112828  4.448033789  2.107552277 -1.069969849 -0.513554008
##  [336] -0.247472733  1.583264678  1.176423420  1.622687819 -0.166762233
##  [341]  2.187262215  1.553876373  2.005402114  1.385296279  2.754139579
##  [346]  1.850829818  1.587914290  4.019383346  4.381213070  3.937634637
##  [351]  0.589688536  1.674269169  2.512945434  0.605198208  1.859266990
##  [356]  2.522843265  0.831856880  4.504813037  2.986760930  1.224380873
##  [361]  1.823491495  4.327587590  2.740052529 -0.097842393  3.139911264
##  [366]  3.096952870  1.427725478  0.138313508  4.707497686  3.286949515
##  [371]  4.201059686  3.603569569  0.193506540  1.481107806  0.772866900
##  [376]  1.624418795  2.211053207  0.195627041  4.374004244 -0.256630850
##  [381]  0.913615364  1.147753574  2.109872113  5.289398233  0.643863002
##  [386]  2.857680069  0.910049360 -0.531942416  2.335803430  0.926264807
##  [391]  1.873074775  2.841319820  1.479079685  3.183425468  3.387750191
##  [396]  3.012665312  1.964832722  1.426814101  1.978726768  0.892450208
##  [401] -0.741858065  0.363559763  0.147653422  3.417931160 -0.367901096
##  [406]  1.094563945  4.860674536  0.329284134  3.187793573  0.261426314
##  [411]  0.545102997  3.355491743  2.473030260 -0.111417810  2.188409214
##  [416] -0.658972286  0.478232035  2.430764708  1.446751402  1.076987700
##  [421]  3.254149277  3.351451966  3.166574787  1.938780053  4.100160066
##  [426]  4.006447234  1.419957568  1.243489734  2.064490939 -1.120704041
##  [431]  2.097547658  3.413953047  4.711636220  0.536597506  3.249684938
##  [436]  2.942263276  3.202388538  2.209963898  0.696439414 -2.047737774
##  [441]  3.352410212  2.472456825  4.117437018  4.017283612  3.213429773
##  [446]  2.554707509 -0.044794571  0.068656982  1.177542175  3.735384171
##  [451]  0.228687305  3.160072766 -1.694368407  2.167044050  0.225924409
##  [456]  1.245592656  3.547811868  1.883383039  1.655615391  1.727411770
##  [461]  1.090991811  4.085573609  1.718798644  2.680137179  0.515241097
##  [466]  3.821306586  3.701879773  1.980427976  1.967757022  0.364880312
##  [471]  3.485241614  1.923509832  2.005032886  1.282357466  2.232488446
##  [476]  1.418286956  2.086696634  1.633698888  3.394721420  3.428307722
##  [481]  2.729284722  6.528111812  1.142865914  3.547114216  0.426805304
##  [486]  3.304538603  0.969723887  4.047417775  0.755957546  3.698899485
##  [491]  3.433100359  1.669988340 -0.374065441  4.214012503  3.482287700
##  [496]  1.217525862  1.116188188  3.095470188  1.484267451  0.604461624
##  [501] -0.665782538  3.003862580  2.247703527 -0.264059092  0.865178498
##  [506]  0.315174372  1.959462759  4.179288225  2.509095339  3.282365348
##  [511]  1.728614746  4.440951722  1.120907991  3.551602528  0.573773357
##  [516]  2.441338113  2.850278333  3.226687048  2.672645315  3.040101855
##  [521]  3.580715628  3.350322397  3.710666033  2.462346336  1.170166352
##  [526]  2.076934566  1.165013722  2.040800136  3.321130968  1.513048145
##  [531]  2.127693676  1.543713490  0.136104297  2.265093061  3.236135299
##  [536]  2.301561523 -0.334975887 -0.111514819  2.357309232  2.633788053
##  [541]  1.763897702  1.361800019  1.560969832  0.638315725  3.417825881
##  [546]  3.149988073  0.718035289  4.776553208  1.914905329  2.670966702
##  [551]  0.795642835  2.599349135  3.139141738  3.447747582  1.116023162
##  [556]  4.023343244  1.829624065  2.599515375  2.374103220  0.604031765
##  [561]  1.516976553 -2.312833355  4.473872405  2.024024632  3.299890877
##  [566] -0.045910762  0.526376552  1.986800016  1.142316942  0.047708700
##  [571]  0.915764977  1.585033868  0.343083279  1.590870169 -0.146783716
##  [576]  1.287227794  4.450699707  1.197124984  1.204527388 -0.107787024
##  [581]  1.763553304  1.732206525  0.452994453  2.182845554  1.238545028
##  [586]  2.053572642  1.421950634  2.983228257  2.010244053  1.478076295
##  [591]  1.176697542  1.447096034  3.260149215  0.779115629 -0.311842828
##  [596]  3.578140888  2.040736671  3.142195492 -1.355214326  1.951746051
##  [601]  0.361253681  5.085839536  0.737816326  5.366391562  1.812558803
##  [606]  4.041895202  5.137356593  5.570569667  4.089861100  2.557908130
##  [611]  5.263036426  1.143716633  2.733926871  2.484111175  1.065170128
##  [616]  3.123570880  2.358683475  0.735367584  1.203917567  0.656454398
##  [621]  0.794484757  1.290405082  1.771134003  1.534550757  2.307937075
##  [626]  2.946007767  0.189198397  0.912120514  3.105533354  3.669943247
##  [631]  1.779073817  1.586738951  1.308467599  1.796368597  3.342147993
##  [636]  0.370416561  2.913836917  1.287696730  1.118472767  3.104244055
##  [641]  0.850606531  3.186167537  3.107024814  2.541596776  2.409815398
##  [646]  1.446853298  3.323725222  2.396731943  3.008485566  1.963368457
##  [651]  2.298150669  5.174408250  2.416102820  1.340133140  2.276013020
##  [656]  2.821045618  1.328219011  0.733337849  3.334277013  2.536721687
##  [661]  2.523950952  4.371755835  5.056077930  2.853763671  0.604478113
##  [666]  1.710419228  0.692786241  2.087494759  1.525376957  0.226204491
##  [671]  3.188386267  2.656402865  3.585551258  3.129473227  3.451198590
##  [676]  0.537860688  6.621070728 -0.940514134  4.683089990  3.362634617
##  [681]  3.814415839  1.834100197  3.380767128  2.272632945  0.993262532
##  [686] -0.194431254  2.063785692  0.701287628  1.687123026  3.861386939
##  [691]  1.062266064  0.088659147  2.143874115  4.408717813  0.935566458
##  [696]  2.733905766  1.783400462  0.830613388  2.331179677  2.876808570
##  [701]  3.681348125  0.354712858  2.414907113  1.292027681  3.138228051
##  [706]  3.234029577  3.035934936  2.508504021  4.863630859 -0.629734718
##  [711] -3.065036762  3.124181314  3.691671995  0.522597514  2.557717182
##  [716]  2.587849429  2.758795012  2.479289476  1.991089895  1.827842395
##  [721] -0.498395494  4.357669073  2.669930609  0.993535589  3.096649377
##  [726]  1.522674554  0.657283673  2.640177800 -0.481879825  2.565830613
##  [731] -0.772483256  1.115792428 -1.349006949  2.743719198  2.663145783
##  [736]  2.877117774  5.349097931  5.170014864  6.271594407  2.196648125
##  [741] -0.219020713  4.879218399  0.195562548  3.207702208  3.840434419
##  [746]  2.018924823  1.870088953  2.015559662  0.770103533  4.263318942
##  [751]  6.216565987  0.531467609  1.436775186  2.226377653  2.550865082
##  [756]  1.573973584  1.606877276  1.737490123  3.648525524  1.481378964
##  [761] -1.099345573  0.287972905  3.767099422  1.415261733  2.979744865
##  [766]  3.494132501  1.374917486  1.853515053  0.838966432  0.780454572
##  [771]  4.293719960  0.769114720  3.984727069  0.036531167  2.178547153
##  [776]  1.880539194  0.739856279 -1.058985784 -0.153987163  2.183932569
##  [781]  3.463172778  1.936207433 -0.527729217  4.023351063  0.696178839
##  [786]  0.635341125  3.030859586 -0.889450047  2.648772505  1.692322458
##  [791]  2.573077075 -0.076090787  2.333889107  2.795327324  2.307497828
##  [796]  1.771750598  0.971979948  1.463279030  4.569134322  2.712047432
##  [801]  1.615765137  1.172401402  2.167272824  1.335247988 -0.145726301
##  [806]  3.918660658  0.982910226  3.102311110 -0.029568518  1.765583841
##  [811]  3.532265677  2.284008292  0.839983617  0.021716347  1.973692614
##  [816]  0.600320558  1.851284493  2.753014947  2.491507821  1.855984378
##  [821]  2.040245755  1.371894969  2.827321404  2.802466415  5.540952255
##  [826]  2.744408879  3.033967743  2.300955023  2.714781279  1.867278027
##  [831]  1.841221072  1.380308922 -0.213461301  2.862550523  2.280197133
##  [836]  0.598517611  2.669153004  2.596293309  1.687778613  2.747914144
##  [841]  1.761430579  0.459585663  0.736989401  4.438424112  3.032564460
##  [846]  2.477104730  1.659644517  1.155807647  2.677117789  2.793964733
##  [851]  0.204467016  0.993068562  2.051370558  1.960553483  1.978816086
##  [856] -0.024343572  3.237775899  3.336757132  4.052886252  3.494548919
##  [861]  2.718655618  0.170981542  0.721116863  0.528103310 -0.106047033
##  [866] -0.076442881  0.639927982  1.820928201  2.053754351  0.862733782
##  [871]  3.307420645  1.224132742  1.988961515  2.082810171  3.456490181
##  [876]  2.187868933 -0.120080367  0.428861520  2.567335706  1.997395445
##  [881]  3.258275764  1.967580986  1.844393196  3.068527476  3.306947172
##  [886]  0.350497558  2.745167316  0.537841957  0.639117365  1.750191724
##  [891] -1.237687234  0.672119276  2.353815586  3.501905029  3.894168600
##  [896]  1.231376035  0.564378771  1.234723601  1.390641978  3.429411782
##  [901]  1.436206617 -0.782970606  0.370505933  0.228351512  2.188881597
##  [906]  4.373329318  2.014358626  2.129498635  0.776674874  4.568141099
##  [911]  1.915072324  2.498105241 -0.367498660  4.545308009  1.797217363
##  [916]  3.733142862  0.155606449 -0.514527760  0.589624302 -2.299625334
##  [921]  2.597500261  3.676256712  2.006608677  2.208176946  1.834442879
##  [926] -0.208260386  2.682504934  1.908207802  3.947724155  2.437532064
##  [931]  3.741553218  0.507049859  3.342287726  2.766344185  1.368826794
##  [936]  1.339697547  3.694724500  2.016418189  1.448939366  1.173375619
##  [941]  1.960034430  3.510831720  1.216461115  4.303961286  3.430552630
##  [946]  1.407656501  1.814374652  1.210629047  1.716399861  2.770925335
##  [951]  0.867202298  2.109702759  1.093264082  3.839763729  3.169550045
##  [956]  0.650127196  3.333800940  3.251263614  1.584724185  2.702443265
##  [961]  2.198575552  2.312204411  0.691900095  2.200613140  2.923956026
##  [966]  3.079081622  1.652726243  5.332094604  2.153138673  0.311275739
##  [971]  2.434943996  1.623673220  1.776934244  1.387809600  3.124966598
##  [976]  1.013371537  1.178693678  1.573209228  1.169887819  2.341171351
##  [981]  2.797518468  4.386103268  3.414543577  0.205153194  1.174422485
##  [986]  2.633946102  3.559173011  0.182415107  1.644006461  0.146263383
##  [991] -0.467133783  3.084739840  0.223664115  1.339583207  2.701635860
##  [996]  3.301906639  2.099505130  3.333086383 -0.135237524  1.427413135
summary(data)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -3.0650  0.9075  1.9597  1.9575  3.0249  7.0593
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)

# Add density curve (define the range of the density curve) 
x = seq(from=min(data), to=max(data), length.out=100)
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/
  20*length(data)
lines(x, norm_dist, col='violet',lwd=4)
abline(v = mean(data), col="black", lwd=3, lty=2)

# Add legend
legend("topright", # Add legend to plot
       legend = c("Histogram", "density curve", "Average"),
       col = c("lightblue", "violet", "black"),
       lty = 1)

# Locate lowest 5% and highest 5% of the data
quantile(data,prob = 0.05)
##         5% 
## -0.3182226
abline(v = quantile(data,prob = 0.05), col="red", lwd=3, lty=3)
# Area to the left of the red line is lowest 5% of the data
quantile(data,prob = 0.95)
##      95% 
## 4.381381
abline(v = quantile(data,prob = 0.95), col="blue", lwd=3, lty=3)

# Area to the right of the blue line is top 5% of the data
# Area in between the red line and the blue line is 90%
# of the data

# How to get the values (lowest 5%)
(Cutoff <- quantile(data,prob = 0.05))
##         5% 
## -0.3182226
# mark those values that is lower than -.42 as true
# and higher than -.42 as false
(Low5Percent <- (data < Cutoff))
##    [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##   [13]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE
##   [61] FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##   [85] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [97] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [133] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [145] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [181] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [193] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [217] FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [229] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [253] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [277] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [325] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE
##  [337] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [385] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [397] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [445] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [469] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [493]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [505] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [553] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [577] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [589] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [601] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [673] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [685] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [697] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [709] FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [721]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE
##  [733]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [745] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [757] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [781] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [817] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [877] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [889] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [901] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [913]  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [925] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [961] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [985] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [997] FALSE FALSE FALSE FALSE
# count all true values using the sum command
sum(Low5Percent[TRUE]) # there are 50 of them
## [1] 50
# filter those 50 values that are smaller than the cutoff
data[Low5Percent==TRUE]
##  [1] -0.6124755 -1.1081320 -0.4461844 -0.5477458 -0.8937251 -0.4970772
##  [7] -1.5132461 -1.5659347 -1.2838376 -0.4079187 -0.7865073 -0.4344954
## [13] -2.2900806 -2.6849197 -0.8530157 -0.6418662 -1.8497855 -0.7358590
## [19] -1.2435096 -1.0699698 -0.5135540 -0.5319424 -0.7418581 -0.3679011
## [25] -0.6589723 -1.1207040 -2.0477378 -1.6943684 -0.3740654 -0.6657825
## [31] -0.3349759 -2.3128334 -1.3552143 -0.9405141 -0.6297347 -3.0650368
## [37] -0.4983955 -0.4818798 -0.7724833 -1.3490069 -1.0993456 -1.0589858
## [43] -0.5277292 -0.8894500 -1.2376872 -0.7829706 -0.3674987 -0.5145278
## [49] -2.2996253 -0.4671338
# How to get the top 5%
(Cutoff <- quantile(data,prob = 0.95))
##      95% 
## 4.381381
(Top5Percent <- (data >= Cutoff))
##    [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [49] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [73] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##   [85] FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
##   [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [133] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [205] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [229]  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [253] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [277] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [301] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [325] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [337] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [385] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [397] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [433]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [445] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [469] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [481] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [505] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [553] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [577]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [589] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE
##  [613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [649] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [661] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [673] FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [685] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [697] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [709]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [733] FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE
##  [745] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [793] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [817] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [841] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [877] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [913] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [925] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [961] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [985] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [997] FALSE FALSE FALSE FALSE
sum(Top5Percent[TRUE]) # counts all the true values
## [1] 50
data[Top5Percent==TRUE]
##  [1] 4.489612 4.384574 4.841926 4.526998 4.645830 4.956468 4.998054 6.401801
##  [9] 5.604517 5.059089 5.407831 4.432774 7.059305 5.302726 4.677172 4.569200
## [17] 4.448034 4.504813 4.707498 5.289398 4.860675 4.711636 6.528112 4.440952
## [25] 4.776553 4.473872 4.450700 5.085840 5.366392 5.137357 5.570570 5.263036
## [33] 5.174408 5.056078 6.621071 4.683090 4.408718 4.863631 5.349098 5.170015
## [41] 6.271594 4.879218 6.216566 4.569134 5.540952 4.438424 4.568141 4.545308
## [49] 5.332095 4.386103