# Load packages
# Core
library(tidyverse)
library(tidyquant)
Calculate and visualize your portfolio’s beta.
Choose your stocks and the baseline market.
from 2012-12-31 to present
symbols <- c("NDAQ", "SBUX", "AAPL", "VZ", "T")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "NDAQ" "SBUX" "T" "VZ"
# weights
weights <- c(0.25, 0.25, 0.25, 0.2, 0.2)
weights
## [1] 0.25 0.25 0.25 0.20 0.20
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.25
## 2 NDAQ 0.25
## 3 SBUX 0.25
## 4 T 0.2
## 5 VZ 0.2
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0173
## 2 2013-02-28 0.0360
## 3 2013-03-28 0.0314
## 4 2013-04-30 0.0216
## 5 2013-05-31 -0.00296
## 6 2013-06-28 -0.00104
## 7 2013-07-31 0.0524
## 8 2013-08-30 -0.0193
## 9 2013-09-30 0.0326
## 10 2013-10-31 0.0957
## # … with 50 more rows
market_returns_tbl <- tq_get(x = "NDAQ",
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31") %>%
# Convert prices to returns
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log",
col_rename = "returns") %>%
slice(-1)
portfolio_market_returns_tbl <- left_join(market_returns_tbl,
portfolio_returns_tbl,
by = "date") %>%
set_names("date", "market_returns", "portfolio_returns")
portfolio_market_returns_tbl %>%
tq_performance(Ra = portfolio_returns,
Rb = market_returns,
performance_fun = CAPM.beta)
## # A tibble: 1 × 1
## CAPM.beta.1
## <dbl>
## 1 0.378
portfolio_market_returns_tbl %>%
ggplot(aes(market_returns, returns,
y = portfolio_returns)) +
geom_point(color = "cornflowerblue") +
geom_smooth(method = "lm", se = FALSE,
size = 1.5, color = tidyquant::palette_light()[3]) +
labs(x = "market returns",
y = "portfolio returns")
How sensitive is your portfolio to the market? Discuss in terms of the
beta coefficient. Does the plot confirm the beta coefficient you
calculated?
My portfolios beta is at 0.378, which is lower then the market. What this means is that my portfolio is less valiatile then the market. When the market goes up, mine also goes up but less then half of what the market rises, saem goes as when the market declines. On the plot, my porfolio is defintaly correlated with market, but is a little more spread out. It has the same upwards trend as the market.