# Load packages
# Core
library(tidyverse)
library(tidyquant)
1 Import stock prices
symbols <- c("NKE", "GOOG", "MSFT", "TSLA", "AMZN")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
2 Convert prices to returns
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
3 Assign a weight to each asset
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AMZN" "GOOG" "MSFT" "NKE" "TSLA"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AMZN 0.25
## 2 GOOG 0.25
## 3 MSFT 0.2
## 4 NKE 0.2
## 5 TSLA 0.1
4 Build a portfolio
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0556
## 2 2013-02-28 0.0125
## 3 2013-03-28 0.0301
## 4 2013-04-30 0.0767
## 5 2013-05-31 0.0943
## 6 2013-06-28 0.0241
## 7 2013-07-31 0.0261
## 8 2013-08-30 0.00515
## 9 2013-09-30 0.0769
## 10 2013-10-31 0.0805
## # … with 50 more rows
5 Calculate CAPM Beta
5.1 Get market returns
# Get market returns
market_returns_tbl <- tq_get("SPY",
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31") %>%
# Convert prices to returns
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log",
col_rename = "returns") %>%
slice(-1)
5.2 Join returns
# Combine market returns with portfolio returns
portfolio_market_returns_tbl <- portfolio_returns_tbl %>%
# Add market returns
mutate(market_returns = market_returns_tbl %>% pull(returns))
5.3 CAPM Beta
# 3 Calculating CAPM Beta ----
# A complete list of functions for performance_fun()
# tq_performance_fun_options()
portfolio_market_returns_tbl %>%
tq_performance(Ra = returns,
Rb = market_returns,
performance_fun = CAPM.beta)
## # A tibble: 1 × 1
## CAPM.beta.1
## <dbl>
## 1 0.986
6 Plot
Scatter with regression line
# Figure 8.2 Scatter with regression line from ggplot ----
portfolio_market_returns_tbl %>%
ggplot(aes(market_returns, returns)) +
geom_point(color = "cornflowerblue") +
geom_smooth(method = "lm", se = FALSE,
size = 1.5, color = tidyquant::palette_light()[3]) +
labs(x = "market returns",
y = "portfolio returns")

Actual versus fitted returns
# Figure 8.5 Actual versus fitted returns ----
portfolio_market_returns_tbl %>%
# Run regression
lm(returns ~ market_returns, data = .) %>%
# Get fitted
broom::augment() %>%
# Add date %>%
mutate(date = portfolio_market_returns_tbl$date) %>%
# Transform data to long format
pivot_longer(cols = c(returns, .fitted),
names_to = "type",
values_to = "returns") %>%
# Plot
ggplot(aes(date, returns, color = type)) +
geom_line()
