set.seed(123)
n <-100
x <-rnorm(n)
y <-2 + 3*x + rnorm(n)
fit <- lm(y ~ x)
fit
##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## 1.897 2.948
summary(fit)
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9073 -0.6835 -0.0875 0.5806 3.2904
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.89720 0.09755 19.45 <2e-16 ***
## x 2.94753 0.10688 27.58 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9707 on 98 degrees of freedom
## Multiple R-squared: 0.8859, Adjusted R-squared: 0.8847
## F-statistic: 760.6 on 1 and 98 DF, p-value: < 2.2e-16
plot(x,y)
abline(fit, col = "red")
