# Load packages

# Core
library(tidyverse)
library(tidyquant)

1 Import stock prices

symbols <- c("NKE", "GOOG", "MSFT", "TSLA", "AMZN")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AMZN" "GOOG" "MSFT" "NKE"  "TSLA"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AMZN       0.25
## 2 GOOG       0.25
## 3 MSFT       0.2 
## 4 NKE        0.2 
## 5 TSLA       0.1

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date       returns
##    <date>       <dbl>
##  1 2013-01-31 0.0556 
##  2 2013-02-28 0.0125 
##  3 2013-03-28 0.0301 
##  4 2013-04-30 0.0767 
##  5 2013-05-31 0.0943 
##  6 2013-06-28 0.0241 
##  7 2013-07-31 0.0261 
##  8 2013-08-30 0.00515
##  9 2013-09-30 0.0769 
## 10 2013-10-31 0.0805 
## # … with 50 more rows

5 Calculate Sharpe Ratio

# Risk free rate
rfr <- 0.0003

portfolio_sharpe_tbl <- portfolio_returns_tbl %>%

    tq_performance(Ra = returns,
                   Rf = rfr,
                   performance_fun = SharpeRatio,
                   FUN = "StdDev") 

portfolio_sharpe_tbl
## # A tibble: 1 × 1
##   `StdDevSharpe(Rf=0%,p=95%)`
##                         <dbl>
## 1                       0.519

6 Plot

Returns Histogram with Risk-Free Rate

# Figure 7.2 Returns Histogram with Risk-Free Rate ggplot ----

portfolio_returns_tbl %>%

    ggplot(aes(returns)) +
    geom_histogram(binwidth = 0.01, fill = "cornflowerblue", alpha = 0.5) +
    geom_vline(xintercept = rfr, color = "green", size = 1) +

    annotate(geom= "text",
             x = rfr + 0.002, y = 13,
             label = "risk free rate", angle = 90, size = 5) +
    labs(y = "count")

Scatter Returns around Risk Free Rate

# Figure 7.1 Scatter Returns around Risk Free Rate ----

portfolio_returns_tbl %>%

    # Transform data
    mutate(returns_excess = if_else(returns > rfr, "above_rfr", "below_rfr")) %>%

    ggplot(aes(date, returns, color = returns_excess)) +
    geom_point(show.legend = FALSE) +

    # risk free rate
    geom_hline(yintercept = rfr, linetype = "dotted", size = 1, color = "cornflowerblue") +

    # election date
    geom_vline(xintercept = as.Date("2016-11-30"), size = 1, color = "cornflowerblue") +

    # formatting
    scale_x_date(breaks = scales::pretty_breaks(n = 7)) +

    # labeling
    annotate(geom = "text",
             x = as.Date("2017-01-01"), y = -0.04,
             label = "Election", angle = 90, size = 5) +
    annotate(geom = "text",
             x = as.Date("2017-06-01"), y = -0.01,
             label = str_glue("No returns below the RFR
                              after the 2016 election"),
             color = "red", size = 4) +
    labs(y = "percent monthly returns",
         x = NULL)

Rolling Sharpe

# Custom function
# necessary because we would not be able to specify FUN = "StdDev" otherwise

calculate_rolling_sharpeRatio <- function(df) {

    SharpeRatio(df,
                Rf = rfr,
                FUN = "StdDev")

}

# dump(list = "calculate_rolling_sharpeRatio",
#      file = "00_scripts/calculate_rolling_sharpeRatio.R")

# Set the length of periods for rolling calculation
window <- 24

# Calculate rolling sharpe ratios
rolling_sharpe_tbl <- portfolio_returns_tbl %>%

    tq_mutate(select = returns,
              mutate_fun = rollapply,
              width = window,
              align = "right",
              FUN = calculate_rolling_sharpeRatio,
              col_rename = "sharpeRatio") %>%
    na.omit()

rolling_sharpe_tbl
## # A tibble: 37 × 3
##    date        returns sharpeRatio
##    <date>        <dbl>       <dbl>
##  1 2014-12-31 -0.0501        0.600
##  2 2015-01-30 -0.00793       0.535
##  3 2015-02-27  0.0569        0.573
##  4 2015-03-31 -0.0261        0.501
##  5 2015-04-30  0.0780        0.502
##  6 2015-05-29  0.0124        0.452
##  7 2015-06-30  0.00424       0.430
##  8 2015-07-31  0.122         0.468
##  9 2015-08-31 -0.0396        0.412
## 10 2015-09-30  0.0183        0.372
## # … with 27 more rows
# Figure 7.5 Rolling Sharpe ggplot ----

rolling_sharpe_tbl %>%

    ggplot(aes(date, sharpeRatio)) +
    geom_line(color = "cornflowerblue") +

    labs(title = paste0("Rolling ", window, "-Month Sharpe Ratio"),
         y = "rolling Sharpe Ratio",
         x = NULL) +
    theme(plot.title = element_text(hjust = 0.5)) +

    annotate(geom = "text",
             x = as.Date("2016-06-01"), y = 0.5,
             label = "This portfolio has done well since 2016. There was a dip right before the New Year in 2017, as well as right before 2018. This is most likely due to yearly earnings coming out so their stock prices drop if they're worse than expected.",
             size = 5, color = "red")