# Mindanao State University
# General Santos City
# A0 Basic Graphs Using R
# Submitted by: Princess Joy Angga, 1-BSMATH
# Mat108

# Lab Exercise 1: How to create Lines in with different styles in R
# Step 1: Create Data
x <-1:10 # Create example data
y <- c(3, 1, 5, 2, 3, 8, 4, 7, 6, 9) # using the c() function to create an array

# Step 2: Plot the line graph using the base plot() command
plot(x, y, type ="l")

# Step 3: Add Main Title & Change Axis Labels
plot(x, y, type = "l",
     main = "Hello: This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values")

# Step 4: Add color to the line using the col command
plot(x, y, type = "l",
     main = "This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values",
     col = "red")

# Step 5: Modify Thickness of Line using lwd command
plot(x, y, type = "l",
     main = "This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values",
     lwd=7,
     col = "green")

# Step 6: Add points to line graph by changing the type command
plot(x, y, type = "b",
     main = "This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values",
     lwd=3,
     col = "blue")

# Step 6: Add points to line graph by changing the type command
plot(x, y, type = "b",
     main = "This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values",
     lwd=3,
     col = "blue")

# Lab Exercise 2: How to create Lines in with different styles in R
# Step1: Assign values for different lines. We enclose the entire
# line with parenthesis symbol to force R to display the results instantly
# set the same value for the x variable
(x <- 1:10)
##  [1]  1  2  3  4  5  6  7  8  9 10
# set different values for y variables
(y1 <-c(3, 1, 5, 2, 3, 8, 4, 7, 6, 9))
##  [1] 3 1 5 2 3 8 4 7 6 9
# set different values for y variables
(y2<-c(5, 1, 4, 6, 2, 3, 7, 8, 2, 8))
##  [1] 5 1 4 6 2 3 7 8 2 8
# set different values for y variables
(y3 <-c(3, 3, 3, 3, 4, 4, 5, 5, 7, 7))
##  [1] 3 3 3 3 4 4 5 5 7 7
# Plot first the pair x and y1.
plot(x, y1, type = "b",
     main = "This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values",
     lwd=3,
     col = "blue")
# then Add the two lines (for x,y2) and (x,y3)
lines(x, y2, type ="b", col ="red",lwd=3)
lines(x, y3, type ="b", col = "green",lwd=3)
# Add legend to the plot
legend("topleft",
       legend = c("Line y1", "Line y2","Line y3"),
       col = c("black","red", "green"),
       lty = 1)

# Step 2: Create Different Point Symbol for Each
# Line using the pch command
plot(x, y1, type ="b",pch = 16,
     main = "This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values",
     lwd=3,
     col = "blue")
lines(x, y2, type = "b", col ="red",lwd=3, pch = 15)
lines(x, y3, type = "b", col = "green",lwd=3, pch = 8)
      # Add legend
      legend("topleft",
             legend = c("Line y1", "Line y2", "Line y3"),
             col = c("black", "red", "green"),
             lty = 1)

      # Lab Exercise 3: Create Line graph without x values
      Pupils <-c(3.55 ,3.54 ,3.53 ,3.61 ,3.65 ,3.63 ,3.61
                 ,3.61 ,3.59 ,3.63 ,3.59 ,3.63 ,3.62 ,3.62
                 ,3.59 ,3.63 ,3.62 ,3.65 ,3.65)
      # get number of elements of Pupils
      length(Pupils)
## [1] 19
      # Display the elements of Pupils
      Pupils
##  [1] 3.55 3.54 3.53 3.61 3.65 3.63 3.61 3.61 3.59 3.63 3.59 3.63 3.62 3.62 3.59
## [16] 3.63 3.62 3.65 3.65
      # You can obtain the plot without x values
      plot(Pupils, type = 'o')

      # Lab Exercise 4: How to Create vertical, horizontal lines
      # We will use buit-in cars dataset in R
      # display the cars dataset
      cars
##    speed dist
## 1      4    2
## 2      4   10
## 3      7    4
## 4      7   22
## 5      8   16
## 6      9   10
## 7     10   18
## 8     10   26
## 9     10   34
## 10    11   17
## 11    11   28
## 12    12   14
## 13    12   20
## 14    12   24
## 15    12   28
## 16    13   26
## 17    13   34
## 18    13   34
## 19    13   46
## 20    14   26
## 21    14   36
## 22    14   60
## 23    14   80
## 24    15   20
## 25    15   26
## 26    15   54
## 27    16   32
## 28    16   40
## 29    17   32
## 30    17   40
## 31    17   50
## 32    18   42
## 33    18   56
## 34    18   76
## 35    18   84
## 36    19   36
## 37    19   46
## 38    19   68
## 39    20   32
## 40    20   48
## 41    20   52
## 42    20   56
## 43    20   64
## 44    22   66
## 45    23   54
## 46    24   70
## 47    24   92
## 48    24   93
## 49    24  120
## 50    25   85
      # get the number of rows and columns using dim() command
      dim(cars)
## [1] 50  2
      # display the variable names of the cars dataset
      names(cars)
## [1] "speed" "dist"
      # display only the first column of the dataset
      cars$speed # using the column name
##  [1]  4  4  7  7  8  9 10 10 10 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15
## [26] 15 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 22 23 24 24 24 24 25
      cars[,1] # using the column number
##  [1]  4  4  7  7  8  9 10 10 10 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15
## [26] 15 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 22 23 24 24 24 24 25
      # Remarks: the following commands will give you the same result
      plot(cars,) # using the comma after the name

      plot(cars[,1],cars[,2]) # using the column index 1 and 2

      attach(cars); plot(speed,dist) # using the attach command to load the variables

      plot(cars$speed,cars$dist) # using the dollar notation

      # combine all 4 plots using the par() command
      par(mfrow = c(2,2)) # set a 2x2 plot output
      plot(cars,) # using the comma after the name
      plot(cars[,1],cars[,2]) # using the column index 1 and 2
      attach(cars); plot(speed,dist) # using the attach command to load the variables
## The following objects are masked from cars (pos = 3):
## 
##     dist, speed
      plot(cars$speed,cars$dist) # using the dollar notation

      par(mfrow = c(1,1)) # reset to default plot setting
      # Problem: Create vertical lines using the v command
      plot(cars)
      abline(v = 15, col = "darkgreen",lwd=3) # vertical line
      abline(v = 10, col = "blue",lwd=3) # vertical line
      # Problem: Create horizontal lines using the h command
      abline(h = 80, col = "darkgreen",lwd=3) # vertical line
      abline(h = 20, col = "blue",lwd=3) # vertical line

      # Create more lines simultaneously, using a vector of values
      plot(cars)
      abline(v = c(9, 22,25), col = c("darkgreen", "blue","red"),
             lwd = c(1, 3,2), # line thickness
             lty = c(2,2,2)) # dashed lines

      plot(cars)
      abline(v = c(9, 22,25), col = c("darkgreen", "blue","red"),
             lwd = c(1, 3,2)) # line thickness and solid lines

      # create horizontal lines
      plot(cars)
      abline(h = 60, col = "red",lty = 1, lwd = 3)
      abline(h = 100, col = "red",lty = 2, lwd = 3)
      abline(h = 20, col = "red",lty = 3, lwd = 3)

      # Lab Exercise 5: How to Plot data by group
      # We will use buit-in iris dataset in R
      # this dataset is a collection of 4 species of flowers with different
      # sepal length and width and also with different petal length and width
      dim(iris) # iris dataset has 150 rows and 5 columns
## [1] 150   5
      names(iris)
## [1] "Sepal.Length" "Sepal.Width"  "Petal.Length" "Petal.Width"  "Species"
      # two different commands to get the frequency table
      table(iris$Species) # refer to the dataset by variable name
## 
##     setosa versicolor  virginica 
##         50         50         50
      table(iris[,5]) # refer to the dataset by column number
## 
##     setosa versicolor  virginica 
##         50         50         50
      # get summary of all columns
      summary(iris)
##   Sepal.Length    Sepal.Width     Petal.Length    Petal.Width   
##  Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100  
##  1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300  
##  Median :5.800   Median :3.000   Median :4.350   Median :1.300  
##  Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199  
##  3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800  
##  Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500  
##        Species  
##  setosa    :50  
##  versicolor:50  
##  virginica :50  
##                 
##                 
## 
      #create scatterplot of sepal width vs. sepal length
      plot(iris$Sepal.Width, iris$Sepal.Length,
           col='steelblue',
           main='Scatterplot',
           xlab='Sepal Width',
           ylab='Sepal Length',
           pch=19)#create scatterplot of sepal width vs. sepal length
      plot(iris$Sepal.Width, iris$Sepal.Length,
           col='steelblue',
           main='Scatterplot',
           xlab='Sepal Width',
           ylab='Sepal Length',
           pch=19)

      plot(iris$Sepal.Width, iris$Sepal.Length,
           col='steelblue',
           main='Scatterplot',
           xlab='Sepal Width',
           ylab='Sepal Length',
           pch=1)

      # another way to retrieve columns of data
      PL <-iris$Petal.Length
      PW <- iris$Petal.Width
      plot(PL, PW)

      # add color by species
      plot(PL, PW, col = iris$Species, main= "My Plot")
      # draw a line along with the distribution of points
      # using the abline and lm commands
      abline(lm(PW ~ PL))
      # add text annotation
      text(5, 0.5, "Regression Line")
      
      legend("topleft", # specify the location of the legend
             levels(iris$Species), # specify the levels of species
             pch = 1:3, # specify three symbols used for the three species
             col = 1:3 # specify three colors for the three species
      )

      # Lab Exercise 6: Generate advance scatter plot
      pairs(iris, col = rainbow(3)[iris$Species]) # set colors by species

      # How to filter data for each flower
      (Versicolor <- subset(iris, Species == "versicolor"))
##     Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
## 51           7.0         3.2          4.7         1.4 versicolor
## 52           6.4         3.2          4.5         1.5 versicolor
## 53           6.9         3.1          4.9         1.5 versicolor
## 54           5.5         2.3          4.0         1.3 versicolor
## 55           6.5         2.8          4.6         1.5 versicolor
## 56           5.7         2.8          4.5         1.3 versicolor
## 57           6.3         3.3          4.7         1.6 versicolor
## 58           4.9         2.4          3.3         1.0 versicolor
## 59           6.6         2.9          4.6         1.3 versicolor
## 60           5.2         2.7          3.9         1.4 versicolor
## 61           5.0         2.0          3.5         1.0 versicolor
## 62           5.9         3.0          4.2         1.5 versicolor
## 63           6.0         2.2          4.0         1.0 versicolor
## 64           6.1         2.9          4.7         1.4 versicolor
## 65           5.6         2.9          3.6         1.3 versicolor
## 66           6.7         3.1          4.4         1.4 versicolor
## 67           5.6         3.0          4.5         1.5 versicolor
## 68           5.8         2.7          4.1         1.0 versicolor
## 69           6.2         2.2          4.5         1.5 versicolor
## 70           5.6         2.5          3.9         1.1 versicolor
## 71           5.9         3.2          4.8         1.8 versicolor
## 72           6.1         2.8          4.0         1.3 versicolor
## 73           6.3         2.5          4.9         1.5 versicolor
## 74           6.1         2.8          4.7         1.2 versicolor
## 75           6.4         2.9          4.3         1.3 versicolor
## 76           6.6         3.0          4.4         1.4 versicolor
## 77           6.8         2.8          4.8         1.4 versicolor
## 78           6.7         3.0          5.0         1.7 versicolor
## 79           6.0         2.9          4.5         1.5 versicolor
## 80           5.7         2.6          3.5         1.0 versicolor
## 81           5.5         2.4          3.8         1.1 versicolor
## 82           5.5         2.4          3.7         1.0 versicolor
## 83           5.8         2.7          3.9         1.2 versicolor
## 84           6.0         2.7          5.1         1.6 versicolor
## 85           5.4         3.0          4.5         1.5 versicolor
## 86           6.0         3.4          4.5         1.6 versicolor
## 87           6.7         3.1          4.7         1.5 versicolor
## 88           6.3         2.3          4.4         1.3 versicolor
## 89           5.6         3.0          4.1         1.3 versicolor
## 90           5.5         2.5          4.0         1.3 versicolor
## 91           5.5         2.6          4.4         1.2 versicolor
## 92           6.1         3.0          4.6         1.4 versicolor
## 93           5.8         2.6          4.0         1.2 versicolor
## 94           5.0         2.3          3.3         1.0 versicolor
## 95           5.6         2.7          4.2         1.3 versicolor
## 96           5.7         3.0          4.2         1.2 versicolor
## 97           5.7         2.9          4.2         1.3 versicolor
## 98           6.2         2.9          4.3         1.3 versicolor
## 99           5.1         2.5          3.0         1.1 versicolor
## 100          5.7         2.8          4.1         1.3 versicolor
      (Setosa <- subset(iris, Species == "setosa"))
##    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1           5.1         3.5          1.4         0.2  setosa
## 2           4.9         3.0          1.4         0.2  setosa
## 3           4.7         3.2          1.3         0.2  setosa
## 4           4.6         3.1          1.5         0.2  setosa
## 5           5.0         3.6          1.4         0.2  setosa
## 6           5.4         3.9          1.7         0.4  setosa
## 7           4.6         3.4          1.4         0.3  setosa
## 8           5.0         3.4          1.5         0.2  setosa
## 9           4.4         2.9          1.4         0.2  setosa
## 10          4.9         3.1          1.5         0.1  setosa
## 11          5.4         3.7          1.5         0.2  setosa
## 12          4.8         3.4          1.6         0.2  setosa
## 13          4.8         3.0          1.4         0.1  setosa
## 14          4.3         3.0          1.1         0.1  setosa
## 15          5.8         4.0          1.2         0.2  setosa
## 16          5.7         4.4          1.5         0.4  setosa
## 17          5.4         3.9          1.3         0.4  setosa
## 18          5.1         3.5          1.4         0.3  setosa
## 19          5.7         3.8          1.7         0.3  setosa
## 20          5.1         3.8          1.5         0.3  setosa
## 21          5.4         3.4          1.7         0.2  setosa
## 22          5.1         3.7          1.5         0.4  setosa
## 23          4.6         3.6          1.0         0.2  setosa
## 24          5.1         3.3          1.7         0.5  setosa
## 25          4.8         3.4          1.9         0.2  setosa
## 26          5.0         3.0          1.6         0.2  setosa
## 27          5.0         3.4          1.6         0.4  setosa
## 28          5.2         3.5          1.5         0.2  setosa
## 29          5.2         3.4          1.4         0.2  setosa
## 30          4.7         3.2          1.6         0.2  setosa
## 31          4.8         3.1          1.6         0.2  setosa
## 32          5.4         3.4          1.5         0.4  setosa
## 33          5.2         4.1          1.5         0.1  setosa
## 34          5.5         4.2          1.4         0.2  setosa
## 35          4.9         3.1          1.5         0.2  setosa
## 36          5.0         3.2          1.2         0.2  setosa
## 37          5.5         3.5          1.3         0.2  setosa
## 38          4.9         3.6          1.4         0.1  setosa
## 39          4.4         3.0          1.3         0.2  setosa
## 40          5.1         3.4          1.5         0.2  setosa
## 41          5.0         3.5          1.3         0.3  setosa
## 42          4.5         2.3          1.3         0.3  setosa
## 43          4.4         3.2          1.3         0.2  setosa
## 44          5.0         3.5          1.6         0.6  setosa
## 45          5.1         3.8          1.9         0.4  setosa
## 46          4.8         3.0          1.4         0.3  setosa
## 47          5.1         3.8          1.6         0.2  setosa
## 48          4.6         3.2          1.4         0.2  setosa
## 49          5.3         3.7          1.5         0.2  setosa
## 50          5.0         3.3          1.4         0.2  setosa
      (Virginica <- subset(iris, Species == "virginica"))
##     Sepal.Length Sepal.Width Petal.Length Petal.Width   Species
## 101          6.3         3.3          6.0         2.5 virginica
## 102          5.8         2.7          5.1         1.9 virginica
## 103          7.1         3.0          5.9         2.1 virginica
## 104          6.3         2.9          5.6         1.8 virginica
## 105          6.5         3.0          5.8         2.2 virginica
## 106          7.6         3.0          6.6         2.1 virginica
## 107          4.9         2.5          4.5         1.7 virginica
## 108          7.3         2.9          6.3         1.8 virginica
## 109          6.7         2.5          5.8         1.8 virginica
## 110          7.2         3.6          6.1         2.5 virginica
## 111          6.5         3.2          5.1         2.0 virginica
## 112          6.4         2.7          5.3         1.9 virginica
## 113          6.8         3.0          5.5         2.1 virginica
## 114          5.7         2.5          5.0         2.0 virginica
## 115          5.8         2.8          5.1         2.4 virginica
## 116          6.4         3.2          5.3         2.3 virginica
## 117          6.5         3.0          5.5         1.8 virginica
## 118          7.7         3.8          6.7         2.2 virginica
## 119          7.7         2.6          6.9         2.3 virginica
## 120          6.0         2.2          5.0         1.5 virginica
## 121          6.9         3.2          5.7         2.3 virginica
## 122          5.6         2.8          4.9         2.0 virginica
## 123          7.7         2.8          6.7         2.0 virginica
## 124          6.3         2.7          4.9         1.8 virginica
## 125          6.7         3.3          5.7         2.1 virginica
## 126          7.2         3.2          6.0         1.8 virginica
## 127          6.2         2.8          4.8         1.8 virginica
## 128          6.1         3.0          4.9         1.8 virginica
## 129          6.4         2.8          5.6         2.1 virginica
## 130          7.2         3.0          5.8         1.6 virginica
## 131          7.4         2.8          6.1         1.9 virginica
## 132          7.9         3.8          6.4         2.0 virginica
## 133          6.4         2.8          5.6         2.2 virginica
## 134          6.3         2.8          5.1         1.5 virginica
## 135          6.1         2.6          5.6         1.4 virginica
## 136          7.7         3.0          6.1         2.3 virginica
## 137          6.3         3.4          5.6         2.4 virginica
## 138          6.4         3.1          5.5         1.8 virginica
## 139          6.0         3.0          4.8         1.8 virginica
## 140          6.9         3.1          5.4         2.1 virginica
## 141          6.7         3.1          5.6         2.4 virginica
## 142          6.9         3.1          5.1         2.3 virginica
## 143          5.8         2.7          5.1         1.9 virginica
## 144          6.8         3.2          5.9         2.3 virginica
## 145          6.7         3.3          5.7         2.5 virginica
## 146          6.7         3.0          5.2         2.3 virginica
## 147          6.3         2.5          5.0         1.9 virginica
## 148          6.5         3.0          5.2         2.0 virginica
## 149          6.2         3.4          5.4         2.3 virginica
## 150          5.9         3.0          5.1         1.8 virginica
      # Draw boxplot for each type of flower
      boxplot(Versicolor[,1:4], main="Versicolor, Rainbow Palette",ylim =
                c(0,8),las=2, col=rainbow(4))

      boxplot(Setosa[,1:4], main="Setosa, Heat color Palette",ylim = c(0,8),las=2,
              col=heat.colors(4))

      boxplot(Virginica[,1:4], main="Virginica, Topo colors Palette",ylim =
                c(0,8),las=2, col=topo.colors(4))

      # Lab Exercise 7: How to load external datasets
      # From a local directory
      # the folder that contains the file should be specified completely
      # using the forward slash symbol instead of the backward splash
      library(readr)
      cancer <- read_csv("Cancer.csv")
## Rows: 173 Columns: 17
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (2): country, continent
## dbl (15): incomeperperson, alcconsumption, armedforcesrate, breastcancer, co...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
      dim(cancer)
## [1] 173  17
      names(cancer)
##  [1] "country"            "incomeperperson"    "alcconsumption"    
##  [4] "armedforcesrate"    "breastcancer"       "co2emissions"      
##  [7] "femaleemployrate"   "hivrate"            "internetuserate"   
## [10] "lifeexpectancy"     "oilperperson"       "polityscore"       
## [13] "relectricperperson" "suicideper100th"    "employrate"        
## [16] "urbanrate"          "continent"
      # compute mean value for every continent
      (means <- round(tapply(cancer$breastcancer, cancer$continent, mean),
                      digits=2))
##    AF    AS    EE LATAM NORAM    OC    WE 
## 24.02 24.51 49.44 36.70 71.73 45.80 74.80
      # draw boxplot per continent
      boxplot(cancer$breastcancer ~ cancer$continent, main= "Breast cancer by
continent (brown dot = mean value)", xlab="continents", ylab="new
cases per 100,00 residents", col=rainbow(7))
      # insert the mean value using brown dot
      points(means, col="brown", pch=18)

      # Lab Exercise 8: How to load external datasets and change data layout
      library(readr)
      hsb2 <- read_csv("hsb2.csv")
## New names:
## Rows: 200 Columns: 12
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," dbl
## (12): ...1, id, female, race, ses, schtyp, prog, read, write, math, scie...
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`
      # display only the top 6 rows
      head(hsb2)
## # A tibble: 6 × 12
##    ...1    id female  race   ses schtyp  prog  read write  math science socst
##   <dbl> <dbl>  <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     1    70      0     4     1      1     1    57    52    41      47    57
## 2     2   121      1     4     2      1     3    68    59    53      63    61
## 3     3    86      0     4     3      1     1    44    33    54      58    31
## 4     4   141      0     4     3      1     3    63    44    47      53    56
## 5     5   172      0     4     2      1     2    47    52    57      53    61
## 6     6   113      0     4     2      1     2    44    52    51      63    61
      # display only the last 6 rows
      tail(hsb2)
## # A tibble: 6 × 12
##    ...1    id female  race   ses schtyp  prog  read write  math science socst
##   <dbl> <dbl>  <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1   195   179      1     4     2      2     2    47    65    60      50    56
## 2   196    31      1     2     2      2     1    55    59    52      42    56
## 3   197   145      1     4     2      1     3    42    46    38      36    46
## 4   198   187      1     4     2      2     1    57    41    57      55    52
## 5   199   118      1     4     2      1     1    55    62    58      58    61
## 6   200   137      1     4     3      1     2    63    65    65      53    61
      # delete redundant first column (run only once)
      (hsb2 <- hsb2[-1])
## # A tibble: 200 × 11
##       id female  race   ses schtyp  prog  read write  math science socst
##    <dbl>  <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>   <dbl> <dbl>
##  1    70      0     4     1      1     1    57    52    41      47    57
##  2   121      1     4     2      1     3    68    59    53      63    61
##  3    86      0     4     3      1     1    44    33    54      58    31
##  4   141      0     4     3      1     3    63    44    47      53    56
##  5   172      0     4     2      1     2    47    52    57      53    61
##  6   113      0     4     2      1     2    44    52    51      63    61
##  7    50      0     3     2      1     1    50    59    42      53    61
##  8    11      0     1     2      1     2    34    46    45      39    36
##  9    84      0     4     2      1     1    63    57    54      58    51
## 10    48      0     3     2      1     2    57    55    52      50    51
## # … with 190 more rows
      # Remarks
      # hsb2 dataset consists of 200 selected random samples from senior
      # high school students in the US.
      # We want to compare the student performance across different subjects
      
      # change data layout by grouping different subjects
      # into one column using melt() command. Install first reshape2 package
      # install.packages("reshape2")
      
      library(reshape2)
      (hsb2_long <- melt(hsb2, measure.vars =
                           c("read","write","math","science","socst")))
##       id female race ses schtyp prog variable value
## 1     70      0    4   1      1    1     read    57
## 2    121      1    4   2      1    3     read    68
## 3     86      0    4   3      1    1     read    44
## 4    141      0    4   3      1    3     read    63
## 5    172      0    4   2      1    2     read    47
## 6    113      0    4   2      1    2     read    44
## 7     50      0    3   2      1    1     read    50
## 8     11      0    1   2      1    2     read    34
## 9     84      0    4   2      1    1     read    63
## 10    48      0    3   2      1    2     read    57
## 11    75      0    4   2      1    3     read    60
## 12    60      0    4   2      1    2     read    57
## 13    95      0    4   3      1    2     read    73
## 14   104      0    4   3      1    2     read    54
## 15    38      0    3   1      1    2     read    45
## 16   115      0    4   1      1    1     read    42
## 17    76      0    4   3      1    2     read    47
## 18   195      0    4   2      2    1     read    57
## 19   114      0    4   3      1    2     read    68
## 20    85      0    4   2      1    1     read    55
## 21   167      0    4   2      1    1     read    63
## 22   143      0    4   2      1    3     read    63
## 23    41      0    3   2      1    2     read    50
## 24    20      0    1   3      1    2     read    60
## 25    12      0    1   2      1    3     read    37
## 26    53      0    3   2      1    3     read    34
## 27   154      0    4   3      1    2     read    65
## 28   178      0    4   2      2    3     read    47
## 29   196      0    4   3      2    2     read    44
## 30    29      0    2   1      1    1     read    52
## 31   126      0    4   2      1    1     read    42
## 32   103      0    4   3      1    2     read    76
## 33   192      0    4   3      2    2     read    65
## 34   150      0    4   2      1    3     read    42
## 35   199      0    4   3      2    2     read    52
## 36   144      0    4   3      1    1     read    60
## 37   200      0    4   2      2    2     read    68
## 38    80      0    4   3      1    2     read    65
## 39    16      0    1   1      1    3     read    47
## 40   153      0    4   2      1    3     read    39
## 41   176      0    4   2      2    2     read    47
## 42   177      0    4   2      2    2     read    55
## 43   168      0    4   2      1    2     read    52
## 44    40      0    3   1      1    1     read    42
## 45    62      0    4   3      1    1     read    65
## 46   169      0    4   1      1    1     read    55
## 47    49      0    3   3      1    3     read    50
## 48   136      0    4   2      1    2     read    65
## 49   189      0    4   2      2    2     read    47
## 50     7      0    1   2      1    2     read    57
## 51    27      0    2   2      1    2     read    53
## 52   128      0    4   3      1    2     read    39
## 53    21      0    1   2      1    1     read    44
## 54   183      0    4   2      2    2     read    63
## 55   132      0    4   2      1    2     read    73
## 56    15      0    1   3      1    3     read    39
## 57    67      0    4   1      1    3     read    37
## 58    22      0    1   2      1    3     read    42
## 59   185      0    4   2      2    2     read    63
## 60     9      0    1   2      1    3     read    48
## 61   181      0    4   2      2    2     read    50
## 62   170      0    4   3      1    2     read    47
## 63   134      0    4   1      1    1     read    44
## 64   108      0    4   2      1    1     read    34
## 65   197      0    4   3      2    2     read    50
## 66   140      0    4   2      1    3     read    44
## 67   171      0    4   2      1    2     read    60
## 68   107      0    4   1      1    3     read    47
## 69    81      0    4   1      1    2     read    63
## 70    18      0    1   2      1    3     read    50
## 71   155      0    4   2      1    1     read    44
## 72    97      0    4   3      1    2     read    60
## 73    68      0    4   2      1    2     read    73
## 74   157      0    4   2      1    1     read    68
## 75    56      0    4   2      1    3     read    55
## 76     5      0    1   1      1    2     read    47
## 77   159      0    4   3      1    2     read    55
## 78   123      0    4   3      1    1     read    68
## 79   164      0    4   2      1    3     read    31
## 80    14      0    1   3      1    2     read    47
## 81   127      0    4   3      1    2     read    63
## 82   165      0    4   1      1    3     read    36
## 83   174      0    4   2      2    2     read    68
## 84     3      0    1   1      1    2     read    63
## 85    58      0    4   2      1    3     read    55
## 86   146      0    4   3      1    2     read    55
## 87   102      0    4   3      1    2     read    52
## 88   117      0    4   3      1    3     read    34
## 89   133      0    4   2      1    3     read    50
## 90    94      0    4   3      1    2     read    55
## 91    24      0    2   2      1    2     read    52
## 92   149      0    4   1      1    1     read    63
## 93    82      1    4   3      1    2     read    68
## 94     8      1    1   1      1    2     read    39
## 95   129      1    4   1      1    1     read    44
## 96   173      1    4   1      1    1     read    50
## 97    57      1    4   2      1    2     read    71
## 98   100      1    4   3      1    2     read    63
## 99     1      1    1   1      1    3     read    34
## 100  194      1    4   3      2    2     read    63
## 101   88      1    4   3      1    2     read    68
## 102   99      1    4   3      1    1     read    47
## 103   47      1    3   1      1    2     read    47
## 104  120      1    4   3      1    2     read    63
## 105  166      1    4   2      1    2     read    52
## 106   65      1    4   2      1    2     read    55
## 107  101      1    4   3      1    2     read    60
## 108   89      1    4   1      1    3     read    35
## 109   54      1    3   1      2    1     read    47
## 110  180      1    4   3      2    2     read    71
## 111  162      1    4   2      1    3     read    57
## 112    4      1    1   1      1    2     read    44
## 113  131      1    4   3      1    2     read    65
## 114  125      1    4   1      1    2     read    68
## 115   34      1    1   3      2    2     read    73
## 116  106      1    4   2      1    3     read    36
## 117  130      1    4   3      1    1     read    43
## 118   93      1    4   3      1    2     read    73
## 119  163      1    4   1      1    2     read    52
## 120   37      1    3   1      1    3     read    41
## 121   35      1    1   1      2    1     read    60
## 122   87      1    4   2      1    1     read    50
## 123   73      1    4   2      1    2     read    50
## 124  151      1    4   2      1    3     read    47
## 125   44      1    3   1      1    3     read    47
## 126  152      1    4   3      1    2     read    55
## 127  105      1    4   2      1    2     read    50
## 128   28      1    2   2      1    1     read    39
## 129   91      1    4   3      1    3     read    50
## 130   45      1    3   1      1    3     read    34
## 131  116      1    4   2      1    2     read    57
## 132   33      1    2   1      1    2     read    57
## 133   66      1    4   2      1    3     read    68
## 134   72      1    4   2      1    3     read    42
## 135   77      1    4   1      1    2     read    61
## 136   61      1    4   3      1    2     read    76
## 137  190      1    4   2      2    2     read    47
## 138   42      1    3   2      1    3     read    46
## 139    2      1    1   2      1    3     read    39
## 140   55      1    3   2      2    2     read    52
## 141   19      1    1   1      1    1     read    28
## 142   90      1    4   3      1    2     read    42
## 143  142      1    4   2      1    3     read    47
## 144   17      1    1   2      1    2     read    47
## 145  122      1    4   2      1    2     read    52
## 146  191      1    4   3      2    2     read    47
## 147   83      1    4   2      1    3     read    50
## 148  182      1    4   2      2    2     read    44
## 149    6      1    1   1      1    2     read    47
## 150   46      1    3   1      1    2     read    45
## 151   43      1    3   1      1    2     read    47
## 152   96      1    4   3      1    2     read    65
## 153  138      1    4   2      1    3     read    43
## 154   10      1    1   2      1    1     read    47
## 155   71      1    4   2      1    1     read    57
## 156  139      1    4   2      1    2     read    68
## 157  110      1    4   2      1    3     read    52
## 158  148      1    4   2      1    3     read    42
## 159  109      1    4   2      1    1     read    42
## 160   39      1    3   3      1    2     read    66
## 161  147      1    4   1      1    2     read    47
## 162   74      1    4   2      1    2     read    57
## 163  198      1    4   3      2    2     read    47
## 164  161      1    4   1      1    2     read    57
## 165  112      1    4   2      1    2     read    52
## 166   69      1    4   1      1    3     read    44
## 167  156      1    4   2      1    2     read    50
## 168  111      1    4   1      1    1     read    39
## 169  186      1    4   2      2    2     read    57
## 170   98      1    4   1      1    3     read    57
## 171  119      1    4   1      1    1     read    42
## 172   13      1    1   2      1    3     read    47
## 173   51      1    3   3      1    1     read    42
## 174   26      1    2   3      1    2     read    60
## 175   36      1    3   1      1    1     read    44
## 176  135      1    4   1      1    2     read    63
## 177   59      1    4   2      1    2     read    65
## 178   78      1    4   2      1    2     read    39
## 179   64      1    4   3      1    3     read    50
## 180   63      1    4   1      1    1     read    52
## 181   79      1    4   2      1    2     read    60
## 182  193      1    4   2      2    2     read    44
## 183   92      1    4   3      1    1     read    52
## 184  160      1    4   2      1    2     read    55
## 185   32      1    2   3      1    3     read    50
## 186   23      1    2   1      1    2     read    65
## 187  158      1    4   2      1    1     read    52
## 188   25      1    2   2      1    1     read    47
## 189  188      1    4   3      2    2     read    63
## 190   52      1    3   1      1    2     read    50
## 191  124      1    4   1      1    3     read    42
## 192  175      1    4   3      2    1     read    36
## 193  184      1    4   2      2    3     read    50
## 194   30      1    2   3      1    2     read    41
## 195  179      1    4   2      2    2     read    47
## 196   31      1    2   2      2    1     read    55
## 197  145      1    4   2      1    3     read    42
## 198  187      1    4   2      2    1     read    57
## 199  118      1    4   2      1    1     read    55
## 200  137      1    4   3      1    2     read    63
## 201   70      0    4   1      1    1    write    52
## 202  121      1    4   2      1    3    write    59
## 203   86      0    4   3      1    1    write    33
## 204  141      0    4   3      1    3    write    44
## 205  172      0    4   2      1    2    write    52
## 206  113      0    4   2      1    2    write    52
## 207   50      0    3   2      1    1    write    59
## 208   11      0    1   2      1    2    write    46
## 209   84      0    4   2      1    1    write    57
## 210   48      0    3   2      1    2    write    55
## 211   75      0    4   2      1    3    write    46
## 212   60      0    4   2      1    2    write    65
## 213   95      0    4   3      1    2    write    60
## 214  104      0    4   3      1    2    write    63
## 215   38      0    3   1      1    2    write    57
## 216  115      0    4   1      1    1    write    49
## 217   76      0    4   3      1    2    write    52
## 218  195      0    4   2      2    1    write    57
## 219  114      0    4   3      1    2    write    65
## 220   85      0    4   2      1    1    write    39
## 221  167      0    4   2      1    1    write    49
## 222  143      0    4   2      1    3    write    63
## 223   41      0    3   2      1    2    write    40
## 224   20      0    1   3      1    2    write    52
## 225   12      0    1   2      1    3    write    44
## 226   53      0    3   2      1    3    write    37
## 227  154      0    4   3      1    2    write    65
## 228  178      0    4   2      2    3    write    57
## 229  196      0    4   3      2    2    write    38
## 230   29      0    2   1      1    1    write    44
## 231  126      0    4   2      1    1    write    31
## 232  103      0    4   3      1    2    write    52
## 233  192      0    4   3      2    2    write    67
## 234  150      0    4   2      1    3    write    41
## 235  199      0    4   3      2    2    write    59
## 236  144      0    4   3      1    1    write    65
## 237  200      0    4   2      2    2    write    54
## 238   80      0    4   3      1    2    write    62
## 239   16      0    1   1      1    3    write    31
## 240  153      0    4   2      1    3    write    31
## 241  176      0    4   2      2    2    write    47
## 242  177      0    4   2      2    2    write    59
## 243  168      0    4   2      1    2    write    54
## 244   40      0    3   1      1    1    write    41
## 245   62      0    4   3      1    1    write    65
## 246  169      0    4   1      1    1    write    59
## 247   49      0    3   3      1    3    write    40
## 248  136      0    4   2      1    2    write    59
## 249  189      0    4   2      2    2    write    59
## 250    7      0    1   2      1    2    write    54
## 251   27      0    2   2      1    2    write    61
## 252  128      0    4   3      1    2    write    33
## 253   21      0    1   2      1    1    write    44
## 254  183      0    4   2      2    2    write    59
## 255  132      0    4   2      1    2    write    62
## 256   15      0    1   3      1    3    write    39
## 257   67      0    4   1      1    3    write    37
## 258   22      0    1   2      1    3    write    39
## 259  185      0    4   2      2    2    write    57
## 260    9      0    1   2      1    3    write    49
## 261  181      0    4   2      2    2    write    46
## 262  170      0    4   3      1    2    write    62
## 263  134      0    4   1      1    1    write    44
## 264  108      0    4   2      1    1    write    33
## 265  197      0    4   3      2    2    write    42
## 266  140      0    4   2      1    3    write    41
## 267  171      0    4   2      1    2    write    54
## 268  107      0    4   1      1    3    write    39
## 269   81      0    4   1      1    2    write    43
## 270   18      0    1   2      1    3    write    33
## 271  155      0    4   2      1    1    write    44
## 272   97      0    4   3      1    2    write    54
## 273   68      0    4   2      1    2    write    67
## 274  157      0    4   2      1    1    write    59
## 275   56      0    4   2      1    3    write    45
## 276    5      0    1   1      1    2    write    40
## 277  159      0    4   3      1    2    write    61
## 278  123      0    4   3      1    1    write    59
## 279  164      0    4   2      1    3    write    36
## 280   14      0    1   3      1    2    write    41
## 281  127      0    4   3      1    2    write    59
## 282  165      0    4   1      1    3    write    49
## 283  174      0    4   2      2    2    write    59
## 284    3      0    1   1      1    2    write    65
## 285   58      0    4   2      1    3    write    41
## 286  146      0    4   3      1    2    write    62
## 287  102      0    4   3      1    2    write    41
## 288  117      0    4   3      1    3    write    49
## 289  133      0    4   2      1    3    write    31
## 290   94      0    4   3      1    2    write    49
## 291   24      0    2   2      1    2    write    62
## 292  149      0    4   1      1    1    write    49
## 293   82      1    4   3      1    2    write    62
## 294    8      1    1   1      1    2    write    44
## 295  129      1    4   1      1    1    write    44
## 296  173      1    4   1      1    1    write    62
## 297   57      1    4   2      1    2    write    65
## 298  100      1    4   3      1    2    write    65
## 299    1      1    1   1      1    3    write    44
## 300  194      1    4   3      2    2    write    63
## 301   88      1    4   3      1    2    write    60
## 302   99      1    4   3      1    1    write    59
## 303   47      1    3   1      1    2    write    46
## 304  120      1    4   3      1    2    write    52
## 305  166      1    4   2      1    2    write    59
## 306   65      1    4   2      1    2    write    54
## 307  101      1    4   3      1    2    write    62
## 308   89      1    4   1      1    3    write    35
## 309   54      1    3   1      2    1    write    54
## 310  180      1    4   3      2    2    write    65
## 311  162      1    4   2      1    3    write    52
## 312    4      1    1   1      1    2    write    50
## 313  131      1    4   3      1    2    write    59
## 314  125      1    4   1      1    2    write    65
## 315   34      1    1   3      2    2    write    61
## 316  106      1    4   2      1    3    write    44
## 317  130      1    4   3      1    1    write    54
## 318   93      1    4   3      1    2    write    67
## 319  163      1    4   1      1    2    write    57
## 320   37      1    3   1      1    3    write    47
## 321   35      1    1   1      2    1    write    54
## 322   87      1    4   2      1    1    write    52
## 323   73      1    4   2      1    2    write    52
## 324  151      1    4   2      1    3    write    46
## 325   44      1    3   1      1    3    write    62
## 326  152      1    4   3      1    2    write    57
## 327  105      1    4   2      1    2    write    41
## 328   28      1    2   2      1    1    write    53
## 329   91      1    4   3      1    3    write    49
## 330   45      1    3   1      1    3    write    35
## 331  116      1    4   2      1    2    write    59
## 332   33      1    2   1      1    2    write    65
## 333   66      1    4   2      1    3    write    62
## 334   72      1    4   2      1    3    write    54
## 335   77      1    4   1      1    2    write    59
## 336   61      1    4   3      1    2    write    63
## 337  190      1    4   2      2    2    write    59
## 338   42      1    3   2      1    3    write    52
## 339    2      1    1   2      1    3    write    41
## 340   55      1    3   2      2    2    write    49
## 341   19      1    1   1      1    1    write    46
## 342   90      1    4   3      1    2    write    54
## 343  142      1    4   2      1    3    write    42
## 344   17      1    1   2      1    2    write    57
## 345  122      1    4   2      1    2    write    59
## 346  191      1    4   3      2    2    write    52
## 347   83      1    4   2      1    3    write    62
## 348  182      1    4   2      2    2    write    52
## 349    6      1    1   1      1    2    write    41
## 350   46      1    3   1      1    2    write    55
## 351   43      1    3   1      1    2    write    37
## 352   96      1    4   3      1    2    write    54
## 353  138      1    4   2      1    3    write    57
## 354   10      1    1   2      1    1    write    54
## 355   71      1    4   2      1    1    write    62
## 356  139      1    4   2      1    2    write    59
## 357  110      1    4   2      1    3    write    55
## 358  148      1    4   2      1    3    write    57
## 359  109      1    4   2      1    1    write    39
## 360   39      1    3   3      1    2    write    67
## 361  147      1    4   1      1    2    write    62
## 362   74      1    4   2      1    2    write    50
## 363  198      1    4   3      2    2    write    61
## 364  161      1    4   1      1    2    write    62
## 365  112      1    4   2      1    2    write    59
## 366   69      1    4   1      1    3    write    44
## 367  156      1    4   2      1    2    write    59
## 368  111      1    4   1      1    1    write    54
## 369  186      1    4   2      2    2    write    62
## 370   98      1    4   1      1    3    write    60
## 371  119      1    4   1      1    1    write    57
## 372   13      1    1   2      1    3    write    46
## 373   51      1    3   3      1    1    write    36
## 374   26      1    2   3      1    2    write    59
## 375   36      1    3   1      1    1    write    49
## 376  135      1    4   1      1    2    write    60
## 377   59      1    4   2      1    2    write    67
## 378   78      1    4   2      1    2    write    54
## 379   64      1    4   3      1    3    write    52
## 380   63      1    4   1      1    1    write    65
## 381   79      1    4   2      1    2    write    62
## 382  193      1    4   2      2    2    write    49
## 383   92      1    4   3      1    1    write    67
## 384  160      1    4   2      1    2    write    65
## 385   32      1    2   3      1    3    write    67
## 386   23      1    2   1      1    2    write    65
## 387  158      1    4   2      1    1    write    54
## 388   25      1    2   2      1    1    write    44
## 389  188      1    4   3      2    2    write    62
## 390   52      1    3   1      1    2    write    46
## 391  124      1    4   1      1    3    write    54
## 392  175      1    4   3      2    1    write    57
## 393  184      1    4   2      2    3    write    52
## 394   30      1    2   3      1    2    write    59
## 395  179      1    4   2      2    2    write    65
## 396   31      1    2   2      2    1    write    59
## 397  145      1    4   2      1    3    write    46
## 398  187      1    4   2      2    1    write    41
## 399  118      1    4   2      1    1    write    62
## 400  137      1    4   3      1    2    write    65
## 401   70      0    4   1      1    1     math    41
## 402  121      1    4   2      1    3     math    53
## 403   86      0    4   3      1    1     math    54
## 404  141      0    4   3      1    3     math    47
## 405  172      0    4   2      1    2     math    57
## 406  113      0    4   2      1    2     math    51
## 407   50      0    3   2      1    1     math    42
## 408   11      0    1   2      1    2     math    45
## 409   84      0    4   2      1    1     math    54
## 410   48      0    3   2      1    2     math    52
## 411   75      0    4   2      1    3     math    51
## 412   60      0    4   2      1    2     math    51
## 413   95      0    4   3      1    2     math    71
## 414  104      0    4   3      1    2     math    57
## 415   38      0    3   1      1    2     math    50
## 416  115      0    4   1      1    1     math    43
## 417   76      0    4   3      1    2     math    51
## 418  195      0    4   2      2    1     math    60
## 419  114      0    4   3      1    2     math    62
## 420   85      0    4   2      1    1     math    57
## 421  167      0    4   2      1    1     math    35
## 422  143      0    4   2      1    3     math    75
## 423   41      0    3   2      1    2     math    45
## 424   20      0    1   3      1    2     math    57
## 425   12      0    1   2      1    3     math    45
## 426   53      0    3   2      1    3     math    46
## 427  154      0    4   3      1    2     math    66
## 428  178      0    4   2      2    3     math    57
## 429  196      0    4   3      2    2     math    49
## 430   29      0    2   1      1    1     math    49
## 431  126      0    4   2      1    1     math    57
## 432  103      0    4   3      1    2     math    64
## 433  192      0    4   3      2    2     math    63
## 434  150      0    4   2      1    3     math    57
## 435  199      0    4   3      2    2     math    50
## 436  144      0    4   3      1    1     math    58
## 437  200      0    4   2      2    2     math    75
## 438   80      0    4   3      1    2     math    68
## 439   16      0    1   1      1    3     math    44
## 440  153      0    4   2      1    3     math    40
## 441  176      0    4   2      2    2     math    41
## 442  177      0    4   2      2    2     math    62
## 443  168      0    4   2      1    2     math    57
## 444   40      0    3   1      1    1     math    43
## 445   62      0    4   3      1    1     math    48
## 446  169      0    4   1      1    1     math    63
## 447   49      0    3   3      1    3     math    39
## 448  136      0    4   2      1    2     math    70
## 449  189      0    4   2      2    2     math    63
## 450    7      0    1   2      1    2     math    59
## 451   27      0    2   2      1    2     math    61
## 452  128      0    4   3      1    2     math    38
## 453   21      0    1   2      1    1     math    61
## 454  183      0    4   2      2    2     math    49
## 455  132      0    4   2      1    2     math    73
## 456   15      0    1   3      1    3     math    44
## 457   67      0    4   1      1    3     math    42
## 458   22      0    1   2      1    3     math    39
## 459  185      0    4   2      2    2     math    55
## 460    9      0    1   2      1    3     math    52
## 461  181      0    4   2      2    2     math    45
## 462  170      0    4   3      1    2     math    61
## 463  134      0    4   1      1    1     math    39
## 464  108      0    4   2      1    1     math    41
## 465  197      0    4   3      2    2     math    50
## 466  140      0    4   2      1    3     math    40
## 467  171      0    4   2      1    2     math    60
## 468  107      0    4   1      1    3     math    47
## 469   81      0    4   1      1    2     math    59
## 470   18      0    1   2      1    3     math    49
## 471  155      0    4   2      1    1     math    46
## 472   97      0    4   3      1    2     math    58
## 473   68      0    4   2      1    2     math    71
## 474  157      0    4   2      1    1     math    58
## 475   56      0    4   2      1    3     math    46
## 476    5      0    1   1      1    2     math    43
## 477  159      0    4   3      1    2     math    54
## 478  123      0    4   3      1    1     math    56
## 479  164      0    4   2      1    3     math    46
## 480   14      0    1   3      1    2     math    54
## 481  127      0    4   3      1    2     math    57
## 482  165      0    4   1      1    3     math    54
## 483  174      0    4   2      2    2     math    71
## 484    3      0    1   1      1    2     math    48
## 485   58      0    4   2      1    3     math    40
## 486  146      0    4   3      1    2     math    64
## 487  102      0    4   3      1    2     math    51
## 488  117      0    4   3      1    3     math    39
## 489  133      0    4   2      1    3     math    40
## 490   94      0    4   3      1    2     math    61
## 491   24      0    2   2      1    2     math    66
## 492  149      0    4   1      1    1     math    49
## 493   82      1    4   3      1    2     math    65
## 494    8      1    1   1      1    2     math    52
## 495  129      1    4   1      1    1     math    46
## 496  173      1    4   1      1    1     math    61
## 497   57      1    4   2      1    2     math    72
## 498  100      1    4   3      1    2     math    71
## 499    1      1    1   1      1    3     math    40
## 500  194      1    4   3      2    2     math    69
## 501   88      1    4   3      1    2     math    64
## 502   99      1    4   3      1    1     math    56
## 503   47      1    3   1      1    2     math    49
## 504  120      1    4   3      1    2     math    54
## 505  166      1    4   2      1    2     math    53
## 506   65      1    4   2      1    2     math    66
## 507  101      1    4   3      1    2     math    67
## 508   89      1    4   1      1    3     math    40
## 509   54      1    3   1      2    1     math    46
## 510  180      1    4   3      2    2     math    69
## 511  162      1    4   2      1    3     math    40
## 512    4      1    1   1      1    2     math    41
## 513  131      1    4   3      1    2     math    57
## 514  125      1    4   1      1    2     math    58
## 515   34      1    1   3      2    2     math    57
## 516  106      1    4   2      1    3     math    37
## 517  130      1    4   3      1    1     math    55
## 518   93      1    4   3      1    2     math    62
## 519  163      1    4   1      1    2     math    64
## 520   37      1    3   1      1    3     math    40
## 521   35      1    1   1      2    1     math    50
## 522   87      1    4   2      1    1     math    46
## 523   73      1    4   2      1    2     math    53
## 524  151      1    4   2      1    3     math    52
## 525   44      1    3   1      1    3     math    45
## 526  152      1    4   3      1    2     math    56
## 527  105      1    4   2      1    2     math    45
## 528   28      1    2   2      1    1     math    54
## 529   91      1    4   3      1    3     math    56
## 530   45      1    3   1      1    3     math    41
## 531  116      1    4   2      1    2     math    54
## 532   33      1    2   1      1    2     math    72
## 533   66      1    4   2      1    3     math    56
## 534   72      1    4   2      1    3     math    47
## 535   77      1    4   1      1    2     math    49
## 536   61      1    4   3      1    2     math    60
## 537  190      1    4   2      2    2     math    54
## 538   42      1    3   2      1    3     math    55
## 539    2      1    1   2      1    3     math    33
## 540   55      1    3   2      2    2     math    49
## 541   19      1    1   1      1    1     math    43
## 542   90      1    4   3      1    2     math    50
## 543  142      1    4   2      1    3     math    52
## 544   17      1    1   2      1    2     math    48
## 545  122      1    4   2      1    2     math    58
## 546  191      1    4   3      2    2     math    43
## 547   83      1    4   2      1    3     math    41
## 548  182      1    4   2      2    2     math    43
## 549    6      1    1   1      1    2     math    46
## 550   46      1    3   1      1    2     math    44
## 551   43      1    3   1      1    2     math    43
## 552   96      1    4   3      1    2     math    61
## 553  138      1    4   2      1    3     math    40
## 554   10      1    1   2      1    1     math    49
## 555   71      1    4   2      1    1     math    56
## 556  139      1    4   2      1    2     math    61
## 557  110      1    4   2      1    3     math    50
## 558  148      1    4   2      1    3     math    51
## 559  109      1    4   2      1    1     math    42
## 560   39      1    3   3      1    2     math    67
## 561  147      1    4   1      1    2     math    53
## 562   74      1    4   2      1    2     math    50
## 563  198      1    4   3      2    2     math    51
## 564  161      1    4   1      1    2     math    72
## 565  112      1    4   2      1    2     math    48
## 566   69      1    4   1      1    3     math    40
## 567  156      1    4   2      1    2     math    53
## 568  111      1    4   1      1    1     math    39
## 569  186      1    4   2      2    2     math    63
## 570   98      1    4   1      1    3     math    51
## 571  119      1    4   1      1    1     math    45
## 572   13      1    1   2      1    3     math    39
## 573   51      1    3   3      1    1     math    42
## 574   26      1    2   3      1    2     math    62
## 575   36      1    3   1      1    1     math    44
## 576  135      1    4   1      1    2     math    65
## 577   59      1    4   2      1    2     math    63
## 578   78      1    4   2      1    2     math    54
## 579   64      1    4   3      1    3     math    45
## 580   63      1    4   1      1    1     math    60
## 581   79      1    4   2      1    2     math    49
## 582  193      1    4   2      2    2     math    48
## 583   92      1    4   3      1    1     math    57
## 584  160      1    4   2      1    2     math    55
## 585   32      1    2   3      1    3     math    66
## 586   23      1    2   1      1    2     math    64
## 587  158      1    4   2      1    1     math    55
## 588   25      1    2   2      1    1     math    42
## 589  188      1    4   3      2    2     math    56
## 590   52      1    3   1      1    2     math    53
## 591  124      1    4   1      1    3     math    41
## 592  175      1    4   3      2    1     math    42
## 593  184      1    4   2      2    3     math    53
## 594   30      1    2   3      1    2     math    42
## 595  179      1    4   2      2    2     math    60
## 596   31      1    2   2      2    1     math    52
## 597  145      1    4   2      1    3     math    38
## 598  187      1    4   2      2    1     math    57
## 599  118      1    4   2      1    1     math    58
## 600  137      1    4   3      1    2     math    65
## 601   70      0    4   1      1    1  science    47
## 602  121      1    4   2      1    3  science    63
## 603   86      0    4   3      1    1  science    58
## 604  141      0    4   3      1    3  science    53
## 605  172      0    4   2      1    2  science    53
## 606  113      0    4   2      1    2  science    63
## 607   50      0    3   2      1    1  science    53
## 608   11      0    1   2      1    2  science    39
## 609   84      0    4   2      1    1  science    58
## 610   48      0    3   2      1    2  science    50
## 611   75      0    4   2      1    3  science    53
## 612   60      0    4   2      1    2  science    63
## 613   95      0    4   3      1    2  science    61
## 614  104      0    4   3      1    2  science    55
## 615   38      0    3   1      1    2  science    31
## 616  115      0    4   1      1    1  science    50
## 617   76      0    4   3      1    2  science    50
## 618  195      0    4   2      2    1  science    58
## 619  114      0    4   3      1    2  science    55
## 620   85      0    4   2      1    1  science    53
## 621  167      0    4   2      1    1  science    66
## 622  143      0    4   2      1    3  science    72
## 623   41      0    3   2      1    2  science    55
## 624   20      0    1   3      1    2  science    61
## 625   12      0    1   2      1    3  science    39
## 626   53      0    3   2      1    3  science    39
## 627  154      0    4   3      1    2  science    61
## 628  178      0    4   2      2    3  science    58
## 629  196      0    4   3      2    2  science    39
## 630   29      0    2   1      1    1  science    55
## 631  126      0    4   2      1    1  science    47
## 632  103      0    4   3      1    2  science    64
## 633  192      0    4   3      2    2  science    66
## 634  150      0    4   2      1    3  science    72
## 635  199      0    4   3      2    2  science    61
## 636  144      0    4   3      1    1  science    61
## 637  200      0    4   2      2    2  science    66
## 638   80      0    4   3      1    2  science    66
## 639   16      0    1   1      1    3  science    36
## 640  153      0    4   2      1    3  science    39
## 641  176      0    4   2      2    2  science    42
## 642  177      0    4   2      2    2  science    58
## 643  168      0    4   2      1    2  science    55
## 644   40      0    3   1      1    1  science    50
## 645   62      0    4   3      1    1  science    63
## 646  169      0    4   1      1    1  science    69
## 647   49      0    3   3      1    3  science    49
## 648  136      0    4   2      1    2  science    63
## 649  189      0    4   2      2    2  science    53
## 650    7      0    1   2      1    2  science    47
## 651   27      0    2   2      1    2  science    57
## 652  128      0    4   3      1    2  science    47
## 653   21      0    1   2      1    1  science    50
## 654  183      0    4   2      2    2  science    55
## 655  132      0    4   2      1    2  science    69
## 656   15      0    1   3      1    3  science    26
## 657   67      0    4   1      1    3  science    33
## 658   22      0    1   2      1    3  science    56
## 659  185      0    4   2      2    2  science    58
## 660    9      0    1   2      1    3  science    44
## 661  181      0    4   2      2    2  science    58
## 662  170      0    4   3      1    2  science    69
## 663  134      0    4   1      1    1  science    34
## 664  108      0    4   2      1    1  science    36
## 665  197      0    4   3      2    2  science    36
## 666  140      0    4   2      1    3  science    50
## 667  171      0    4   2      1    2  science    55
## 668  107      0    4   1      1    3  science    42
## 669   81      0    4   1      1    2  science    65
## 670   18      0    1   2      1    3  science    44
## 671  155      0    4   2      1    1  science    39
## 672   97      0    4   3      1    2  science    58
## 673   68      0    4   2      1    2  science    63
## 674  157      0    4   2      1    1  science    74
## 675   56      0    4   2      1    3  science    58
## 676    5      0    1   1      1    2  science    45
## 677  159      0    4   3      1    2  science    49
## 678  123      0    4   3      1    1  science    63
## 679  164      0    4   2      1    3  science    39
## 680   14      0    1   3      1    2  science    42
## 681  127      0    4   3      1    2  science    55
## 682  165      0    4   1      1    3  science    61
## 683  174      0    4   2      2    2  science    66
## 684    3      0    1   1      1    2  science    63
## 685   58      0    4   2      1    3  science    44
## 686  146      0    4   3      1    2  science    63
## 687  102      0    4   3      1    2  science    53
## 688  117      0    4   3      1    3  science    42
## 689  133      0    4   2      1    3  science    34
## 690   94      0    4   3      1    2  science    61
## 691   24      0    2   2      1    2  science    47
## 692  149      0    4   1      1    1  science    66
## 693   82      1    4   3      1    2  science    69
## 694    8      1    1   1      1    2  science    44
## 695  129      1    4   1      1    1  science    47
## 696  173      1    4   1      1    1  science    63
## 697   57      1    4   2      1    2  science    66
## 698  100      1    4   3      1    2  science    69
## 699    1      1    1   1      1    3  science    39
## 700  194      1    4   3      2    2  science    61
## 701   88      1    4   3      1    2  science    69
## 702   99      1    4   3      1    1  science    66
## 703   47      1    3   1      1    2  science    33
## 704  120      1    4   3      1    2  science    50
## 705  166      1    4   2      1    2  science    61
## 706   65      1    4   2      1    2  science    42
## 707  101      1    4   3      1    2  science    50
## 708   89      1    4   1      1    3  science    51
## 709   54      1    3   1      2    1  science    50
## 710  180      1    4   3      2    2  science    58
## 711  162      1    4   2      1    3  science    61
## 712    4      1    1   1      1    2  science    39
## 713  131      1    4   3      1    2  science    46
## 714  125      1    4   1      1    2  science    59
## 715   34      1    1   3      2    2  science    55
## 716  106      1    4   2      1    3  science    42
## 717  130      1    4   3      1    1  science    55
## 718   93      1    4   3      1    2  science    58
## 719  163      1    4   1      1    2  science    58
## 720   37      1    3   1      1    3  science    39
## 721   35      1    1   1      2    1  science    50
## 722   87      1    4   2      1    1  science    50
## 723   73      1    4   2      1    2  science    39
## 724  151      1    4   2      1    3  science    48
## 725   44      1    3   1      1    3  science    34
## 726  152      1    4   3      1    2  science    58
## 727  105      1    4   2      1    2  science    44
## 728   28      1    2   2      1    1  science    50
## 729   91      1    4   3      1    3  science    47
## 730   45      1    3   1      1    3  science    29
## 731  116      1    4   2      1    2  science    50
## 732   33      1    2   1      1    2  science    54
## 733   66      1    4   2      1    3  science    50
## 734   72      1    4   2      1    3  science    47
## 735   77      1    4   1      1    2  science    44
## 736   61      1    4   3      1    2  science    67
## 737  190      1    4   2      2    2  science    58
## 738   42      1    3   2      1    3  science    44
## 739    2      1    1   2      1    3  science    42
## 740   55      1    3   2      2    2  science    44
## 741   19      1    1   1      1    1  science    44
## 742   90      1    4   3      1    2  science    50
## 743  142      1    4   2      1    3  science    39
## 744   17      1    1   2      1    2  science    44
## 745  122      1    4   2      1    2  science    53
## 746  191      1    4   3      2    2  science    48
## 747   83      1    4   2      1    3  science    55
## 748  182      1    4   2      2    2  science    44
## 749    6      1    1   1      1    2  science    40
## 750   46      1    3   1      1    2  science    34
## 751   43      1    3   1      1    2  science    42
## 752   96      1    4   3      1    2  science    58
## 753  138      1    4   2      1    3  science    50
## 754   10      1    1   2      1    1  science    53
## 755   71      1    4   2      1    1  science    58
## 756  139      1    4   2      1    2  science    55
## 757  110      1    4   2      1    3  science    54
## 758  148      1    4   2      1    3  science    47
## 759  109      1    4   2      1    1  science    42
## 760   39      1    3   3      1    2  science    61
## 761  147      1    4   1      1    2  science    53
## 762   74      1    4   2      1    2  science    51
## 763  198      1    4   3      2    2  science    63
## 764  161      1    4   1      1    2  science    61
## 765  112      1    4   2      1    2  science    55
## 766   69      1    4   1      1    3  science    40
## 767  156      1    4   2      1    2  science    61
## 768  111      1    4   1      1    1  science    47
## 769  186      1    4   2      2    2  science    55
## 770   98      1    4   1      1    3  science    53
## 771  119      1    4   1      1    1  science    50
## 772   13      1    1   2      1    3  science    47
## 773   51      1    3   3      1    1  science    31
## 774   26      1    2   3      1    2  science    61
## 775   36      1    3   1      1    1  science    35
## 776  135      1    4   1      1    2  science    54
## 777   59      1    4   2      1    2  science    55
## 778   78      1    4   2      1    2  science    53
## 779   64      1    4   3      1    3  science    58
## 780   63      1    4   1      1    1  science    56
## 781   79      1    4   2      1    2  science    50
## 782  193      1    4   2      2    2  science    39
## 783   92      1    4   3      1    1  science    63
## 784  160      1    4   2      1    2  science    50
## 785   32      1    2   3      1    3  science    66
## 786   23      1    2   1      1    2  science    58
## 787  158      1    4   2      1    1  science    53
## 788   25      1    2   2      1    1  science    42
## 789  188      1    4   3      2    2  science    55
## 790   52      1    3   1      1    2  science    53
## 791  124      1    4   1      1    3  science    42
## 792  175      1    4   3      2    1  science    50
## 793  184      1    4   2      2    3  science    55
## 794   30      1    2   3      1    2  science    34
## 795  179      1    4   2      2    2  science    50
## 796   31      1    2   2      2    1  science    42
## 797  145      1    4   2      1    3  science    36
## 798  187      1    4   2      2    1  science    55
## 799  118      1    4   2      1    1  science    58
## 800  137      1    4   3      1    2  science    53
## 801   70      0    4   1      1    1    socst    57
## 802  121      1    4   2      1    3    socst    61
## 803   86      0    4   3      1    1    socst    31
## 804  141      0    4   3      1    3    socst    56
## 805  172      0    4   2      1    2    socst    61
## 806  113      0    4   2      1    2    socst    61
## 807   50      0    3   2      1    1    socst    61
## 808   11      0    1   2      1    2    socst    36
## 809   84      0    4   2      1    1    socst    51
## 810   48      0    3   2      1    2    socst    51
## 811   75      0    4   2      1    3    socst    61
## 812   60      0    4   2      1    2    socst    61
## 813   95      0    4   3      1    2    socst    71
## 814  104      0    4   3      1    2    socst    46
## 815   38      0    3   1      1    2    socst    56
## 816  115      0    4   1      1    1    socst    56
## 817   76      0    4   3      1    2    socst    56
## 818  195      0    4   2      2    1    socst    56
## 819  114      0    4   3      1    2    socst    61
## 820   85      0    4   2      1    1    socst    46
## 821  167      0    4   2      1    1    socst    41
## 822  143      0    4   2      1    3    socst    66
## 823   41      0    3   2      1    2    socst    56
## 824   20      0    1   3      1    2    socst    61
## 825   12      0    1   2      1    3    socst    46
## 826   53      0    3   2      1    3    socst    31
## 827  154      0    4   3      1    2    socst    66
## 828  178      0    4   2      2    3    socst    46
## 829  196      0    4   3      2    2    socst    46
## 830   29      0    2   1      1    1    socst    41
## 831  126      0    4   2      1    1    socst    51
## 832  103      0    4   3      1    2    socst    61
## 833  192      0    4   3      2    2    socst    71
## 834  150      0    4   2      1    3    socst    31
## 835  199      0    4   3      2    2    socst    61
## 836  144      0    4   3      1    1    socst    66
## 837  200      0    4   2      2    2    socst    66
## 838   80      0    4   3      1    2    socst    66
## 839   16      0    1   1      1    3    socst    36
## 840  153      0    4   2      1    3    socst    51
## 841  176      0    4   2      2    2    socst    51
## 842  177      0    4   2      2    2    socst    51
## 843  168      0    4   2      1    2    socst    51
## 844   40      0    3   1      1    1    socst    41
## 845   62      0    4   3      1    1    socst    66
## 846  169      0    4   1      1    1    socst    46
## 847   49      0    3   3      1    3    socst    47
## 848  136      0    4   2      1    2    socst    51
## 849  189      0    4   2      2    2    socst    46
## 850    7      0    1   2      1    2    socst    51
## 851   27      0    2   2      1    2    socst    56
## 852  128      0    4   3      1    2    socst    41
## 853   21      0    1   2      1    1    socst    46
## 854  183      0    4   2      2    2    socst    71
## 855  132      0    4   2      1    2    socst    66
## 856   15      0    1   3      1    3    socst    42
## 857   67      0    4   1      1    3    socst    32
## 858   22      0    1   2      1    3    socst    46
## 859  185      0    4   2      2    2    socst    41
## 860    9      0    1   2      1    3    socst    51
## 861  181      0    4   2      2    2    socst    61
## 862  170      0    4   3      1    2    socst    66
## 863  134      0    4   1      1    1    socst    46
## 864  108      0    4   2      1    1    socst    36
## 865  197      0    4   3      2    2    socst    61
## 866  140      0    4   2      1    3    socst    26
## 867  171      0    4   2      1    2    socst    66
## 868  107      0    4   1      1    3    socst    26
## 869   81      0    4   1      1    2    socst    44
## 870   18      0    1   2      1    3    socst    36
## 871  155      0    4   2      1    1    socst    51
## 872   97      0    4   3      1    2    socst    61
## 873   68      0    4   2      1    2    socst    66
## 874  157      0    4   2      1    1    socst    66
## 875   56      0    4   2      1    3    socst    51
## 876    5      0    1   1      1    2    socst    31
## 877  159      0    4   3      1    2    socst    61
## 878  123      0    4   3      1    1    socst    66
## 879  164      0    4   2      1    3    socst    46
## 880   14      0    1   3      1    2    socst    56
## 881  127      0    4   3      1    2    socst    56
## 882  165      0    4   1      1    3    socst    36
## 883  174      0    4   2      2    2    socst    56
## 884    3      0    1   1      1    2    socst    56
## 885   58      0    4   2      1    3    socst    41
## 886  146      0    4   3      1    2    socst    66
## 887  102      0    4   3      1    2    socst    56
## 888  117      0    4   3      1    3    socst    56
## 889  133      0    4   2      1    3    socst    31
## 890   94      0    4   3      1    2    socst    56
## 891   24      0    2   2      1    2    socst    46
## 892  149      0    4   1      1    1    socst    46
## 893   82      1    4   3      1    2    socst    61
## 894    8      1    1   1      1    2    socst    48
## 895  129      1    4   1      1    1    socst    51
## 896  173      1    4   1      1    1    socst    51
## 897   57      1    4   2      1    2    socst    56
## 898  100      1    4   3      1    2    socst    71
## 899    1      1    1   1      1    3    socst    41
## 900  194      1    4   3      2    2    socst    61
## 901   88      1    4   3      1    2    socst    66
## 902   99      1    4   3      1    1    socst    61
## 903   47      1    3   1      1    2    socst    41
## 904  120      1    4   3      1    2    socst    51
## 905  166      1    4   2      1    2    socst    51
## 906   65      1    4   2      1    2    socst    56
## 907  101      1    4   3      1    2    socst    56
## 908   89      1    4   1      1    3    socst    33
## 909   54      1    3   1      2    1    socst    56
## 910  180      1    4   3      2    2    socst    71
## 911  162      1    4   2      1    3    socst    56
## 912    4      1    1   1      1    2    socst    51
## 913  131      1    4   3      1    2    socst    66
## 914  125      1    4   1      1    2    socst    56
## 915   34      1    1   3      2    2    socst    66
## 916  106      1    4   2      1    3    socst    41
## 917  130      1    4   3      1    1    socst    46
## 918   93      1    4   3      1    2    socst    66
## 919  163      1    4   1      1    2    socst    56
## 920   37      1    3   1      1    3    socst    51
## 921   35      1    1   1      2    1    socst    51
## 922   87      1    4   2      1    1    socst    56
## 923   73      1    4   2      1    2    socst    56
## 924  151      1    4   2      1    3    socst    46
## 925   44      1    3   1      1    3    socst    46
## 926  152      1    4   3      1    2    socst    61
## 927  105      1    4   2      1    2    socst    56
## 928   28      1    2   2      1    1    socst    41
## 929   91      1    4   3      1    3    socst    46
## 930   45      1    3   1      1    3    socst    26
## 931  116      1    4   2      1    2    socst    56
## 932   33      1    2   1      1    2    socst    56
## 933   66      1    4   2      1    3    socst    51
## 934   72      1    4   2      1    3    socst    46
## 935   77      1    4   1      1    2    socst    66
## 936   61      1    4   3      1    2    socst    66
## 937  190      1    4   2      2    2    socst    46
## 938   42      1    3   2      1    3    socst    56
## 939    2      1    1   2      1    3    socst    41
## 940   55      1    3   2      2    2    socst    61
## 941   19      1    1   1      1    1    socst    51
## 942   90      1    4   3      1    2    socst    52
## 943  142      1    4   2      1    3    socst    51
## 944   17      1    1   2      1    2    socst    41
## 945  122      1    4   2      1    2    socst    66
## 946  191      1    4   3      2    2    socst    61
## 947   83      1    4   2      1    3    socst    31
## 948  182      1    4   2      2    2    socst    51
## 949    6      1    1   1      1    2    socst    41
## 950   46      1    3   1      1    2    socst    41
## 951   43      1    3   1      1    2    socst    46
## 952   96      1    4   3      1    2    socst    56
## 953  138      1    4   2      1    3    socst    51
## 954   10      1    1   2      1    1    socst    61
## 955   71      1    4   2      1    1    socst    66
## 956  139      1    4   2      1    2    socst    71
## 957  110      1    4   2      1    3    socst    61
## 958  148      1    4   2      1    3    socst    61
## 959  109      1    4   2      1    1    socst    41
## 960   39      1    3   3      1    2    socst    66
## 961  147      1    4   1      1    2    socst    61
## 962   74      1    4   2      1    2    socst    58
## 963  198      1    4   3      2    2    socst    31
## 964  161      1    4   1      1    2    socst    61
## 965  112      1    4   2      1    2    socst    61
## 966   69      1    4   1      1    3    socst    31
## 967  156      1    4   2      1    2    socst    61
## 968  111      1    4   1      1    1    socst    36
## 969  186      1    4   2      2    2    socst    41
## 970   98      1    4   1      1    3    socst    37
## 971  119      1    4   1      1    1    socst    43
## 972   13      1    1   2      1    3    socst    61
## 973   51      1    3   3      1    1    socst    39
## 974   26      1    2   3      1    2    socst    51
## 975   36      1    3   1      1    1    socst    51
## 976  135      1    4   1      1    2    socst    66
## 977   59      1    4   2      1    2    socst    71
## 978   78      1    4   2      1    2    socst    41
## 979   64      1    4   3      1    3    socst    36
## 980   63      1    4   1      1    1    socst    51
## 981   79      1    4   2      1    2    socst    51
## 982  193      1    4   2      2    2    socst    51
## 983   92      1    4   3      1    1    socst    61
## 984  160      1    4   2      1    2    socst    61
## 985   32      1    2   3      1    3    socst    56
## 986   23      1    2   1      1    2    socst    71
## 987  158      1    4   2      1    1    socst    51
## 988   25      1    2   2      1    1    socst    36
## 989  188      1    4   3      2    2    socst    61
## 990   52      1    3   1      1    2    socst    66
## 991  124      1    4   1      1    3    socst    41
## 992  175      1    4   3      2    1    socst    41
## 993  184      1    4   2      2    3    socst    56
## 994   30      1    2   3      1    2    socst    51
## 995  179      1    4   2      2    2    socst    56
## 996   31      1    2   2      2    1    socst    56
## 997  145      1    4   2      1    3    socst    46
## 998  187      1    4   2      2    1    socst    52
## 999  118      1    4   2      1    1    socst    61
## 1000 137      1    4   3      1    2    socst    61
      #Remark: Pay extra attention to the last 2 columns
      head(hsb2_long)
##    id female race ses schtyp prog variable value
## 1  70      0    4   1      1    1     read    57
## 2 121      1    4   2      1    3     read    68
## 3  86      0    4   3      1    1     read    44
## 4 141      0    4   3      1    3     read    63
## 5 172      0    4   2      1    2     read    47
## 6 113      0    4   2      1    2     read    44
      tail(hsb2_long)
##       id female race ses schtyp prog variable value
## 995  179      1    4   2      2    2    socst    56
## 996   31      1    2   2      2    1    socst    56
## 997  145      1    4   2      1    3    socst    46
## 998  187      1    4   2      2    1    socst    52
## 999  118      1    4   2      1    1    socst    61
## 1000 137      1    4   3      1    2    socst    61
      # get thefrequency
      table(hsb2_long$variable)
## 
##    read   write    math science   socst 
##     200     200     200     200     200
      # the variables female, race, ses, schtyp, prog are stored as numbers
      # for encoding purposes. However these variables are actually qualitative variables
      # so we convert each from integer type to categorical type
      
      # defining some variables to become factor variable
      # we use another variable to preserve the file hsb2_long
      data <- hsb2_long
      data$ses = factor(data$ses, labels=c("low", "middle", "high"))
      data$schtyp = factor(data$schtyp, labels=c("public", "private"))
      data$prog = factor(data$prog, labels=c("general", "academic", "vocational"))
      data$race = factor(data$race, labels=c("hispanic", "asian", "african-
amer","white"))
      data$female = factor(data$female, labels=c("female", "male"))
      # check data structure again. The former integer variables are now categorical variable
      str(data)
## 'data.frame':    1000 obs. of  8 variables:
##  $ id      : num  70 121 86 141 172 113 50 11 84 48 ...
##  $ female  : Factor w/ 2 levels "female","male": 1 2 1 1 1 1 1 1 1 1 ...
##  $ race    : Factor w/ 4 levels "hispanic","asian",..: 4 4 4 4 4 4 3 1 4 3 ...
##  $ ses     : Factor w/ 3 levels "low","middle",..: 1 2 3 3 2 2 2 2 2 2 ...
##  $ schtyp  : Factor w/ 2 levels "public","private": 1 1 1 1 1 1 1 1 1 1 ...
##  $ prog    : Factor w/ 3 levels "general","academic",..: 1 3 1 3 2 2 1 2 1 2 ...
##  $ variable: Factor w/ 5 levels "read","write",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ value   : num  57 68 44 63 47 44 50 34 63 57 ...
      # we compare student performance by using boxplots
      library(gplots)
## 
## Attaching package: 'gplots'
## 
## The following object is masked from 'package:stats':
## 
##     lowess
      # compute the average value by group using tapply() command
      means <- round(tapply(data$value, data$variable, mean), digits=2)
      # create boxplot by group
      boxplot(data$value ~ data$variable, main= "Student Performance by Subject
(brown dot = mean score)",
              xlab="Subject matter", ylab="Percentage Scores", col=rainbow(5))
      # insert the average values
      points(means, col="brown", pch=18)
      # can also compute the median values
      medians = round(tapply(data$value, data$variable, median), digits=2)
      medians
##    read   write    math science   socst 
##      50      54      52      53      52
      points(medians, col="red", pch=18)
      
      # Lab Exercise 9: How to plot categorical variables
      library(ggplot2)

      # we load variable names to memory to avoid the dollar notation
      attach(hsb2_long)
      # create the plot object p
      p <- ggplot(hsb2_long, aes(ses, fill = prog)) + facet_wrap(~race)
      p + geom_bar()
## Warning: The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

      p + geom_bar(position = "dodge")
## Warning: The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

      library(ggplot2)
      attach(hsb2_long)
## The following objects are masked from hsb2_long (pos = 3):
## 
##     female, id, prog, race, schtyp, ses, value, variable
      p <- ggplot(hsb2_long, aes(ses, fill = prog)) + facet_wrap(~schtyp)
      p + geom_bar()
## Warning: The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

      p + geom_bar(position = "dodge")
## Warning: The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

      # Lab Exercise 10: Scatter Plots with marginal Distributions
      # Advance Scatter plots using libraries
      # install.packages("ggExtra")
      # install.packages("tidyverse")
      library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.1     ✔ stringr   1.5.0
## ✔ forcats   1.0.0     ✔ tibble    3.2.0
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the ]8;;http://conflicted.r-lib.org/conflicted package]8;; to force all conflicts to become errors
      library(ggExtra)
      # set theme appearance of grid background
      theme_set(theme_bw(1))
      # create X and Y vector
      (xAxis <- rnorm(1000))
##    [1]  0.3044354095 -0.5257994308  0.1001440564 -1.0395980015 -0.4204357791
##    [6]  1.2321759764 -0.9057734260  0.4610606369 -0.5480279750 -0.7405994042
##   [11] -2.1788703494  0.9737466971 -0.7115629209 -2.0343911261 -1.5409624759
##   [16]  2.7180454128  1.1159574683  0.0912110842  0.4024839962 -0.0124221087
##   [21]  1.6032554767  0.9378537948 -0.4175160432  0.8838681706 -0.0170671585
##   [26]  1.7146988674 -1.8565786483 -2.2861629761  0.0471002195 -1.3828450934
##   [31]  1.2728576626 -0.3245453488  0.7262553774 -0.2494040895  2.0491318156
##   [36]  0.3276720122  1.5152625813 -0.6999958393 -0.1918170948  1.3772500943
##   [41]  0.3062699462 -0.9330012236 -0.3861351026 -0.5335455646  1.0532717454
##   [46] -1.5708218398  1.8380984469 -0.4532271014 -0.7283387249  0.8581755323
##   [51] -0.4204010006  1.0778569444  0.9895192634  0.4267555750 -1.3829155256
##   [56] -0.8570834825 -0.2640844935  0.2161320079  0.1547657917 -0.0659525389
##   [61]  0.2270387793 -2.4730291126  1.9810059355  0.0466660567 -2.4708005569
##   [66] -2.8658457773 -1.3225337869 -0.8709826551  0.2914939939  0.2145210159
##   [71]  0.2383878020 -2.6328561752 -0.4682606636  0.3495380054 -1.5958955689
##   [76] -1.0257860632 -0.0141401703  1.6544979157 -2.6600212874 -0.8256373144
##   [81]  0.1959102371 -3.0920288767 -0.0812324934  0.7517704440  0.4349359553
##   [86]  1.8998608769 -0.6694894942  1.9408410206  0.1775329935 -0.7941748106
##   [91] -0.0275808490 -1.1492469470 -0.5633729004  0.5937611549  0.5961760626
##   [96]  0.5242191765 -0.6191658246  1.2969949297  0.0773046878  0.8157126131
##  [101] -0.8583404811 -0.3507176282  0.6130602023 -0.4252623016 -0.0559297642
##  [106]  1.8298331496  0.6216792311 -0.0316617515 -0.7729496334  0.4637217647
##  [111]  0.5315629854 -0.3709727278  0.3754108385 -0.3186548792  0.7069561511
##  [116]  1.1725859796 -2.0130684206 -0.0819044653  0.8584935622 -0.4543546066
##  [121] -0.6507421087  1.8434104251 -0.7911273413 -1.1923899564 -0.9974582251
##  [126] -0.4683656014  1.2967259667  0.6087507051 -0.2959396859 -0.7466421320
##  [131] -0.0921995913 -0.4378725635 -0.6725085430  0.6615921484 -0.8625573553
##  [136] -1.1341667570 -1.4807916361 -0.5900618935 -1.2814524762  0.3165258468
##  [141]  0.6570339570 -0.0187409771  0.8713660843  1.9337368363  0.4407674585
##  [146] -0.4926425691  1.2413481853 -0.2863585661 -0.5717866603 -0.2001002136
##  [151] -2.2862388769  1.5369567345  0.8590783467 -0.2508246623 -0.3436209794
##  [156]  0.0708539794  0.1057754965 -0.3495602385  0.1647855834  1.0066792947
##  [161]  0.4118245832 -0.4222314673  0.1226717692  0.5888377409 -1.2227264738
##  [166] -1.0949851057  0.7671869020  1.6579167049  0.3591573208 -0.3423587698
##  [171]  1.6758210356  0.7571943424 -0.5905553114 -1.1855388416 -0.4514117014
##  [176] -0.8317408578 -2.0355597791 -0.6335060466 -0.0116526964  1.3518112849
##  [181]  0.9396288977 -0.0289942595  0.9876101455  0.3560384389  0.0195971892
##  [186]  1.4599568519 -0.4032293453 -1.9154368819 -0.6825644029  0.1306103457
##  [191]  0.9900845016 -0.1173402319 -1.1497179175  1.3266665655  0.0509583907
##  [196] -0.2780046335  1.9082034155 -1.6474274562  0.5578982253  0.2343240211
##  [201] -0.9866085058  2.1144904223 -0.6561648753 -0.4882981192 -0.6891631292
##  [206]  1.1485101370 -0.0368217709 -0.4482192833  1.7662423337  1.8318457065
##  [211]  1.6299453599  0.4039753764 -0.4323547310 -0.3212190598 -0.7726922907
##  [216] -0.3278116510  0.2903329010  1.9053303001 -0.9036802221 -1.6418718324
##  [221]  0.8989258532 -0.4405764510 -0.6748831379  0.2563531318  0.2959482831
##  [226] -0.5704049786  0.9537437444 -0.1709895947 -0.7814028246 -0.6570829603
##  [231] -0.8513756706  0.4276390316 -0.0480373312 -0.7621423827 -0.0124026827
##  [236]  1.0952554663  0.3626934746 -1.1614660137 -0.8868120683 -0.0071122342
##  [241] -1.6222453488 -1.0230407129  0.5572974153  0.9811392672  0.4726665092
##  [246] -0.0157631846 -0.2204658103 -0.5510020135 -0.4300207068 -0.2972517232
##  [251]  1.5838150240 -0.1440928292 -1.7271017310  1.1219165229  1.5413988778
##  [256]  0.6988414185 -1.2468740813  0.3998193333 -0.7659441779  1.2454253381
##  [261]  0.4968513736 -0.6072435429  0.9941786042 -1.2194661352 -1.8121795380
##  [266]  0.8040428487 -0.2358109608 -1.5000207090  0.1617245629 -1.1200164706
##  [271]  0.5782271977 -0.2068637653  0.5173912330 -0.3918875133 -0.0732250530
##  [276]  0.0649235005  0.5245246965  1.4790381070  1.4389844664  0.1789289404
##  [281]  0.5625881513  0.8898773764  0.5783732229 -0.2268677604  0.0800202229
##  [286] -0.3250521754 -1.1155902322  1.0969066979  1.8898705138  2.3055786579
##  [291]  1.1264740272 -0.1474970935  0.6237443200 -0.1385101814  0.6735048424
##  [296]  0.6300389331  0.1195697075  0.0707124969  0.2167006690  0.4443547095
##  [301] -2.2590308851 -0.7649771711  0.0014415263  0.6547275101  0.2597045856
##  [306]  1.7620456148 -0.3859593307  1.3870001189 -0.0212235496 -0.6509638841
##  [311]  1.1992377046  0.1796186321  0.3393748795  1.7817576675 -0.5855739239
##  [316]  0.3566708001  0.7590523123 -0.8928728542 -0.2701804463 -0.2067931617
##  [321]  0.0983887926  0.6205497950 -1.2695908216 -0.6421355139 -0.0110093413
##  [326] -1.2853332461 -0.6223737074 -1.1531115767 -0.0866847932  0.3617493875
##  [331] -0.8626707174  0.5864998081 -0.8836900325  0.4974136395  0.5498395158
##  [336] -0.3855654826  1.3996948855  0.6862772463  0.1193969514 -1.5027219306
##  [341] -0.7495437147  0.5353136045 -0.8040252416 -1.6174667078  1.0563548809
##  [346]  2.2453849829  0.3869034468  0.5452057061  0.5549635686  0.3070380479
##  [351] -0.0637277611 -0.6171690331 -0.6741083703  0.2158482075  1.2959892970
##  [356]  2.3558405175  0.7383800664 -0.2940762680 -1.5287312858 -2.1069477725
##  [361] -0.4324332263  1.2345735392  0.6735513045  0.9532267769  1.1469006855
##  [366] -1.2687625129 -0.6400328881 -0.0393060386  2.7236428784 -2.4062742146
##  [371] -0.9998979355 -0.2469892611 -1.1620974581  0.6151039376 -0.2196046119
##  [376] -0.8220412104  0.4631410779 -0.8612027503 -0.5555126311 -1.1557635273
##  [381]  1.0882650044 -0.4936636106 -2.3497721672  1.2097264522  1.5921487499
##  [386] -1.9752284122 -0.9056651212 -0.7332260623  0.8504593232  1.3014646741
##  [391]  0.1944703368 -1.6586209104 -0.1709489867 -0.7670248205 -1.0664236762
##  [396] -0.6710911270 -2.0218142271  1.9594122221  0.0835354430 -1.3902492799
##  [401] -1.4035383492  0.6258769224  0.2046417638  1.0992480713  0.7770462944
##  [406] -0.8588747045  0.5659782409 -0.6725976789 -0.6806048998 -1.0784618740
##  [411]  0.5837478802 -0.5580063964  0.3467836423  0.7216386909 -0.2362065467
##  [416]  0.2966296366 -0.0395267660  0.4308669103  0.2285468965  1.0817841324
##  [421] -1.3906412911  1.3827336381 -0.6196222472 -0.1687698645 -1.2992493621
##  [426]  1.3485594590 -0.5220623280  0.5388095302 -0.2029742870 -0.1070416025
##  [431]  0.3000520659  0.5142745754 -0.0131140144  0.0081605493  0.0314392541
##  [436] -1.6140224937  0.0323870357 -1.1553315229 -0.6797376128 -0.4047066774
##  [441]  0.5518970864  0.1601441343  0.9208949423 -1.0509480050  0.4103655327
##  [446]  2.0838656421 -0.9773133847 -1.0887862489 -0.0456768059  1.2790416608
##  [451] -1.2439546392  0.8681935485  0.0004165961 -0.8424970396 -0.1366589215
##  [456]  1.0075975689 -0.8149423678 -0.1804258984 -0.4782596928 -0.9157929760
##  [461]  0.4743673728  0.2903182386  2.6936152215 -0.6241890542 -0.5932364072
##  [466] -2.1954217419  0.3416443933  0.6588293304  1.3580356180  1.3093821533
##  [471]  1.6943061570  0.5066448992 -0.1639529172  0.9505804702 -0.4391926823
##  [476] -0.5515109130 -0.3535123179  0.8984509772 -0.7576813719 -0.2013262307
##  [481]  0.8765478590 -0.5930716508  0.5376197013 -2.2833607983 -0.5665643453
##  [486] -2.5175735711  0.4674481367  0.1484072046  2.0046736809 -0.3701488336
##  [491]  0.6037550685 -0.2661934059  1.1076782959  0.8712294617 -0.8096749762
##  [496]  0.4462783859 -0.6825766159 -0.4338845915  0.6890134072 -0.9179980187
##  [501] -1.6547014403 -1.5238281156 -0.3721998479  0.5632036307  1.7636313234
##  [506]  0.5581978936  0.1130866256  0.8981849329 -0.0223334701 -0.8257424155
##  [511]  0.2809081331  0.4519724951  0.1254043582 -0.8734934287  0.7920636624
##  [516] -0.8042922927  0.2821748510  0.2181134373 -1.1992943443 -0.0698397737
##  [521]  0.2181216875 -1.2614165261 -0.4218155919  1.0622895583  0.2927909827
##  [526]  0.9776700988 -0.3678728590 -0.9060383353  1.8378613419 -1.3420177501
##  [531] -2.5716438421 -0.9614307452  2.1405490274  0.4634153167  0.9710616012
##  [536] -1.4623905617  0.5302932872  0.5993767043  0.1900882672  0.2747808996
##  [541] -0.2303585407 -1.8946609583 -1.0078136433  0.4148923554  1.0055989461
##  [546] -1.4917699664 -0.5688061902 -1.1719447675  1.4693149028  0.0306152556
##  [551]  0.0868409660  1.3131401206 -2.6115878926 -0.4762225617 -0.2732732267
##  [556]  0.3691516420  1.7653314046  0.7953141879 -0.1995916026  0.4604098373
##  [561] -1.9989875509 -1.7152457733  1.3660584639 -1.1020931426  2.0638171753
##  [566] -1.5059143353 -0.4816523563  0.4301156782 -0.0254881779  0.9268030539
##  [571]  0.7147917734  0.4690025482 -0.6420311531  1.8533791301  0.7560689070
##  [576]  2.7252830368 -2.1335539258 -1.9335499325  0.5109130534  0.6077045138
##  [581]  0.6904450521 -1.1458096885 -0.6151437103  0.6416006764  0.3934823842
##  [586] -0.0340365885  1.6313773831 -1.6834126200 -0.5287084634  2.0577313520
##  [591] -1.1218550804 -0.4788391315 -0.4048853987 -0.1984804241 -0.1368749547
##  [596] -0.1687722949 -0.3944023705 -0.0419429031 -1.3496454674 -2.4051717538
##  [601]  0.3849683663 -0.1847447280  1.7821931678  3.8736036332  1.3950807628
##  [606] -2.0192245269 -0.7579872143  0.4009934554  0.1583627808 -0.3977596369
##  [611] -0.9485669640 -0.6519827207 -1.0153151763 -0.2411425060 -0.5914468672
##  [616] -2.9225169825  0.0904655425  1.2208694237 -0.0650637853  1.3050220653
##  [621]  1.6146147430  0.7262409081  0.8641373814 -0.0076603394  1.7452277709
##  [626]  0.4200491623  0.6117914433 -0.0879303276  0.5272890851  0.0912368363
##  [631] -0.0680976755 -0.6990107875  0.1128058774  1.3899057363 -0.6767311560
##  [636] -0.0409704943 -0.5063299729  0.5583916330  0.5698679923 -1.1836435929
##  [641] -0.6316584266  1.3829609427  1.9399015154  0.6594982443  1.9247236926
##  [646]  0.4943696895  0.1469820137 -0.3582001441  1.6442175141 -0.5151975055
##  [651]  0.4554274028 -1.9532840748 -0.8040065375 -0.2315330012 -0.6754039859
##  [656]  0.2004805910  2.9566794532  0.2330555754  1.5004812406  0.3904121387
##  [661] -0.0446824182 -2.6183540737  0.5084847584  1.1406234493  0.8226365473
##  [666] -0.2301524392  1.8496914247  1.1356215152 -0.8043080373  0.5718986927
##  [671] -1.9418579444  0.5711040466  0.7811939965  0.5193180401  1.5820247070
##  [676]  0.6664716787 -0.6928428370 -0.0200042272 -0.2649072439  1.0335199465
##  [681] -1.2958232839 -0.4131638405 -0.1498142302  0.4975603201 -0.1930084770
##  [686] -0.4553572922  0.7002130674 -0.8982692481  1.5014775170  0.6215705884
##  [691]  0.7190416058  1.3410819740 -0.5033569029  0.1379233138  0.5394154396
##  [696] -1.4737882858 -0.3327955358 -0.5867387356  1.3285528390  0.2303312023
##  [701]  0.5525194744 -1.2251910332  1.4238366596  1.6096234772 -0.2428775836
##  [706]  0.5563062279  0.6408575531 -0.8987349193  1.0480288959 -1.1940280425
##  [711] -2.7526032074 -0.7962699759  1.4959329295  2.2779429382 -0.5039770800
##  [716] -2.4303420678 -0.2952992241 -0.0875116712 -0.1455336948  0.0841564450
##  [721] -0.0430578366 -1.4099519188  0.5768896150 -0.7034708169  0.6935589461
##  [726]  0.7530442626 -1.2317635485  1.8693710377  0.7040078468  0.4657245206
##  [731] -1.6069932105 -0.7480674319  0.6313046402 -2.7011588156 -1.1336424795
##  [736] -0.7597805843 -0.0412386598 -0.3922271759 -0.2671558511  0.1156187796
##  [741]  0.5072246640 -0.7238991596  0.4515196706  0.9493823458 -0.0880718200
##  [746] -0.1328836450 -0.3850641696  0.6558220229 -0.4865468502  0.8055596544
##  [751] -0.6072135574  0.5808996661 -0.2023625421  0.0269433810 -0.5448533803
##  [756]  0.3292024551  0.3420162818 -0.1023588189 -0.3866013407  0.3811430681
##  [761] -1.8404672930 -0.3651212697 -0.5116591008 -0.2758232924  1.4431735184
##  [766]  2.4826745643  1.1915298552 -1.9590835062  0.8940636419  1.0442507484
##  [771]  0.8381218952 -0.6866196404 -1.1293395781  0.0486396924  1.2513697372
##  [776] -0.3851750403  0.3403672930  0.2313801731  0.2962049246  0.7974252762
##  [781]  0.0196525164 -0.9017674504 -1.5301727088  0.9453588982  0.2538537420
##  [786] -0.2714035757 -1.1237543258  0.6145796109 -1.4509824499 -0.9076845374
##  [791]  1.0554106397  2.2338708756 -1.6727588522  1.3336382184 -1.9181149179
##  [796] -1.7384659670  0.4554047871 -0.6249910373  1.5048623023 -1.3198650563
##  [801] -0.6292501522  0.1507951817  0.2443209148  0.6502040856 -1.1461184023
##  [806] -0.8782332382  1.1759163469  0.9322235785  0.2313600051 -0.5510304413
##  [811] -1.5491137171 -1.0500159807  1.3141175090 -1.2035852816 -0.7451525057
##  [816] -0.8403065910  0.1776485060 -0.0259211802 -0.8465602934  1.2111135502
##  [821]  0.0749671916 -0.1482556314  0.2862388561 -0.7260533364  0.6685652696
##  [826] -0.5934586708  0.7741104723 -0.2071697039 -0.2027011109  0.9574258410
##  [831]  1.1625529437  0.8282061298  1.5394247810 -1.2711274511 -0.8819446183
##  [836]  0.1080830706  0.3232959626 -1.1754397012  1.0270313519 -0.1925211983
##  [841] -0.0078458596 -0.7123281862  0.3432004174  1.3814302165  0.9352477989
##  [846] -0.4455522893 -0.9872652103  1.3039829242  0.8265714364 -0.6831877820
##  [851]  1.0712223914  0.1467048658 -0.8347984154  0.8891916794  1.3302737988
##  [856]  1.0451120633 -0.0878990602 -1.4195983286  1.7428816690 -0.0657558142
##  [861] -0.0851362869 -0.8186930220  1.2421110364 -0.5132890015  0.2227091101
##  [866]  0.4248075724  0.4160292456  0.6910758665 -0.3359379788  0.7844051419
##  [871]  0.8261360931  1.7432365285 -0.1818973270 -0.5686144128 -0.4998774983
##  [876] -0.3157733439  0.6585815186  0.2067717775  0.0421699982 -0.1058709243
##  [881]  0.0277246618  0.7650888592  1.5252716819 -0.7176551837 -0.9755821637
##  [886] -0.0330482997  0.0977162092 -0.6363849515 -0.6889267249 -0.8682171960
##  [891]  0.6750329224  1.1526755818  0.2269823268 -0.7534459285  0.0509386844
##  [896] -0.8941927833 -0.3035743650 -0.7953182003 -0.8877574175 -1.3273414574
##  [901] -0.6184444623  1.9446205013 -0.6749742823  1.7472481932  0.2470832609
##  [906]  0.1069184812 -0.7376557730 -1.3414254382  0.9828555081 -1.7646199047
##  [911]  1.1776814440 -1.8107520704  0.9273769426 -1.0463020024  1.3245428420
##  [916]  1.1594046945  1.1091730417 -1.9449355354  0.4027791147 -0.9831681418
##  [921] -1.1026730892  0.4609630184 -0.9766358132  0.7007430820  0.5424184682
##  [926]  0.7041373338  0.0979209161  0.7460258401  1.0629764360  0.8927189656
##  [931]  1.5068338769  0.9386205494  1.9126978519  1.4112336656  0.2138877896
##  [936]  0.9393453642  1.5584366710 -0.2952126376 -1.9220160094  0.5019714280
##  [941] -0.8570468197 -0.2071753360 -0.7575767804 -0.3420006926 -0.1554809950
##  [946]  1.6226443631 -0.5733961116 -0.3702574542  1.1127211947  0.3005587360
##  [951]  1.3177064309  0.7402832173  0.5280264429 -0.7754564336  0.5202949291
##  [956]  0.3084680731 -1.4616793874  0.1366492501 -0.2625022056  0.7440344795
##  [961] -0.9590344488 -0.5492616668 -0.7694232771  1.1191090728  0.5837538544
##  [966]  0.5248929037  1.1233175510 -0.6180340960  0.3407282801  0.2921614620
##  [971]  1.8793070411  0.4306817400  0.0328452187  2.0481189568  2.2039995112
##  [976]  0.5245273583  1.3761740197 -0.8689012275 -0.4070391836 -1.4937511102
##  [981] -1.4710307181  2.3156743348  1.3322466674 -1.0613288287  0.2158994140
##  [986]  0.7053118039 -0.0002193419 -2.1311719605 -1.6368908415  0.6407822349
##  [991] -0.1671230467 -1.6676212031 -0.8982684155 -0.2902440495  1.2919413147
##  [996]  1.8405514218  0.6238500008  0.2378931056  0.1123142635  0.0901884313
      yAxis <- rnorm(1000) + xAxis + 10
      yAxis
##    [1] 10.210596 12.353595 11.461889  9.312477 11.016835 12.508212  8.645871
##    [8] 10.253232  9.265846  9.909380  7.962929 10.650548  9.936466  8.649797
##   [15]  7.255993 13.654710 11.743999  9.498961 10.618655 10.001271  8.522253
##   [22] 11.461540  8.930194 10.868724 10.693370 10.456113  8.253330  7.186649
##   [29] 10.298254 10.566010 10.756913 10.946407 10.450464  9.114150 10.064172
##   [36] 10.544246 11.615695 10.385596 10.956902 11.841118 10.359209  9.468785
##   [43]  9.641030  8.358789 10.966168  8.084911 12.814348 10.654698  8.885468
##   [50] 10.735924  8.089043 11.243113 11.079470 11.441018  8.589329  7.569627
##   [57]  8.622487 10.411994 10.168802  9.508330 10.069193  5.790723 12.218257
##   [64]  9.671807  7.454286  8.101722  7.969104  9.551389 10.755886  9.791133
##   [71]  8.701286  6.147145  9.850825  9.583269  7.734690 11.053949  9.437949
##   [78] 13.065258  7.987069  9.365756 10.706552  8.761431  8.169531 10.493889
##   [85]  8.121641 11.050972  8.520256 13.342697  9.406518  8.409629 11.041181
##   [92]  9.606813 10.015176  8.782437 11.318083 10.353466  9.505557 10.892798
##   [99] 10.876243 10.541534  8.785981  9.765015  7.794735  8.382135  9.305425
##  [106] 11.287993 11.075281 10.916271  6.891907 11.088427  9.034340 10.153138
##  [113] 10.389584 11.247210 11.676459 10.452521  7.943397 10.359271  9.209663
##  [120]  9.491503 10.637826 10.008347  9.043622  9.647121  8.345704  9.012067
##  [127] 12.404547 10.175222  9.885600  7.651816 11.719004 10.442220  9.415203
##  [134]  9.599734 10.085324  8.843963  7.518584  9.710594 10.022011 10.178536
##  [141] 10.019757  8.873744 12.406416 12.998641 11.146378  9.510803 11.080339
##  [148]  8.655321  9.992046 11.095646  7.556230 11.195552 11.303871  8.441916
##  [155]  9.051813 10.451025 11.048283 12.502942 11.099279 11.823481  9.541571
##  [162]  9.820721  8.604365 10.570744  8.409239 10.095374  9.746991 11.905541
##  [169]  9.741000 11.358473 11.931747  9.814660  8.359635  8.952681 11.459300
##  [176]  8.775225  8.333072  9.954088 10.193181  8.906373  9.654982  7.662104
##  [183] 13.057865 10.898087  8.158449 11.413359 10.198464  7.527617  9.784141
##  [190]  9.892802 10.690463 11.858704  7.341721 12.376857  9.299176 10.401437
##  [197] 11.959978  7.576640 10.043497  9.449248  9.270105 13.381249  9.828220
##  [204]  9.204397 10.856038 12.121183 10.404713  9.160810 12.395978 10.842269
##  [211] 10.906759 10.500310  8.890992  8.675026  9.464821 10.154436  9.663888
##  [218] 10.806429  9.467695  8.607901 11.647449  7.885839 10.479173 11.124822
##  [225] 10.809389  8.902100 12.638514  9.454843  8.893200  9.464514  9.577151
##  [232] 10.027758  9.988006 10.750895 10.900282 12.324721 11.088647  7.752174
##  [239]  9.846824 11.049875  9.270017  8.008291  8.950866 10.603924 10.796012
##  [246]  9.264330  9.178406  9.319806 10.494996  9.226641 12.979236 10.486879
##  [253]  8.243650 11.572769 11.368885 10.466726  9.823586  9.527618  8.985306
##  [260] 11.698071 11.703286  7.957428 13.267657  9.634624  6.691032 11.932861
##  [267] 10.829213  7.751456  9.370613  9.315124 11.491947  8.221433 12.104285
##  [274]  8.096910  9.606480  9.009623 10.214672  8.891459 11.817774 12.180843
##  [281]  8.797096  9.944163 10.496469  9.783186  9.713252 10.402036  9.680429
##  [288] 12.120682 11.881353 12.556028 11.852683 10.681688 10.106830 10.204091
##  [295] 10.632913 11.753382 12.107130 10.694915 10.584636  9.474966  6.933220
##  [302]  7.928919 10.292778 11.318140 11.226648 14.223297  8.886984 11.518076
##  [309]  9.047643  9.469302 10.642678  9.508072  8.516938 10.362675  9.142158
##  [316] 10.698386 11.444383  7.629542  9.308323 10.475137 10.294516 10.010427
##  [323]  9.050006  7.630330 10.084986  9.258041  8.405460  8.481041  8.603163
##  [330]  9.371600 10.904628 10.518428 10.458256 11.160399 12.193918 11.350784
##  [337] 12.600032  9.872288  7.886148  7.483723  7.876052  8.984196  7.696817
##  [344]  8.639686 11.851907 12.792633  9.035101 10.852862 10.235359 10.838151
##  [351]  9.557754  9.429256  8.370274  9.517855 13.994708 11.035241 10.333792
##  [358]  9.451015  7.817080  6.615459 10.625511 11.122152 12.162078 12.092896
##  [365] 10.759544  8.605084  9.986629  9.721086 12.554893  5.018708  7.898955
##  [372] 10.094131  8.953288 11.392107 10.547035  8.595551 11.907931  9.846651
##  [379]  8.962984  8.962341 11.793037  9.710364  6.581234 12.380656 11.347578
##  [386]  7.521080 10.620167 10.501034  8.717257 11.370018  8.073487  8.918060
##  [393] 10.194802  9.493902  7.369297 10.306222  9.019665 10.969929 11.375680
##  [400]  8.375988  9.431931 11.251910 10.413024 11.917019 10.371534 10.336133
##  [407] 10.156971  9.692828 10.084126 10.099691 10.621615 10.319100  9.290819
##  [414] 10.059285 10.636376  9.835304  8.879543  8.536724 10.279228 11.438543
##  [421]  9.171205  9.890947  9.505066 11.398249 10.535380  9.964714  9.867109
##  [428]  9.051113 10.168118 11.696324 10.144906  9.046578 10.695633 10.918980
##  [435] 10.110298  9.273833 10.871583  8.129817  9.173858  9.767589  8.197673
##  [442]  9.461821 10.078482 10.702960  9.193808 11.337227  8.655333  8.687756
##  [449]  9.313206 11.431532  9.595247 11.116252  8.706184  9.675697 10.686977
##  [456] 10.530646  8.276056 10.724350 10.613826  8.180681 10.720386  9.165656
##  [463] 12.051516  9.373018  7.345606  6.653213  9.340471 11.194557 11.109835
##  [470] 12.107501 10.099307 10.424255 10.525801  9.538010  8.590873  9.032078
##  [477]  8.309119  9.857916  8.667682  9.945640 10.622581 10.425465 10.268018
##  [484]  8.786352  8.066870  6.020643 11.605890 10.482485 14.320862  8.171678
##  [491] 10.344422  8.480261 12.692975 10.498217  8.184208 10.028762 10.955983
##  [498]  9.036407  9.876749  6.816224  8.149449 10.402079  8.984990  9.575950
##  [505] 11.470094 10.045108 10.772841  8.756899 10.614921  8.697102  9.518644
##  [512]  9.571675  7.687062  9.572785 10.602925 10.692605 11.310919 10.629442
##  [519]  8.851376  9.536466  8.868015  9.315631  9.450166 12.414173 11.637977
##  [526] 10.126388  8.838054  8.596238  9.393880  9.629862  6.285149  8.523096
##  [533] 13.859726 11.291741 10.304364  8.004580 10.022104 11.487728 10.269298
##  [540]  9.073241 10.069313  7.132209  8.929287 11.745386 10.009653  7.891127
##  [547]  9.433571  8.714861 11.709438  9.592145 11.305894 13.582523  7.627641
##  [554]  8.332939  9.356058  9.992157 11.273953  9.778666 10.773779 11.498401
##  [561]  7.546535  7.618239  9.137784  8.480585 12.468446  7.959604  9.770100
##  [568] 10.544603 11.042130 11.201544 10.661670 11.799355 10.209999 10.456756
##  [575] 11.823310 13.091238  8.288899  8.545957 12.093723 11.910642 11.355229
##  [582]  9.176477  9.106053 11.867998 10.311299  9.071923 10.479440  7.420354
##  [589] 10.494515 11.727607  8.911063 11.409247  9.556768  9.295895 11.227245
##  [596]  9.199496  9.157616 11.507345  8.485738  8.468796 10.367574  9.189556
##  [603] 10.886602 13.422383 10.885736  8.227385  9.764621 11.577316 10.361125
##  [610]  9.263815  8.112932  8.120759  9.146203 10.555664  9.945945  7.485870
##  [617]  9.839753 10.945922  9.584475 11.439328 10.701057 10.823835  9.858998
##  [624] 10.553159 12.157615 10.025359 11.059639  9.279732  8.852569 12.010735
##  [631]  9.681555 10.585619  9.062348  9.301960  8.966503 12.834603  9.075432
##  [638] 11.061763 10.883793  9.759455 10.546438 11.724186  9.762125 11.328714
##  [645] 12.453072 10.019893 10.294661  8.428577 12.806615  8.919816  9.776160
##  [652]  8.750302  7.399454  8.387959  9.056653 12.309405 12.195130 10.825902
##  [659] 12.223331 11.970764 10.197888  6.698197 10.857745  9.843221 12.095590
##  [666]  8.584181 12.034144 12.235321  8.800824 12.539011  7.678443 10.160349
##  [673] 12.184220  9.465367 13.472249  8.108502 10.029886 10.766088  8.547368
##  [680] 10.853690  8.133302  9.686704  8.709148  9.894223  8.228504  9.379794
##  [687]  9.522125  7.523817  9.736284 10.272120 11.762900 11.638370 11.322309
##  [694] 11.782858 10.720305  9.669853 10.236653 10.252677 11.297898 10.605793
##  [701] 10.541456  7.761525 10.435349 12.769067 10.988717 11.212568  9.477209
##  [708] 10.816058 10.677142  9.333266  6.511452  9.909505 10.804825 12.900944
##  [715] 10.419821  8.066186  9.243752  9.471444  9.415149  9.791693  9.318329
##  [722]  9.319651 10.176757  9.923952 11.763548 10.488715  7.533070 11.915664
##  [729]  9.819327 13.156396  7.964745  8.343178  9.704943  8.306539  9.569963
##  [736]  9.460775  8.625166  9.832853  9.366086 10.200508 10.166793  8.208432
##  [743] 10.307126 12.162452 11.922458  8.007573 10.828904  9.563520 10.337159
##  [750] 10.171508  8.797527 11.844624  8.678305 10.389478  8.638703 11.345956
##  [757] 10.155709  9.551244 10.004508 10.108197  7.827652  8.412968  7.396276
##  [764] 10.864443 12.648068 13.287597 12.023897  7.269725 11.413331 11.711454
##  [771] 10.447399  9.719881  9.320116  9.344588 13.122954  9.837440 10.296858
##  [778]  9.846751 10.944296 10.818438 10.884802  8.095523 10.022494 12.243978
##  [785] 12.080162 10.072993  8.422876  8.797938  9.840499  9.021853 11.731108
##  [792] 10.836846  8.733469 11.722954  6.969056  7.751288 11.827723  8.986067
##  [799] 10.463209 10.332966 10.356028 11.083439  9.365232  9.711897  9.571499
##  [806]  9.410307 12.501326 10.529198 11.904325 11.035816  8.953027  8.490545
##  [813] 10.143454  8.760837  8.763153 11.014745  8.745919 10.253972 10.177695
##  [820] 10.510165 11.615732  9.061894  9.273357 10.482821 11.062204  8.841807
##  [827] 10.150744 11.425259 11.483874  8.083649 11.051120 11.536913 11.718185
##  [834] 10.189620 11.251054 10.492476  8.153517  7.643379 10.299563  9.479634
##  [841]  9.894569 11.327696 10.968803 12.078102 11.422350  9.586708  9.471784
##  [848]  9.555854  9.317070 10.607264 10.096709  9.029833  8.500326 11.015413
##  [855] 12.293916 11.204299  9.380729  8.293773 11.058358 10.523798 11.075112
##  [862]  8.782519  9.853857  8.973474 10.107876 10.883766 12.464368  9.624853
##  [869]  9.807099 12.143115 10.361576 11.819670 10.639571  8.807458  9.567694
##  [876]  8.807538 11.421253  8.901512  9.232286  9.830938 10.560969 10.697327
##  [883] 11.211984  8.352406  8.342637  8.142232 10.004682  8.068866  9.643723
##  [890]  8.852515  9.678260 10.332284 10.227370  8.658715 10.086426  8.623448
##  [897] 11.235337  9.756456  9.244488  8.779606  9.158653 11.929046  8.748112
##  [904] 13.520534 11.157915  9.683011 11.056500  9.346001  8.803132  6.159399
##  [911] 11.168906  7.545532 11.632012  8.897538 12.364534  9.885277 12.022190
##  [918]  7.226332  9.723884  9.916594  9.616156  9.840017  9.486020 11.706083
##  [925] 10.849688  9.727788  8.726750  9.423563 10.853697 10.203390 12.680632
##  [932] 10.769765 11.642365 11.399085  8.902467 11.114223 12.046326  9.887918
##  [939]  8.709129  9.303385 10.317544 10.496511  9.630862  8.970870 11.209697
##  [946] 11.093967 10.367768 10.157209 11.231056 10.317586 11.101738 12.208788
##  [953]  9.735136  7.528456 10.037142 12.063344  8.855988 11.152651  7.809616
##  [960] 11.302984  9.980733  7.785311  9.860789 11.701677  8.968769  8.890814
##  [967] 12.866414  8.513824 10.689600 11.330831 12.017570 11.586248  7.868906
##  [974] 11.252953 12.916176  9.688919 10.262980  8.836083  8.931737  9.140624
##  [981]  9.948583 12.939756  9.995379  8.410884  9.322166 11.207073  9.902761
##  [988]  6.628176  8.878935  9.703855  6.668871  7.542124  9.187686 11.578682
##  [995] 11.661723 13.286581  8.797466  8.816749  9.212998 11.599605
      # create groups for different values of X
      (group <- rep(1,1000))
##    [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [112] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [186] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [223] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [260] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [297] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [334] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [371] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [408] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [445] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [482] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [519] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [556] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [593] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [630] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [667] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [704] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [741] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [778] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [815] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [852] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [889] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [926] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [963] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1000] 1
      # a vector consisting of 1000 elements
      group[xAxis > -1.5] <- 2
      group[xAxis > -.5] <- 3
      group[xAxis > .5] <- 4
      group[xAxis > 1.5] <- 5
      group
##    [1] 3 2 3 2 3 4 2 3 2 2 1 4 2 1 1 5 4 3 3 3 5 4 3 4 3 5 1 1 3 2 4 3 4 3 5 3 5
##   [38] 2 3 4 3 2 3 2 4 1 5 3 2 4 3 4 4 3 2 2 3 3 3 3 3 1 5 3 1 1 2 2 3 3 3 1 3 3
##   [75] 1 2 3 5 1 2 3 1 3 4 3 5 2 5 3 2 3 2 2 4 4 4 2 4 3 4 2 3 4 3 3 5 4 3 2 3 4
##  [112] 3 3 3 4 4 1 3 4 3 2 5 2 2 2 3 4 4 3 2 3 3 2 4 2 2 2 2 2 3 4 3 4 5 3 3 4 3
##  [149] 2 3 1 5 4 3 3 3 3 3 3 4 3 3 3 4 2 2 4 5 3 3 5 4 2 2 3 2 1 2 3 4 4 3 4 3 3
##  [186] 4 3 1 2 3 4 3 2 4 3 3 5 1 4 3 2 5 2 3 2 4 3 3 5 5 5 3 3 3 2 3 3 5 2 1 4 3
##  [223] 2 3 3 2 4 3 2 2 2 3 3 2 3 4 3 2 2 3 1 2 4 4 3 3 3 2 3 3 5 3 1 4 5 4 2 3 2
##  [260] 4 3 2 4 2 1 4 3 1 3 2 4 3 4 3 3 3 4 4 4 3 4 4 4 3 3 3 2 4 5 5 4 3 4 3 4 4
##  [297] 3 3 3 3 1 2 3 4 3 5 3 4 3 2 4 3 3 5 2 3 4 2 3 3 3 4 2 2 3 2 2 2 3 3 2 4 2
##  [334] 3 4 3 4 4 3 1 2 4 2 1 4 5 3 4 4 3 3 2 2 3 4 5 4 3 1 1 3 4 4 4 4 2 2 3 5 1
##  [371] 2 3 2 4 3 2 3 2 2 2 4 3 1 4 5 1 2 2 4 4 3 1 3 2 2 2 1 5 3 2 2 4 3 4 4 2 4
##  [408] 2 2 2 4 2 3 4 3 3 3 3 3 4 2 4 2 3 2 4 2 4 3 3 3 4 3 3 3 1 3 2 2 3 4 3 4 2
##  [445] 3 5 2 2 3 4 2 4 3 2 3 4 2 3 3 2 3 3 5 2 2 1 3 4 4 4 5 4 3 4 3 2 3 4 2 3 4
##  [482] 2 4 1 2 1 3 3 5 3 4 3 4 4 2 3 2 3 4 2 1 1 3 4 5 4 3 4 3 2 3 3 3 2 4 2 3 3
##  [519] 2 3 3 2 3 4 3 4 3 2 5 2 1 2 5 3 4 2 4 4 3 3 3 1 2 3 4 2 2 2 4 3 3 4 1 3 3
##  [556] 3 5 4 3 3 1 1 4 2 5 1 3 3 3 4 4 3 2 5 4 5 1 1 4 4 4 2 2 4 3 3 5 1 2 5 2 3
##  [593] 3 3 3 3 3 3 2 1 3 3 5 5 4 1 2 3 3 3 2 2 2 3 2 1 3 4 3 4 5 4 4 3 5 3 4 3 4
##  [630] 3 3 2 3 4 2 3 2 4 4 2 2 4 5 4 5 3 3 3 5 2 3 1 2 3 2 3 5 3 5 3 3 1 4 4 4 3
##  [667] 5 4 2 4 1 4 4 4 5 4 2 3 3 4 2 3 3 3 3 3 4 2 5 4 4 4 2 3 4 2 3 2 4 3 4 2 4
##  [704] 5 3 4 4 2 4 2 1 2 4 5 2 1 3 3 3 3 3 2 4 2 4 4 2 5 4 3 1 2 4 1 2 2 3 3 3 3
##  [741] 4 2 3 4 3 3 3 4 3 4 2 4 3 3 2 3 3 3 3 3 1 3 2 3 4 5 4 1 4 4 4 2 2 3 4 3 3
##  [778] 3 3 4 3 2 1 4 3 3 2 4 2 2 4 5 1 4 1 1 3 2 5 2 2 3 3 4 2 2 4 4 3 2 1 2 4 2
##  [815] 2 2 3 3 2 4 3 3 3 2 4 2 4 3 3 4 4 4 5 2 2 3 3 2 4 3 3 2 3 4 4 3 2 4 4 2 4
##  [852] 3 2 4 4 4 3 2 5 3 3 2 4 2 3 3 3 4 3 4 4 5 3 2 3 3 4 3 3 3 3 4 5 2 2 3 3 2
##  [889] 2 2 4 4 3 2 3 2 3 2 2 2 2 5 2 5 3 3 2 2 4 1 4 1 4 2 4 4 4 1 3 2 2 3 2 4 4
##  [926] 4 3 4 4 4 5 4 5 4 3 4 5 3 1 4 2 3 2 3 3 5 2 3 4 3 4 4 4 2 4 3 2 3 3 4 2 2
##  [963] 2 4 4 4 4 2 3 3 5 3 3 5 5 4 4 2 3 2 2 5 4 2 3 4 3 1 1 4 3 1 2 3 4 5 4 3 3
## [1000] 3
      # create sample dataframe by joining variables
      sample_data <- data.frame(xAxis,yAxis,group)
      sample_data
##              xAxis     yAxis group
## 1     0.3044354095 10.210596     3
## 2    -0.5257994308 12.353595     2
## 3     0.1001440564 11.461889     3
## 4    -1.0395980015  9.312477     2
## 5    -0.4204357791 11.016835     3
## 6     1.2321759764 12.508212     4
## 7    -0.9057734260  8.645871     2
## 8     0.4610606369 10.253232     3
## 9    -0.5480279750  9.265846     2
## 10   -0.7405994042  9.909380     2
## 11   -2.1788703494  7.962929     1
## 12    0.9737466971 10.650548     4
## 13   -0.7115629209  9.936466     2
## 14   -2.0343911261  8.649797     1
## 15   -1.5409624759  7.255993     1
## 16    2.7180454128 13.654710     5
## 17    1.1159574683 11.743999     4
## 18    0.0912110842  9.498961     3
## 19    0.4024839962 10.618655     3
## 20   -0.0124221087 10.001271     3
## 21    1.6032554767  8.522253     5
## 22    0.9378537948 11.461540     4
## 23   -0.4175160432  8.930194     3
## 24    0.8838681706 10.868724     4
## 25   -0.0170671585 10.693370     3
## 26    1.7146988674 10.456113     5
## 27   -1.8565786483  8.253330     1
## 28   -2.2861629761  7.186649     1
## 29    0.0471002195 10.298254     3
## 30   -1.3828450934 10.566010     2
## 31    1.2728576626 10.756913     4
## 32   -0.3245453488 10.946407     3
## 33    0.7262553774 10.450464     4
## 34   -0.2494040895  9.114150     3
## 35    2.0491318156 10.064172     5
## 36    0.3276720122 10.544246     3
## 37    1.5152625813 11.615695     5
## 38   -0.6999958393 10.385596     2
## 39   -0.1918170948 10.956902     3
## 40    1.3772500943 11.841118     4
## 41    0.3062699462 10.359209     3
## 42   -0.9330012236  9.468785     2
## 43   -0.3861351026  9.641030     3
## 44   -0.5335455646  8.358789     2
## 45    1.0532717454 10.966168     4
## 46   -1.5708218398  8.084911     1
## 47    1.8380984469 12.814348     5
## 48   -0.4532271014 10.654698     3
## 49   -0.7283387249  8.885468     2
## 50    0.8581755323 10.735924     4
## 51   -0.4204010006  8.089043     3
## 52    1.0778569444 11.243113     4
## 53    0.9895192634 11.079470     4
## 54    0.4267555750 11.441018     3
## 55   -1.3829155256  8.589329     2
## 56   -0.8570834825  7.569627     2
## 57   -0.2640844935  8.622487     3
## 58    0.2161320079 10.411994     3
## 59    0.1547657917 10.168802     3
## 60   -0.0659525389  9.508330     3
## 61    0.2270387793 10.069193     3
## 62   -2.4730291126  5.790723     1
## 63    1.9810059355 12.218257     5
## 64    0.0466660567  9.671807     3
## 65   -2.4708005569  7.454286     1
## 66   -2.8658457773  8.101722     1
## 67   -1.3225337869  7.969104     2
## 68   -0.8709826551  9.551389     2
## 69    0.2914939939 10.755886     3
## 70    0.2145210159  9.791133     3
## 71    0.2383878020  8.701286     3
## 72   -2.6328561752  6.147145     1
## 73   -0.4682606636  9.850825     3
## 74    0.3495380054  9.583269     3
## 75   -1.5958955689  7.734690     1
## 76   -1.0257860632 11.053949     2
## 77   -0.0141401703  9.437949     3
## 78    1.6544979157 13.065258     5
## 79   -2.6600212874  7.987069     1
## 80   -0.8256373144  9.365756     2
## 81    0.1959102371 10.706552     3
## 82   -3.0920288767  8.761431     1
## 83   -0.0812324934  8.169531     3
## 84    0.7517704440 10.493889     4
## 85    0.4349359553  8.121641     3
## 86    1.8998608769 11.050972     5
## 87   -0.6694894942  8.520256     2
## 88    1.9408410206 13.342697     5
## 89    0.1775329935  9.406518     3
## 90   -0.7941748106  8.409629     2
## 91   -0.0275808490 11.041181     3
## 92   -1.1492469470  9.606813     2
## 93   -0.5633729004 10.015176     2
## 94    0.5937611549  8.782437     4
## 95    0.5961760626 11.318083     4
## 96    0.5242191765 10.353466     4
## 97   -0.6191658246  9.505557     2
## 98    1.2969949297 10.892798     4
## 99    0.0773046878 10.876243     3
## 100   0.8157126131 10.541534     4
## 101  -0.8583404811  8.785981     2
## 102  -0.3507176282  9.765015     3
## 103   0.6130602023  7.794735     4
## 104  -0.4252623016  8.382135     3
## 105  -0.0559297642  9.305425     3
## 106   1.8298331496 11.287993     5
## 107   0.6216792311 11.075281     4
## 108  -0.0316617515 10.916271     3
## 109  -0.7729496334  6.891907     2
## 110   0.4637217647 11.088427     3
## 111   0.5315629854  9.034340     4
## 112  -0.3709727278 10.153138     3
## 113   0.3754108385 10.389584     3
## 114  -0.3186548792 11.247210     3
## 115   0.7069561511 11.676459     4
## 116   1.1725859796 10.452521     4
## 117  -2.0130684206  7.943397     1
## 118  -0.0819044653 10.359271     3
## 119   0.8584935622  9.209663     4
## 120  -0.4543546066  9.491503     3
## 121  -0.6507421087 10.637826     2
## 122   1.8434104251 10.008347     5
## 123  -0.7911273413  9.043622     2
## 124  -1.1923899564  9.647121     2
## 125  -0.9974582251  8.345704     2
## 126  -0.4683656014  9.012067     3
## 127   1.2967259667 12.404547     4
## 128   0.6087507051 10.175222     4
## 129  -0.2959396859  9.885600     3
## 130  -0.7466421320  7.651816     2
## 131  -0.0921995913 11.719004     3
## 132  -0.4378725635 10.442220     3
## 133  -0.6725085430  9.415203     2
## 134   0.6615921484  9.599734     4
## 135  -0.8625573553 10.085324     2
## 136  -1.1341667570  8.843963     2
## 137  -1.4807916361  7.518584     2
## 138  -0.5900618935  9.710594     2
## 139  -1.2814524762 10.022011     2
## 140   0.3165258468 10.178536     3
## 141   0.6570339570 10.019757     4
## 142  -0.0187409771  8.873744     3
## 143   0.8713660843 12.406416     4
## 144   1.9337368363 12.998641     5
## 145   0.4407674585 11.146378     3
## 146  -0.4926425691  9.510803     3
## 147   1.2413481853 11.080339     4
## 148  -0.2863585661  8.655321     3
## 149  -0.5717866603  9.992046     2
## 150  -0.2001002136 11.095646     3
## 151  -2.2862388769  7.556230     1
## 152   1.5369567345 11.195552     5
## 153   0.8590783467 11.303871     4
## 154  -0.2508246623  8.441916     3
## 155  -0.3436209794  9.051813     3
## 156   0.0708539794 10.451025     3
## 157   0.1057754965 11.048283     3
## 158  -0.3495602385 12.502942     3
## 159   0.1647855834 11.099279     3
## 160   1.0066792947 11.823481     4
## 161   0.4118245832  9.541571     3
## 162  -0.4222314673  9.820721     3
## 163   0.1226717692  8.604365     3
## 164   0.5888377409 10.570744     4
## 165  -1.2227264738  8.409239     2
## 166  -1.0949851057 10.095374     2
## 167   0.7671869020  9.746991     4
## 168   1.6579167049 11.905541     5
## 169   0.3591573208  9.741000     3
## 170  -0.3423587698 11.358473     3
## 171   1.6758210356 11.931747     5
## 172   0.7571943424  9.814660     4
## 173  -0.5905553114  8.359635     2
## 174  -1.1855388416  8.952681     2
## 175  -0.4514117014 11.459300     3
## 176  -0.8317408578  8.775225     2
## 177  -2.0355597791  8.333072     1
## 178  -0.6335060466  9.954088     2
## 179  -0.0116526964 10.193181     3
## 180   1.3518112849  8.906373     4
## 181   0.9396288977  9.654982     4
## 182  -0.0289942595  7.662104     3
## 183   0.9876101455 13.057865     4
## 184   0.3560384389 10.898087     3
## 185   0.0195971892  8.158449     3
## 186   1.4599568519 11.413359     4
## 187  -0.4032293453 10.198464     3
## 188  -1.9154368819  7.527617     1
## 189  -0.6825644029  9.784141     2
## 190   0.1306103457  9.892802     3
## 191   0.9900845016 10.690463     4
## 192  -0.1173402319 11.858704     3
## 193  -1.1497179175  7.341721     2
## 194   1.3266665655 12.376857     4
## 195   0.0509583907  9.299176     3
## 196  -0.2780046335 10.401437     3
## 197   1.9082034155 11.959978     5
## 198  -1.6474274562  7.576640     1
## 199   0.5578982253 10.043497     4
## 200   0.2343240211  9.449248     3
## 201  -0.9866085058  9.270105     2
## 202   2.1144904223 13.381249     5
## 203  -0.6561648753  9.828220     2
## 204  -0.4882981192  9.204397     3
## 205  -0.6891631292 10.856038     2
## 206   1.1485101370 12.121183     4
## 207  -0.0368217709 10.404713     3
## 208  -0.4482192833  9.160810     3
## 209   1.7662423337 12.395978     5
## 210   1.8318457065 10.842269     5
## 211   1.6299453599 10.906759     5
## 212   0.4039753764 10.500310     3
## 213  -0.4323547310  8.890992     3
## 214  -0.3212190598  8.675026     3
## 215  -0.7726922907  9.464821     2
## 216  -0.3278116510 10.154436     3
## 217   0.2903329010  9.663888     3
## 218   1.9053303001 10.806429     5
## 219  -0.9036802221  9.467695     2
## 220  -1.6418718324  8.607901     1
## 221   0.8989258532 11.647449     4
## 222  -0.4405764510  7.885839     3
## 223  -0.6748831379 10.479173     2
## 224   0.2563531318 11.124822     3
## 225   0.2959482831 10.809389     3
## 226  -0.5704049786  8.902100     2
## 227   0.9537437444 12.638514     4
## 228  -0.1709895947  9.454843     3
## 229  -0.7814028246  8.893200     2
## 230  -0.6570829603  9.464514     2
## 231  -0.8513756706  9.577151     2
## 232   0.4276390316 10.027758     3
## 233  -0.0480373312  9.988006     3
## 234  -0.7621423827 10.750895     2
## 235  -0.0124026827 10.900282     3
## 236   1.0952554663 12.324721     4
## 237   0.3626934746 11.088647     3
## 238  -1.1614660137  7.752174     2
## 239  -0.8868120683  9.846824     2
## 240  -0.0071122342 11.049875     3
## 241  -1.6222453488  9.270017     1
## 242  -1.0230407129  8.008291     2
## 243   0.5572974153  8.950866     4
## 244   0.9811392672 10.603924     4
## 245   0.4726665092 10.796012     3
## 246  -0.0157631846  9.264330     3
## 247  -0.2204658103  9.178406     3
## 248  -0.5510020135  9.319806     2
## 249  -0.4300207068 10.494996     3
## 250  -0.2972517232  9.226641     3
## 251   1.5838150240 12.979236     5
## 252  -0.1440928292 10.486879     3
## 253  -1.7271017310  8.243650     1
## 254   1.1219165229 11.572769     4
## 255   1.5413988778 11.368885     5
## 256   0.6988414185 10.466726     4
## 257  -1.2468740813  9.823586     2
## 258   0.3998193333  9.527618     3
## 259  -0.7659441779  8.985306     2
## 260   1.2454253381 11.698071     4
## 261   0.4968513736 11.703286     3
## 262  -0.6072435429  7.957428     2
## 263   0.9941786042 13.267657     4
## 264  -1.2194661352  9.634624     2
## 265  -1.8121795380  6.691032     1
## 266   0.8040428487 11.932861     4
## 267  -0.2358109608 10.829213     3
## 268  -1.5000207090  7.751456     1
## 269   0.1617245629  9.370613     3
## 270  -1.1200164706  9.315124     2
## 271   0.5782271977 11.491947     4
## 272  -0.2068637653  8.221433     3
## 273   0.5173912330 12.104285     4
## 274  -0.3918875133  8.096910     3
## 275  -0.0732250530  9.606480     3
## 276   0.0649235005  9.009623     3
## 277   0.5245246965 10.214672     4
## 278   1.4790381070  8.891459     4
## 279   1.4389844664 11.817774     4
## 280   0.1789289404 12.180843     3
## 281   0.5625881513  8.797096     4
## 282   0.8898773764  9.944163     4
## 283   0.5783732229 10.496469     4
## 284  -0.2268677604  9.783186     3
## 285   0.0800202229  9.713252     3
## 286  -0.3250521754 10.402036     3
## 287  -1.1155902322  9.680429     2
## 288   1.0969066979 12.120682     4
## 289   1.8898705138 11.881353     5
## 290   2.3055786579 12.556028     5
## 291   1.1264740272 11.852683     4
## 292  -0.1474970935 10.681688     3
## 293   0.6237443200 10.106830     4
## 294  -0.1385101814 10.204091     3
## 295   0.6735048424 10.632913     4
## 296   0.6300389331 11.753382     4
## 297   0.1195697075 12.107130     3
## 298   0.0707124969 10.694915     3
## 299   0.2167006690 10.584636     3
## 300   0.4443547095  9.474966     3
## 301  -2.2590308851  6.933220     1
## 302  -0.7649771711  7.928919     2
## 303   0.0014415263 10.292778     3
## 304   0.6547275101 11.318140     4
## 305   0.2597045856 11.226648     3
## 306   1.7620456148 14.223297     5
## 307  -0.3859593307  8.886984     3
## 308   1.3870001189 11.518076     4
## 309  -0.0212235496  9.047643     3
## 310  -0.6509638841  9.469302     2
## 311   1.1992377046 10.642678     4
## 312   0.1796186321  9.508072     3
## 313   0.3393748795  8.516938     3
## 314   1.7817576675 10.362675     5
## 315  -0.5855739239  9.142158     2
## 316   0.3566708001 10.698386     3
## 317   0.7590523123 11.444383     4
## 318  -0.8928728542  7.629542     2
## 319  -0.2701804463  9.308323     3
## 320  -0.2067931617 10.475137     3
## 321   0.0983887926 10.294516     3
## 322   0.6205497950 10.010427     4
## 323  -1.2695908216  9.050006     2
## 324  -0.6421355139  7.630330     2
## 325  -0.0110093413 10.084986     3
## 326  -1.2853332461  9.258041     2
## 327  -0.6223737074  8.405460     2
## 328  -1.1531115767  8.481041     2
## 329  -0.0866847932  8.603163     3
## 330   0.3617493875  9.371600     3
## 331  -0.8626707174 10.904628     2
## 332   0.5864998081 10.518428     4
## 333  -0.8836900325 10.458256     2
## 334   0.4974136395 11.160399     3
## 335   0.5498395158 12.193918     4
## 336  -0.3855654826 11.350784     3
## 337   1.3996948855 12.600032     4
## 338   0.6862772463  9.872288     4
## 339   0.1193969514  7.886148     3
## 340  -1.5027219306  7.483723     1
## 341  -0.7495437147  7.876052     2
## 342   0.5353136045  8.984196     4
## 343  -0.8040252416  7.696817     2
## 344  -1.6174667078  8.639686     1
## 345   1.0563548809 11.851907     4
## 346   2.2453849829 12.792633     5
## 347   0.3869034468  9.035101     3
## 348   0.5452057061 10.852862     4
## 349   0.5549635686 10.235359     4
## 350   0.3070380479 10.838151     3
## 351  -0.0637277611  9.557754     3
## 352  -0.6171690331  9.429256     2
## 353  -0.6741083703  8.370274     2
## 354   0.2158482075  9.517855     3
## 355   1.2959892970 13.994708     4
## 356   2.3558405175 11.035241     5
## 357   0.7383800664 10.333792     4
## 358  -0.2940762680  9.451015     3
## 359  -1.5287312858  7.817080     1
## 360  -2.1069477725  6.615459     1
## 361  -0.4324332263 10.625511     3
## 362   1.2345735392 11.122152     4
## 363   0.6735513045 12.162078     4
## 364   0.9532267769 12.092896     4
## 365   1.1469006855 10.759544     4
## 366  -1.2687625129  8.605084     2
## 367  -0.6400328881  9.986629     2
## 368  -0.0393060386  9.721086     3
## 369   2.7236428784 12.554893     5
## 370  -2.4062742146  5.018708     1
## 371  -0.9998979355  7.898955     2
## 372  -0.2469892611 10.094131     3
## 373  -1.1620974581  8.953288     2
## 374   0.6151039376 11.392107     4
## 375  -0.2196046119 10.547035     3
## 376  -0.8220412104  8.595551     2
## 377   0.4631410779 11.907931     3
## 378  -0.8612027503  9.846651     2
## 379  -0.5555126311  8.962984     2
## 380  -1.1557635273  8.962341     2
## 381   1.0882650044 11.793037     4
## 382  -0.4936636106  9.710364     3
## 383  -2.3497721672  6.581234     1
## 384   1.2097264522 12.380656     4
## 385   1.5921487499 11.347578     5
## 386  -1.9752284122  7.521080     1
## 387  -0.9056651212 10.620167     2
## 388  -0.7332260623 10.501034     2
## 389   0.8504593232  8.717257     4
## 390   1.3014646741 11.370018     4
## 391   0.1944703368  8.073487     3
## 392  -1.6586209104  8.918060     1
## 393  -0.1709489867 10.194802     3
## 394  -0.7670248205  9.493902     2
## 395  -1.0664236762  7.369297     2
## 396  -0.6710911270 10.306222     2
## 397  -2.0218142271  9.019665     1
## 398   1.9594122221 10.969929     5
## 399   0.0835354430 11.375680     3
## 400  -1.3902492799  8.375988     2
## 401  -1.4035383492  9.431931     2
## 402   0.6258769224 11.251910     4
## 403   0.2046417638 10.413024     3
## 404   1.0992480713 11.917019     4
## 405   0.7770462944 10.371534     4
## 406  -0.8588747045 10.336133     2
## 407   0.5659782409 10.156971     4
## 408  -0.6725976789  9.692828     2
## 409  -0.6806048998 10.084126     2
## 410  -1.0784618740 10.099691     2
## 411   0.5837478802 10.621615     4
## 412  -0.5580063964 10.319100     2
## 413   0.3467836423  9.290819     3
## 414   0.7216386909 10.059285     4
## 415  -0.2362065467 10.636376     3
## 416   0.2966296366  9.835304     3
## 417  -0.0395267660  8.879543     3
## 418   0.4308669103  8.536724     3
## 419   0.2285468965 10.279228     3
## 420   1.0817841324 11.438543     4
## 421  -1.3906412911  9.171205     2
## 422   1.3827336381  9.890947     4
## 423  -0.6196222472  9.505066     2
## 424  -0.1687698645 11.398249     3
## 425  -1.2992493621 10.535380     2
## 426   1.3485594590  9.964714     4
## 427  -0.5220623280  9.867109     2
## 428   0.5388095302  9.051113     4
## 429  -0.2029742870 10.168118     3
## 430  -0.1070416025 11.696324     3
## 431   0.3000520659 10.144906     3
## 432   0.5142745754  9.046578     4
## 433  -0.0131140144 10.695633     3
## 434   0.0081605493 10.918980     3
## 435   0.0314392541 10.110298     3
## 436  -1.6140224937  9.273833     1
## 437   0.0323870357 10.871583     3
## 438  -1.1553315229  8.129817     2
## 439  -0.6797376128  9.173858     2
## 440  -0.4047066774  9.767589     3
## 441   0.5518970864  8.197673     4
## 442   0.1601441343  9.461821     3
## 443   0.9208949423 10.078482     4
## 444  -1.0509480050 10.702960     2
## 445   0.4103655327  9.193808     3
## 446   2.0838656421 11.337227     5
## 447  -0.9773133847  8.655333     2
## 448  -1.0887862489  8.687756     2
## 449  -0.0456768059  9.313206     3
## 450   1.2790416608 11.431532     4
## 451  -1.2439546392  9.595247     2
## 452   0.8681935485 11.116252     4
## 453   0.0004165961  8.706184     3
## 454  -0.8424970396  9.675697     2
## 455  -0.1366589215 10.686977     3
## 456   1.0075975689 10.530646     4
## 457  -0.8149423678  8.276056     2
## 458  -0.1804258984 10.724350     3
## 459  -0.4782596928 10.613826     3
## 460  -0.9157929760  8.180681     2
## 461   0.4743673728 10.720386     3
## 462   0.2903182386  9.165656     3
## 463   2.6936152215 12.051516     5
## 464  -0.6241890542  9.373018     2
## 465  -0.5932364072  7.345606     2
## 466  -2.1954217419  6.653213     1
## 467   0.3416443933  9.340471     3
## 468   0.6588293304 11.194557     4
## 469   1.3580356180 11.109835     4
## 470   1.3093821533 12.107501     4
## 471   1.6943061570 10.099307     5
## 472   0.5066448992 10.424255     4
## 473  -0.1639529172 10.525801     3
## 474   0.9505804702  9.538010     4
## 475  -0.4391926823  8.590873     3
## 476  -0.5515109130  9.032078     2
## 477  -0.3535123179  8.309119     3
## 478   0.8984509772  9.857916     4
## 479  -0.7576813719  8.667682     2
## 480  -0.2013262307  9.945640     3
## 481   0.8765478590 10.622581     4
## 482  -0.5930716508 10.425465     2
## 483   0.5376197013 10.268018     4
## 484  -2.2833607983  8.786352     1
## 485  -0.5665643453  8.066870     2
## 486  -2.5175735711  6.020643     1
## 487   0.4674481367 11.605890     3
## 488   0.1484072046 10.482485     3
## 489   2.0046736809 14.320862     5
## 490  -0.3701488336  8.171678     3
## 491   0.6037550685 10.344422     4
## 492  -0.2661934059  8.480261     3
## 493   1.1076782959 12.692975     4
## 494   0.8712294617 10.498217     4
## 495  -0.8096749762  8.184208     2
## 496   0.4462783859 10.028762     3
## 497  -0.6825766159 10.955983     2
## 498  -0.4338845915  9.036407     3
## 499   0.6890134072  9.876749     4
## 500  -0.9179980187  6.816224     2
## 501  -1.6547014403  8.149449     1
## 502  -1.5238281156 10.402079     1
## 503  -0.3721998479  8.984990     3
## 504   0.5632036307  9.575950     4
## 505   1.7636313234 11.470094     5
## 506   0.5581978936 10.045108     4
## 507   0.1130866256 10.772841     3
## 508   0.8981849329  8.756899     4
## 509  -0.0223334701 10.614921     3
## 510  -0.8257424155  8.697102     2
## 511   0.2809081331  9.518644     3
## 512   0.4519724951  9.571675     3
## 513   0.1254043582  7.687062     3
## 514  -0.8734934287  9.572785     2
## 515   0.7920636624 10.602925     4
## 516  -0.8042922927 10.692605     2
## 517   0.2821748510 11.310919     3
## 518   0.2181134373 10.629442     3
## 519  -1.1992943443  8.851376     2
## 520  -0.0698397737  9.536466     3
## 521   0.2181216875  8.868015     3
## 522  -1.2614165261  9.315631     2
## 523  -0.4218155919  9.450166     3
## 524   1.0622895583 12.414173     4
## 525   0.2927909827 11.637977     3
## 526   0.9776700988 10.126388     4
## 527  -0.3678728590  8.838054     3
## 528  -0.9060383353  8.596238     2
## 529   1.8378613419  9.393880     5
## 530  -1.3420177501  9.629862     2
## 531  -2.5716438421  6.285149     1
## 532  -0.9614307452  8.523096     2
## 533   2.1405490274 13.859726     5
## 534   0.4634153167 11.291741     3
## 535   0.9710616012 10.304364     4
## 536  -1.4623905617  8.004580     2
## 537   0.5302932872 10.022104     4
## 538   0.5993767043 11.487728     4
## 539   0.1900882672 10.269298     3
## 540   0.2747808996  9.073241     3
## 541  -0.2303585407 10.069313     3
## 542  -1.8946609583  7.132209     1
## 543  -1.0078136433  8.929287     2
## 544   0.4148923554 11.745386     3
## 545   1.0055989461 10.009653     4
## 546  -1.4917699664  7.891127     2
## 547  -0.5688061902  9.433571     2
## 548  -1.1719447675  8.714861     2
## 549   1.4693149028 11.709438     4
## 550   0.0306152556  9.592145     3
## 551   0.0868409660 11.305894     3
## 552   1.3131401206 13.582523     4
## 553  -2.6115878926  7.627641     1
## 554  -0.4762225617  8.332939     3
## 555  -0.2732732267  9.356058     3
## 556   0.3691516420  9.992157     3
## 557   1.7653314046 11.273953     5
## 558   0.7953141879  9.778666     4
## 559  -0.1995916026 10.773779     3
## 560   0.4604098373 11.498401     3
## 561  -1.9989875509  7.546535     1
## 562  -1.7152457733  7.618239     1
## 563   1.3660584639  9.137784     4
## 564  -1.1020931426  8.480585     2
## 565   2.0638171753 12.468446     5
## 566  -1.5059143353  7.959604     1
## 567  -0.4816523563  9.770100     3
## 568   0.4301156782 10.544603     3
## 569  -0.0254881779 11.042130     3
## 570   0.9268030539 11.201544     4
## 571   0.7147917734 10.661670     4
## 572   0.4690025482 11.799355     3
## 573  -0.6420311531 10.209999     2
## 574   1.8533791301 10.456756     5
## 575   0.7560689070 11.823310     4
## 576   2.7252830368 13.091238     5
## 577  -2.1335539258  8.288899     1
## 578  -1.9335499325  8.545957     1
## 579   0.5109130534 12.093723     4
## 580   0.6077045138 11.910642     4
## 581   0.6904450521 11.355229     4
## 582  -1.1458096885  9.176477     2
## 583  -0.6151437103  9.106053     2
## 584   0.6416006764 11.867998     4
## 585   0.3934823842 10.311299     3
## 586  -0.0340365885  9.071923     3
## 587   1.6313773831 10.479440     5
## 588  -1.6834126200  7.420354     1
## 589  -0.5287084634 10.494515     2
## 590   2.0577313520 11.727607     5
## 591  -1.1218550804  8.911063     2
## 592  -0.4788391315 11.409247     3
## 593  -0.4048853987  9.556768     3
## 594  -0.1984804241  9.295895     3
## 595  -0.1368749547 11.227245     3
## 596  -0.1687722949  9.199496     3
## 597  -0.3944023705  9.157616     3
## 598  -0.0419429031 11.507345     3
## 599  -1.3496454674  8.485738     2
## 600  -2.4051717538  8.468796     1
## 601   0.3849683663 10.367574     3
## 602  -0.1847447280  9.189556     3
## 603   1.7821931678 10.886602     5
## 604   3.8736036332 13.422383     5
## 605   1.3950807628 10.885736     4
## 606  -2.0192245269  8.227385     1
## 607  -0.7579872143  9.764621     2
## 608   0.4009934554 11.577316     3
## 609   0.1583627808 10.361125     3
## 610  -0.3977596369  9.263815     3
## 611  -0.9485669640  8.112932     2
## 612  -0.6519827207  8.120759     2
## 613  -1.0153151763  9.146203     2
## 614  -0.2411425060 10.555664     3
## 615  -0.5914468672  9.945945     2
## 616  -2.9225169825  7.485870     1
## 617   0.0904655425  9.839753     3
## 618   1.2208694237 10.945922     4
## 619  -0.0650637853  9.584475     3
## 620   1.3050220653 11.439328     4
## 621   1.6146147430 10.701057     5
## 622   0.7262409081 10.823835     4
## 623   0.8641373814  9.858998     4
## 624  -0.0076603394 10.553159     3
## 625   1.7452277709 12.157615     5
## 626   0.4200491623 10.025359     3
## 627   0.6117914433 11.059639     4
## 628  -0.0879303276  9.279732     3
## 629   0.5272890851  8.852569     4
## 630   0.0912368363 12.010735     3
## 631  -0.0680976755  9.681555     3
## 632  -0.6990107875 10.585619     2
## 633   0.1128058774  9.062348     3
## 634   1.3899057363  9.301960     4
## 635  -0.6767311560  8.966503     2
## 636  -0.0409704943 12.834603     3
## 637  -0.5063299729  9.075432     2
## 638   0.5583916330 11.061763     4
## 639   0.5698679923 10.883793     4
## 640  -1.1836435929  9.759455     2
## 641  -0.6316584266 10.546438     2
## 642   1.3829609427 11.724186     4
## 643   1.9399015154  9.762125     5
## 644   0.6594982443 11.328714     4
## 645   1.9247236926 12.453072     5
## 646   0.4943696895 10.019893     3
## 647   0.1469820137 10.294661     3
## 648  -0.3582001441  8.428577     3
## 649   1.6442175141 12.806615     5
## 650  -0.5151975055  8.919816     2
## 651   0.4554274028  9.776160     3
## 652  -1.9532840748  8.750302     1
## 653  -0.8040065375  7.399454     2
## 654  -0.2315330012  8.387959     3
## 655  -0.6754039859  9.056653     2
## 656   0.2004805910 12.309405     3
## 657   2.9566794532 12.195130     5
## 658   0.2330555754 10.825902     3
## 659   1.5004812406 12.223331     5
## 660   0.3904121387 11.970764     3
## 661  -0.0446824182 10.197888     3
## 662  -2.6183540737  6.698197     1
## 663   0.5084847584 10.857745     4
## 664   1.1406234493  9.843221     4
## 665   0.8226365473 12.095590     4
## 666  -0.2301524392  8.584181     3
## 667   1.8496914247 12.034144     5
## 668   1.1356215152 12.235321     4
## 669  -0.8043080373  8.800824     2
## 670   0.5718986927 12.539011     4
## 671  -1.9418579444  7.678443     1
## 672   0.5711040466 10.160349     4
## 673   0.7811939965 12.184220     4
## 674   0.5193180401  9.465367     4
## 675   1.5820247070 13.472249     5
## 676   0.6664716787  8.108502     4
## 677  -0.6928428370 10.029886     2
## 678  -0.0200042272 10.766088     3
## 679  -0.2649072439  8.547368     3
## 680   1.0335199465 10.853690     4
## 681  -1.2958232839  8.133302     2
## 682  -0.4131638405  9.686704     3
## 683  -0.1498142302  8.709148     3
## 684   0.4975603201  9.894223     3
## 685  -0.1930084770  8.228504     3
## 686  -0.4553572922  9.379794     3
## 687   0.7002130674  9.522125     4
## 688  -0.8982692481  7.523817     2
## 689   1.5014775170  9.736284     5
## 690   0.6215705884 10.272120     4
## 691   0.7190416058 11.762900     4
## 692   1.3410819740 11.638370     4
## 693  -0.5033569029 11.322309     2
## 694   0.1379233138 11.782858     3
## 695   0.5394154396 10.720305     4
## 696  -1.4737882858  9.669853     2
## 697  -0.3327955358 10.236653     3
## 698  -0.5867387356 10.252677     2
## 699   1.3285528390 11.297898     4
## 700   0.2303312023 10.605793     3
## 701   0.5525194744 10.541456     4
## 702  -1.2251910332  7.761525     2
## 703   1.4238366596 10.435349     4
## 704   1.6096234772 12.769067     5
## 705  -0.2428775836 10.988717     3
## 706   0.5563062279 11.212568     4
## 707   0.6408575531  9.477209     4
## 708  -0.8987349193 10.816058     2
## 709   1.0480288959 10.677142     4
## 710  -1.1940280425  9.333266     2
## 711  -2.7526032074  6.511452     1
## 712  -0.7962699759  9.909505     2
## 713   1.4959329295 10.804825     4
## 714   2.2779429382 12.900944     5
## 715  -0.5039770800 10.419821     2
## 716  -2.4303420678  8.066186     1
## 717  -0.2952992241  9.243752     3
## 718  -0.0875116712  9.471444     3
## 719  -0.1455336948  9.415149     3
## 720   0.0841564450  9.791693     3
## 721  -0.0430578366  9.318329     3
## 722  -1.4099519188  9.319651     2
## 723   0.5768896150 10.176757     4
## 724  -0.7034708169  9.923952     2
## 725   0.6935589461 11.763548     4
## 726   0.7530442626 10.488715     4
## 727  -1.2317635485  7.533070     2
## 728   1.8693710377 11.915664     5
## 729   0.7040078468  9.819327     4
## 730   0.4657245206 13.156396     3
## 731  -1.6069932105  7.964745     1
## 732  -0.7480674319  8.343178     2
## 733   0.6313046402  9.704943     4
## 734  -2.7011588156  8.306539     1
## 735  -1.1336424795  9.569963     2
## 736  -0.7597805843  9.460775     2
## 737  -0.0412386598  8.625166     3
## 738  -0.3922271759  9.832853     3
## 739  -0.2671558511  9.366086     3
## 740   0.1156187796 10.200508     3
## 741   0.5072246640 10.166793     4
## 742  -0.7238991596  8.208432     2
## 743   0.4515196706 10.307126     3
## 744   0.9493823458 12.162452     4
## 745  -0.0880718200 11.922458     3
## 746  -0.1328836450  8.007573     3
## 747  -0.3850641696 10.828904     3
## 748   0.6558220229  9.563520     4
## 749  -0.4865468502 10.337159     3
## 750   0.8055596544 10.171508     4
## 751  -0.6072135574  8.797527     2
## 752   0.5808996661 11.844624     4
## 753  -0.2023625421  8.678305     3
## 754   0.0269433810 10.389478     3
## 755  -0.5448533803  8.638703     2
## 756   0.3292024551 11.345956     3
## 757   0.3420162818 10.155709     3
## 758  -0.1023588189  9.551244     3
## 759  -0.3866013407 10.004508     3
## 760   0.3811430681 10.108197     3
## 761  -1.8404672930  7.827652     1
## 762  -0.3651212697  8.412968     3
## 763  -0.5116591008  7.396276     2
## 764  -0.2758232924 10.864443     3
## 765   1.4431735184 12.648068     4
## 766   2.4826745643 13.287597     5
## 767   1.1915298552 12.023897     4
## 768  -1.9590835062  7.269725     1
## 769   0.8940636419 11.413331     4
## 770   1.0442507484 11.711454     4
## 771   0.8381218952 10.447399     4
## 772  -0.6866196404  9.719881     2
## 773  -1.1293395781  9.320116     2
## 774   0.0486396924  9.344588     3
## 775   1.2513697372 13.122954     4
## 776  -0.3851750403  9.837440     3
## 777   0.3403672930 10.296858     3
## 778   0.2313801731  9.846751     3
## 779   0.2962049246 10.944296     3
## 780   0.7974252762 10.818438     4
## 781   0.0196525164 10.884802     3
## 782  -0.9017674504  8.095523     2
## 783  -1.5301727088 10.022494     1
## 784   0.9453588982 12.243978     4
## 785   0.2538537420 12.080162     3
## 786  -0.2714035757 10.072993     3
## 787  -1.1237543258  8.422876     2
## 788   0.6145796109  8.797938     4
## 789  -1.4509824499  9.840499     2
## 790  -0.9076845374  9.021853     2
## 791   1.0554106397 11.731108     4
## 792   2.2338708756 10.836846     5
## 793  -1.6727588522  8.733469     1
## 794   1.3336382184 11.722954     4
## 795  -1.9181149179  6.969056     1
## 796  -1.7384659670  7.751288     1
## 797   0.4554047871 11.827723     3
## 798  -0.6249910373  8.986067     2
## 799   1.5048623023 10.463209     5
## 800  -1.3198650563 10.332966     2
## 801  -0.6292501522 10.356028     2
## 802   0.1507951817 11.083439     3
## 803   0.2443209148  9.365232     3
## 804   0.6502040856  9.711897     4
## 805  -1.1461184023  9.571499     2
## 806  -0.8782332382  9.410307     2
## 807   1.1759163469 12.501326     4
## 808   0.9322235785 10.529198     4
## 809   0.2313600051 11.904325     3
## 810  -0.5510304413 11.035816     2
## 811  -1.5491137171  8.953027     1
## 812  -1.0500159807  8.490545     2
## 813   1.3141175090 10.143454     4
## 814  -1.2035852816  8.760837     2
## 815  -0.7451525057  8.763153     2
## 816  -0.8403065910 11.014745     2
## 817   0.1776485060  8.745919     3
## 818  -0.0259211802 10.253972     3
## 819  -0.8465602934 10.177695     2
## 820   1.2111135502 10.510165     4
## 821   0.0749671916 11.615732     3
## 822  -0.1482556314  9.061894     3
## 823   0.2862388561  9.273357     3
## 824  -0.7260533364 10.482821     2
## 825   0.6685652696 11.062204     4
## 826  -0.5934586708  8.841807     2
## 827   0.7741104723 10.150744     4
## 828  -0.2071697039 11.425259     3
## 829  -0.2027011109 11.483874     3
## 830   0.9574258410  8.083649     4
## 831   1.1625529437 11.051120     4
## 832   0.8282061298 11.536913     4
## 833   1.5394247810 11.718185     5
## 834  -1.2711274511 10.189620     2
## 835  -0.8819446183 11.251054     2
## 836   0.1080830706 10.492476     3
## 837   0.3232959626  8.153517     3
## 838  -1.1754397012  7.643379     2
## 839   1.0270313519 10.299563     4
## 840  -0.1925211983  9.479634     3
## 841  -0.0078458596  9.894569     3
## 842  -0.7123281862 11.327696     2
## 843   0.3432004174 10.968803     3
## 844   1.3814302165 12.078102     4
## 845   0.9352477989 11.422350     4
## 846  -0.4455522893  9.586708     3
## 847  -0.9872652103  9.471784     2
## 848   1.3039829242  9.555854     4
## 849   0.8265714364  9.317070     4
## 850  -0.6831877820 10.607264     2
## 851   1.0712223914 10.096709     4
## 852   0.1467048658  9.029833     3
## 853  -0.8347984154  8.500326     2
## 854   0.8891916794 11.015413     4
## 855   1.3302737988 12.293916     4
## 856   1.0451120633 11.204299     4
## 857  -0.0878990602  9.380729     3
## 858  -1.4195983286  8.293773     2
## 859   1.7428816690 11.058358     5
## 860  -0.0657558142 10.523798     3
## 861  -0.0851362869 11.075112     3
## 862  -0.8186930220  8.782519     2
## 863   1.2421110364  9.853857     4
## 864  -0.5132890015  8.973474     2
## 865   0.2227091101 10.107876     3
## 866   0.4248075724 10.883766     3
## 867   0.4160292456 12.464368     3
## 868   0.6910758665  9.624853     4
## 869  -0.3359379788  9.807099     3
## 870   0.7844051419 12.143115     4
## 871   0.8261360931 10.361576     4
## 872   1.7432365285 11.819670     5
## 873  -0.1818973270 10.639571     3
## 874  -0.5686144128  8.807458     2
## 875  -0.4998774983  9.567694     3
## 876  -0.3157733439  8.807538     3
## 877   0.6585815186 11.421253     4
## 878   0.2067717775  8.901512     3
## 879   0.0421699982  9.232286     3
## 880  -0.1058709243  9.830938     3
## 881   0.0277246618 10.560969     3
## 882   0.7650888592 10.697327     4
## 883   1.5252716819 11.211984     5
## 884  -0.7176551837  8.352406     2
## 885  -0.9755821637  8.342637     2
## 886  -0.0330482997  8.142232     3
## 887   0.0977162092 10.004682     3
## 888  -0.6363849515  8.068866     2
## 889  -0.6889267249  9.643723     2
## 890  -0.8682171960  8.852515     2
## 891   0.6750329224  9.678260     4
## 892   1.1526755818 10.332284     4
## 893   0.2269823268 10.227370     3
## 894  -0.7534459285  8.658715     2
## 895   0.0509386844 10.086426     3
## 896  -0.8941927833  8.623448     2
## 897  -0.3035743650 11.235337     3
## 898  -0.7953182003  9.756456     2
## 899  -0.8877574175  9.244488     2
## 900  -1.3273414574  8.779606     2
## 901  -0.6184444623  9.158653     2
## 902   1.9446205013 11.929046     5
## 903  -0.6749742823  8.748112     2
## 904   1.7472481932 13.520534     5
## 905   0.2470832609 11.157915     3
## 906   0.1069184812  9.683011     3
## 907  -0.7376557730 11.056500     2
## 908  -1.3414254382  9.346001     2
## 909   0.9828555081  8.803132     4
## 910  -1.7646199047  6.159399     1
## 911   1.1776814440 11.168906     4
## 912  -1.8107520704  7.545532     1
## 913   0.9273769426 11.632012     4
## 914  -1.0463020024  8.897538     2
## 915   1.3245428420 12.364534     4
## 916   1.1594046945  9.885277     4
## 917   1.1091730417 12.022190     4
## 918  -1.9449355354  7.226332     1
## 919   0.4027791147  9.723884     3
## 920  -0.9831681418  9.916594     2
## 921  -1.1026730892  9.616156     2
## 922   0.4609630184  9.840017     3
## 923  -0.9766358132  9.486020     2
## 924   0.7007430820 11.706083     4
## 925   0.5424184682 10.849688     4
## 926   0.7041373338  9.727788     4
## 927   0.0979209161  8.726750     3
## 928   0.7460258401  9.423563     4
## 929   1.0629764360 10.853697     4
## 930   0.8927189656 10.203390     4
## 931   1.5068338769 12.680632     5
## 932   0.9386205494 10.769765     4
## 933   1.9126978519 11.642365     5
## 934   1.4112336656 11.399085     4
## 935   0.2138877896  8.902467     3
## 936   0.9393453642 11.114223     4
## 937   1.5584366710 12.046326     5
## 938  -0.2952126376  9.887918     3
## 939  -1.9220160094  8.709129     1
## 940   0.5019714280  9.303385     4
## 941  -0.8570468197 10.317544     2
## 942  -0.2071753360 10.496511     3
## 943  -0.7575767804  9.630862     2
## 944  -0.3420006926  8.970870     3
## 945  -0.1554809950 11.209697     3
## 946   1.6226443631 11.093967     5
## 947  -0.5733961116 10.367768     2
## 948  -0.3702574542 10.157209     3
## 949   1.1127211947 11.231056     4
## 950   0.3005587360 10.317586     3
## 951   1.3177064309 11.101738     4
## 952   0.7402832173 12.208788     4
## 953   0.5280264429  9.735136     4
## 954  -0.7754564336  7.528456     2
## 955   0.5202949291 10.037142     4
## 956   0.3084680731 12.063344     3
## 957  -1.4616793874  8.855988     2
## 958   0.1366492501 11.152651     3
## 959  -0.2625022056  7.809616     3
## 960   0.7440344795 11.302984     4
## 961  -0.9590344488  9.980733     2
## 962  -0.5492616668  7.785311     2
## 963  -0.7694232771  9.860789     2
## 964   1.1191090728 11.701677     4
## 965   0.5837538544  8.968769     4
## 966   0.5248929037  8.890814     4
## 967   1.1233175510 12.866414     4
## 968  -0.6180340960  8.513824     2
## 969   0.3407282801 10.689600     3
## 970   0.2921614620 11.330831     3
## 971   1.8793070411 12.017570     5
## 972   0.4306817400 11.586248     3
## 973   0.0328452187  7.868906     3
## 974   2.0481189568 11.252953     5
## 975   2.2039995112 12.916176     5
## 976   0.5245273583  9.688919     4
## 977   1.3761740197 10.262980     4
## 978  -0.8689012275  8.836083     2
## 979  -0.4070391836  8.931737     3
## 980  -1.4937511102  9.140624     2
## 981  -1.4710307181  9.948583     2
## 982   2.3156743348 12.939756     5
## 983   1.3322466674  9.995379     4
## 984  -1.0613288287  8.410884     2
## 985   0.2158994140  9.322166     3
## 986   0.7053118039 11.207073     4
## 987  -0.0002193419  9.902761     3
## 988  -2.1311719605  6.628176     1
## 989  -1.6368908415  8.878935     1
## 990   0.6407822349  9.703855     4
## 991  -0.1671230467  6.668871     3
## 992  -1.6676212031  7.542124     1
## 993  -0.8982684155  9.187686     2
## 994  -0.2902440495 11.578682     3
## 995   1.2919413147 11.661723     4
## 996   1.8405514218 13.286581     5
## 997   0.6238500008  8.797466     4
## 998   0.2378931056  8.816749     3
## 999   0.1123142635  9.212998     3
## 1000  0.0901884313 11.599605     3
      # creates plot object using ggplot
      plot <- ggplot(sample_data, aes(x = xAxis, y= yAxis, col = as.factor(group)))+
        geom_point()+theme(legend.position = "none")
      # Display plot
      plot
      # Insert marginal ditribution using marginal function
      ggMarginal(plot,type= 'histogram',groupColour=TRUE,groupFill=TRUE)