# Mindanao State University
# General Santos City
# Introduction to R base commands
# Prepared by: Prof. Carlito O. Daarol
# Faculty
# Math Department
# March 16, 2023
# Processing of continuous data
# Using random number generators
# Exer1: generate data with mean 2 and standard deviation 1.5 using rnorm() command
data <- rnorm(1000,2,1.5) # 1 thousand values
length(data) # count number of elements
## [1] 1000
data[1:20]
##  [1] 2.9586183 0.7023246 2.9348483 3.1502535 0.4367144 0.7838208 0.8775168
##  [8] 1.6023675 3.5981725 3.2775581 3.2580656 3.6692089 2.8254490 2.5590166
## [15] 0.7305049 0.1013654 2.6017912 0.4028442 3.5063000 1.5319480
data[1:300]
##   [1]  2.958618291  0.702324645  2.934848262  3.150253472  0.436714366
##   [6]  0.783820832  0.877516847  1.602367509  3.598172546  3.277558139
##  [11]  3.258065609  3.669208909  2.825448978  2.559016584  0.730504930
##  [16]  0.101365437  2.601791231  0.402844227  3.506300023  1.531947950
##  [21]  1.770450852  0.560375770  1.249232190 -0.144020997  4.376057886
##  [26]  3.938922154  3.397049991 -0.316597539  1.236102899  2.734727045
##  [31]  3.148403086  1.562282823  1.704328771  4.126555759  2.016457118
##  [36]  3.413904869 -0.268470429  1.638475083  2.959634016  4.467867338
##  [41]  1.763267419  1.357624378  3.016203692  1.485485072  2.529935454
##  [46]  1.831341596  1.272436391  1.321471619  3.210141837  2.529913884
##  [51]  1.705185265  2.128539877  2.159983302  3.414583897  1.322096003
##  [56]  0.490928209  3.486235179  1.231450989  1.665785938  1.014717130
##  [61]  1.396196854  2.320899501  4.168870420 -0.699333708  1.747916145
##  [66]  3.148939362 -1.398415737 -1.275848675  3.144738760  1.423377043
##  [71]  2.174538969  4.390995261  5.334768784 -0.005028605  2.105366779
##  [76]  2.804325375  4.186041672  0.366592091  1.672329041  7.185521133
##  [81]  3.463770712  1.560884122  1.673748087  1.378659138  1.375408990
##  [86]  4.784208013  2.974846351  2.615349089  2.609857786  2.485494696
##  [91]  1.738924283  2.620152208  1.126861519  2.499965651  0.767325475
##  [96]  0.388482095  3.015690657 -0.990292988  3.681221203  1.972873956
## [101]  0.776211657 -0.063914383  1.251252024 -0.104429569  0.285169671
## [106]  2.771036104  4.476771962  2.408859313  4.080467823  0.675405685
## [111]  2.059253984  1.659031532  0.652226079  1.528229670  3.222746522
## [116] -0.032314428 -0.280080038  1.408932613  1.416034868  1.967111759
## [121]  2.956924899  1.730102105 -0.332726796  3.703902526  4.067623990
## [126]  1.692857659  1.714013538  0.284179431  0.981756735  3.328441331
## [131]  4.497231571  3.236512902  3.846895401  2.613862611  0.343431141
## [136]  4.289190385  2.087943830  1.463912500  3.039247209  3.875655512
## [141]  1.200527459  2.179041393  1.503507147  3.823704895  1.974691055
## [146]  3.731727328  1.577796142  5.414360875  4.358571864  2.039735996
## [151]  1.079855459  0.772738009  0.333349467  2.413013700  3.349285481
## [156]  3.032358993  1.972523156  2.160523882 -0.992764076  5.587297080
## [161]  4.553401160  4.544580608  2.079688057  1.014759837  1.824913410
## [166]  3.778906226  5.395218823  1.420480602 -0.354125036  0.864412879
## [171]  2.251834087  0.909440156  3.953179588  3.810967952 -1.040891588
## [176]  2.877007312  2.952580882  0.247553006  3.199930751  3.242705340
## [181]  2.247970568  2.752710483  1.790764853  2.489282882  1.564037840
## [186]  0.577983294  2.653630963  2.225822882  1.424770673  0.954084962
## [191]  2.216526431  3.159771611  0.187449827  3.410415999  2.109446513
## [196]  2.937215128  4.465479424  0.227257637  2.642657747  1.861952637
## [201]  2.547750845 -0.133964517  1.797359423  4.169459297 -0.532815487
## [206]  3.502146625  3.542260466  2.078560882  2.760297008  2.200688412
## [211]  2.217182367 -0.118496898  1.014964204  1.075722380  1.691040490
## [216]  4.138312571  1.665203436  0.577877407  2.654288506  3.728979985
## [221]  1.708115058  2.861428787 -0.498373630  3.508157909  3.480309715
## [226]  3.172564385  0.110831984  1.632071382  1.278204748  2.491191722
## [231]  3.096234073  2.378045210  3.869028144 -0.320053011  2.023865730
## [236] -1.340747061  1.800083559  0.562733737  1.278884826  4.045059860
## [241]  3.886580379  2.745663794  1.701965006  2.550714889  0.199753906
## [246]  1.038035372  0.322942595  0.216197328  1.783850272  2.132751991
## [251]  3.046311928  3.532143361  2.854966138  2.012576927  2.650516116
## [256]  0.507154647  3.954029795 -1.129646739  1.844805190 -0.225546530
## [261]  5.792523770  3.537735628  0.893827667  0.748937049  0.074502568
## [266]  3.494902802  4.055103535  1.069612370  2.694027012  0.770925613
## [271]  2.770957917  3.682432514  4.482093750 -0.424071209  3.316067048
## [276]  5.638222236  3.314284948  2.224962925  1.647363380  1.083164972
## [281]  2.677992399 -0.489169692 -2.339908171  3.269046604  3.203171510
## [286]  3.066623294 -0.138691326 -0.045106277  1.733691871  1.165234739
## [291]  1.799460370  3.174923883  0.158165235  0.876277079  3.753351755
## [296]  3.849640418  0.212396372  1.913198646  2.476630178 -0.707672545
# Exer2: Draw histogram with one main title and different thickness
maintitle <- "Histogram and Density Plot"
hist(data, breaks=20,col="lightblue",main = maintitle)

hist(data, breaks=40,col="lightblue",main = maintitle)

hist(data, breaks=100,col="gray",main = maintitle)

hist(data, breaks=300,col="gray",main = maintitle)

# Exer3: Draw histogram with one main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)

hist(data, breaks=40,col="lightblue",main = maintitle)

hist(data, breaks=100,col="gray",main = maintitle)

# Question: What causes the subtitle to be in the second line?
# Exer4: Draw histogram with main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)
# # Add density curve. We define the range of the density curve
x = seq(from=min(data), to=max(data), length.out=100)
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/ 20*length(data)
lines(x, norm_dist, col='violet',lwd=4)

# Exer5: Draw histogram with main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)
# Add density curve and the location of the mean value
(x = seq(from=min(data), to=max(data), length.out=100))
##   [1] -2.74949240 -2.64913873 -2.54878505 -2.44843138 -2.34807771 -2.24772404
##   [7] -2.14737037 -2.04701669 -1.94666302 -1.84630935 -1.74595568 -1.64560201
##  [13] -1.54524833 -1.44489466 -1.34454099 -1.24418732 -1.14383365 -1.04347997
##  [19] -0.94312630 -0.84277263 -0.74241896 -0.64206529 -0.54171161 -0.44135794
##  [25] -0.34100427 -0.24065060 -0.14029693 -0.03994325  0.06041042  0.16076409
##  [31]  0.26111776  0.36147143  0.46182511  0.56217878  0.66253245  0.76288612
##  [37]  0.86323979  0.96359347  1.06394714  1.16430081  1.26465448  1.36500816
##  [43]  1.46536183  1.56571550  1.66606917  1.76642284  1.86677652  1.96713019
##  [49]  2.06748386  2.16783753  2.26819120  2.36854488  2.46889855  2.56925222
##  [55]  2.66960589  2.76995956  2.87031324  2.97066691  3.07102058  3.17137425
##  [61]  3.27172792  3.37208160  3.47243527  3.57278894  3.67314261  3.77349628
##  [67]  3.87384996  3.97420363  4.07455730  4.17491097  4.27526464  4.37561832
##  [73]  4.47597199  4.57632566  4.67667933  4.77703300  4.87738668  4.97774035
##  [79]  5.07809402  5.17844769  5.27880136  5.37915504  5.47950871  5.57986238
##  [85]  5.68021605  5.78056972  5.88092340  5.98127707  6.08163074  6.18198441
##  [91]  6.28233809  6.38269176  6.48304543  6.58339910  6.68375277  6.78410645
##  [97]  6.88446012  6.98481379  7.08516746  7.18552113
## [97] 6.68947118 6.78325558 6.87703997 6.97082437
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/ 20*length(data)
lines(x, norm_dist, col='violet',lwd=4)
abline(v = mean(data), col="black", lwd=3, lty=2)
# Add legend to top right position
legend("topright",
       legend = c("Histogram", "density curve", "Average"),
       col = c("lightblue", "violet", "black"),
       lty = 1)

# Compute Quartile values Q1,Q2 and Q3
# These quantities divide the data into 4 equal parts
hist(data, breaks=20,col="lightblue",main = maintitle)
Quantiles = quantile(data)
Quantiles
##        0%       25%       50%       75%      100% 
## -2.749492  1.078822  1.999511  3.093486  7.185521
# locate the quartiles Q1, Q2, Q3
abline(v = Quantiles[2], col="black", lwd=3, lty=3)
abline(v = Quantiles[3], col="red", lwd=3, lty=3)
abline(v = Quantiles[4], col="blue", lwd=3, lty=3)

# Exer6: Locate the lowest 5% and the highest 5% of the distribution
data
##    [1]  2.9586182909  0.7023246445  2.9348482622  3.1502534721  0.4367143655
##    [6]  0.7838208319  0.8775168471  1.6023675087  3.5981725463  3.2775581387
##   [11]  3.2580656094  3.6692089092  2.8254489775  2.5590165841  0.7305049302
##   [16]  0.1013654371  2.6017912307  0.4028442270  3.5063000230  1.5319479503
##   [21]  1.7704508523  0.5603757703  1.2492321900 -0.1440209967  4.3760578863
##   [26]  3.9389221543  3.3970499906 -0.3165975392  1.2361028986  2.7347270450
##   [31]  3.1484030863  1.5622828234  1.7043287708  4.1265557591  2.0164571184
##   [36]  3.4139048693 -0.2684704289  1.6384750832  2.9596340158  4.4678673381
##   [41]  1.7632674191  1.3576243782  3.0162036921  1.4854850718  2.5299354538
##   [46]  1.8313415956  1.2724363909  1.3214716185  3.2101418374  2.5299138840
##   [51]  1.7051852650  2.1285398768  2.1599833024  3.4145838967  1.3220960028
##   [56]  0.4909282086  3.4862351788  1.2314509892  1.6657859377  1.0147171301
##   [61]  1.3961968538  2.3208995006  4.1688704201 -0.6993337083  1.7479161451
##   [66]  3.1489393620 -1.3984157373 -1.2758486754  3.1447387598  1.4233770428
##   [71]  2.1745389690  4.3909952614  5.3347687845 -0.0050286054  2.1053667787
##   [76]  2.8043253755  4.1860416722  0.3665920905  1.6723290407  7.1855211334
##   [81]  3.4637707117  1.5608841223  1.6737480867  1.3786591384  1.3754089898
##   [86]  4.7842080127  2.9748463514  2.6153490892  2.6098577860  2.4854946957
##   [91]  1.7389242831  2.6201522081  1.1268615193  2.4999656508  0.7673254752
##   [96]  0.3884820953  3.0156906572 -0.9902929879  3.6812212033  1.9728739560
##  [101]  0.7762116570 -0.0639143827  1.2512520243 -0.1044295685  0.2851696712
##  [106]  2.7710361038  4.4767719616  2.4088593133  4.0804678231  0.6754056851
##  [111]  2.0592539845  1.6590315320  0.6522260788  1.5282296701  3.2227465217
##  [116] -0.0323144283 -0.2800800380  1.4089326132  1.4160348684  1.9671117588
##  [121]  2.9569248986  1.7301021046 -0.3327267958  3.7039025260  4.0676239898
##  [126]  1.6928576587  1.7140135378  0.2841794305  0.9817567346  3.3284413305
##  [131]  4.4972315706  3.2365129016  3.8468954008  2.6138626115  0.3434311410
##  [136]  4.2891903854  2.0879438302  1.4639125002  3.0392472087  3.8756555117
##  [141]  1.2005274588  2.1790413927  1.5035071472  3.8237048951  1.9746910546
##  [146]  3.7317273284  1.5777961417  5.4143608753  4.3585718638  2.0397359958
##  [151]  1.0798554586  0.7727380094  0.3333494670  2.4130136995  3.3492854807
##  [156]  3.0323589926  1.9725231559  2.1605238824 -0.9927640759  5.5872970800
##  [161]  4.5534011597  4.5445806079  2.0796880567  1.0147598371  1.8249134103
##  [166]  3.7789062255  5.3952188235  1.4204806020 -0.3541250358  0.8644128795
##  [171]  2.2518340868  0.9094401565  3.9531795884  3.8109679517 -1.0408915876
##  [176]  2.8770073117  2.9525808820  0.2475530058  3.1999307512  3.2427053403
##  [181]  2.2479705677  2.7527104831  1.7907648534  2.4892828821  1.5640378401
##  [186]  0.5779832941  2.6536309627  2.2258228819  1.4247706731  0.9540849618
##  [191]  2.2165264313  3.1597716108  0.1874498269  3.4104159995  2.1094465126
##  [196]  2.9372151278  4.4654794235  0.2272576370  2.6426577471  1.8619526373
##  [201]  2.5477508452 -0.1339645170  1.7973594226  4.1694592971 -0.5328154866
##  [206]  3.5021466253  3.5422604663  2.0785608821  2.7602970079  2.2006884118
##  [211]  2.2171823668 -0.1184968977  1.0149642040  1.0757223799  1.6910404898
##  [216]  4.1383125713  1.6652034362  0.5778774075  2.6542885055  3.7289799848
##  [221]  1.7081150583  2.8614287866 -0.4983736298  3.5081579090  3.4803097153
##  [226]  3.1725643846  0.1108319843  1.6320713822  1.2782047480  2.4911917216
##  [231]  3.0962340734  2.3780452102  3.8690281440 -0.3200530115  2.0238657296
##  [236] -1.3407470615  1.8000835589  0.5627337373  1.2788848258  4.0450598605
##  [241]  3.8865803785  2.7456637936  1.7019650055  2.5507148889  0.1997539063
##  [246]  1.0380353717  0.3229425947  0.2161973280  1.7838502721  2.1327519907
##  [251]  3.0463119279  3.5321433609  2.8549661383  2.0125769274  2.6505161157
##  [256]  0.5071546471  3.9540297951 -1.1296467389  1.8448051901 -0.2255465299
##  [261]  5.7925237698  3.5377356275  0.8938276668  0.7489370492  0.0745025683
##  [266]  3.4949028021  4.0551035351  1.0696123695  2.6940270123  0.7709256133
##  [271]  2.7709579174  3.6824325140  4.4820937496 -0.4240712093  3.3160670475
##  [276]  5.6382222361  3.3142849480  2.2249629254  1.6473633796  1.0831649718
##  [281]  2.6779923989 -0.4891696921 -2.3399081707  3.2690466037  3.2031715103
##  [286]  3.0666232938 -0.1386913257 -0.0451062774  1.7336918715  1.1652347386
##  [291]  1.7994603697  3.1749238830  0.1581652352  0.8762770785  3.7533517547
##  [296]  3.8496404176  0.2123963722  1.9131986465  2.4766301781 -0.7076725452
##  [301]  2.6362706015  0.1379536385  0.5628338462  1.3069367258  3.1205538835
##  [306]  2.1778399943  1.9385404561  3.0155968354  4.4091756534  2.1919397312
##  [311]  3.3523409294  1.1083633051  1.5892517701  1.7164657298  1.9501713503
##  [316]  1.2247546285  2.7511615982  3.7864672110  3.5068547474 -0.0026791715
##  [321]  0.8932860114  6.2677825112  2.2274450919  1.2524838088  2.3898592252
##  [326]  2.6170538461  2.9744148890  4.0454034797  5.3435300316  0.2013002404
##  [331]  2.3504869179  1.8263538142  4.2748899152  4.0108194900  1.2770964065
##  [336] -1.0385782545  5.6060638708  2.4438871306 -0.0704964069  2.8445218413
##  [341]  4.6370980690  4.2093387066  1.6042666715  1.6609493542  4.0016295504
##  [346]  1.9248640319  4.9764499105  0.3523052658  2.6228395307  3.2988500988
##  [351]  0.4728501296  1.2112950115  2.5714353374  2.8362317063  0.6541219534
##  [356] -0.1399578756 -1.4988755235  2.2204150601  2.1563644719  3.2668160881
##  [361]  3.1210529126  3.0541633385  2.7786836248  3.6906529190  0.9328170734
##  [366]  4.7136032298  4.3070021978  1.2738437338  2.5496567153  0.9472884470
##  [371]  1.1936038739  2.6836004118  0.8230868622  1.8259321601  0.6618778453
##  [376]  1.3528206752  1.9223424676  2.3829267279  1.0042281852  5.1117747490
##  [381]  2.7576809635  2.9867906298  1.0606637868  2.1851857307 -0.5350099559
##  [386]  3.3132603166  1.2926182207  4.6149240065  0.9004830662  3.3836352179
##  [391]  3.0810671086  0.9817699113  1.5282840375  2.8463366094  2.1974274438
##  [396]  1.9812799164  0.4342202886  2.7606971676  1.7336363659  0.6304897866
##  [401]  3.4264943473  3.7661460997  2.0922571972 -0.8887359702  4.0959306173
##  [406]  1.2186054181  5.5439897072  2.6855533944  1.9547622688  1.7441836782
##  [411]  0.8664700423  1.8656264242  2.7958975508 -0.3183715350  0.0318592632
##  [416]  7.1278604194  1.9113431963  5.9895205873  1.1721113014  2.9673077896
##  [421]  1.9784868011  2.8670507472  1.7154894980  4.0279575493  2.0506461475
##  [426] -1.3904212344  3.0671978325  1.2855614105 -0.2520089264  2.7607084156
##  [431]  3.6794281993 -0.5078979338 -0.5748662886  3.0914438618  2.1573033269
##  [436]  1.3858548042  1.1148570490  2.2856798985  2.7143317640  0.0157750292
##  [441]  3.9048970050  1.3506079274  0.9281744472  0.2367334023  3.4569631661
##  [446]  2.5463113515  0.9875946464  2.9732866561 -0.0587482837  1.0209844367
##  [451]  2.4264914609  0.5491943662  3.3998513286  1.1574929203  1.4375581072
##  [456]  1.7168643224  0.4908228542  4.6802989880  1.0749470004  2.2905924776
##  [461]  4.5123325449  1.5655551598  1.5399354585  0.8837370594  4.9804987620
##  [466]  4.9404358503  1.1031191154  3.8075286344  1.4462593295  3.0160735648
##  [471] -0.8663025021  0.1966062536  3.1280542745  4.7555964965  1.2241491530
##  [476]  2.9766234602  1.6494154731  2.6703547871  1.1604434242  1.6513664426
##  [481]  1.5865015939  2.4677688482  2.4269884704 -0.5060422161  3.8524950711
##  [486]  1.0890758954  0.1284032615  2.2462915096  1.4291121631  2.9453272495
##  [491]  2.3005964021  2.9124514696  0.7425825286  1.8282848587  3.6290360528
##  [496]  0.3022696712  1.7696390525  2.4354072673  0.6843477437 -0.3768327663
##  [501] -0.8664053963  1.8127081871  3.0231681694 -0.1523781663  1.1483808375
##  [506]  0.1447109630  2.9739415654  1.3150580469  4.0864934371  0.3123531961
##  [511]  0.0738201969  0.9605857327  1.5225027992  2.4828233164  3.4056266156
##  [516] -0.3897409905  1.7721668657  4.1589433151  2.0175976160  0.0340369199
##  [521] -0.4482421455  3.2862944234  1.6156029746  4.4127410754  3.9405346832
##  [526]  1.0805439809  2.1738343681  4.3184023683  3.4400659169  0.7217471944
##  [531]  5.4515632147  0.5843869992  4.9174777174  1.3200516092  2.4984788874
##  [536]  0.9296043050  0.5040218097  2.8781117384  2.3528421016  3.5226561003
##  [541] -1.2836747143  0.7515020963  1.4123282454  2.5739970563  3.3298879035
##  [546] -0.8364378638  2.2032700315  1.8035770149  2.3105855912  3.9179509695
##  [551]  3.2588536596  1.5519036564  1.5494843230  2.4757572091  3.0013738365
##  [556]  0.4096792041  2.8286494524  1.1870360609 -0.0890256189  2.5050964681
##  [561]  3.5707388680  2.1751792915  4.3913627513  1.9743856721  3.6416603048
##  [566]  2.9901738634  2.2349325607  1.4240650547  2.5220659844  1.6703268837
##  [571]  1.2114373056  4.7876355425  2.4499789481  0.4348906254  6.2861043448
##  [576]  3.1178763888  3.5697849706  2.4100670079  4.2280064122  0.8566919805
##  [581]  0.4011161890  1.6750704606  2.2051019554  1.9247776770  1.2185157079
##  [586]  4.0016758153  4.2918054231  4.7670790540  2.3248727672  1.8781336142
##  [591]  2.9837419357  1.2305662762  1.8925480988  2.0124398503  1.3413939917
##  [596] -0.2473559329  3.4984196445  1.6954210120  0.3495812770  4.0096160473
##  [601]  3.8611475113  5.3894072268  3.0796414431  2.2649716049  5.5601025605
##  [606]  2.9066967081  1.5961402958  1.3973255727  2.6549272342 -0.1156836095
##  [611]  4.4508380155  0.9235410613  0.3431995268  1.9535879620  1.3580077324
##  [616]  5.0206798624 -0.9569559191  2.7058008877  2.1202460209  1.8804858694
##  [621]  2.1144846719  0.1543764202  3.7910402832 -0.5164708391 -0.1741003164
##  [626]  2.4529272889  3.2420520328  1.5163787013  5.2510472770  2.6887432621
##  [631]  2.5067249199  0.2594007761  4.0478511993  2.7642847246  1.6648705080
##  [636]  2.5032880527  2.1506081103  1.1726318755  2.8506317384  4.8523531140
##  [641]  2.5717037855  2.4874086574  1.7005295917  0.3397845889  4.2792955661
##  [646]  1.7975006732  2.3414686716 -0.0759065190  2.0873158539  4.0904591058
##  [651]  1.8728791236  2.3498215582 -0.8637713349  4.7594716998  0.5464008878
##  [656]  2.5807937288  0.0176284796  4.3530713881  2.9143734962  1.3821688821
##  [661] -1.2263283044  3.3689177670  0.4990158949  2.1289553977  0.7145822197
##  [666]  4.1918763308  2.6999127447  1.5422138053  1.6380816923  4.7320138438
##  [671]  2.7424725600  4.1377101689  3.3521906703  1.2087439691  1.5425080778
##  [676]  3.2284699769  4.2139969706  2.0490342410  0.2703236682  2.7872201028
##  [681]  1.9841715948  3.6240799008  2.0883146356  4.0105086385  1.8875041532
##  [686]  2.4691705684  3.1530237040  0.6433967043  0.9836773199  1.5897257814
##  [691]  0.7804210851  0.7698624113  1.5896640877  1.5778363474 -0.8750735241
##  [696]  3.2955521160  0.6962072458  5.1066419423  3.0672024681  0.4189929196
##  [701]  1.6937684352  1.7213150489  2.0009303700  2.0008568840  4.2301937076
##  [706]  1.4650534247  1.0966970048  3.5751225509  1.7783000520  1.4216062766
##  [711]  4.1158839508  3.2760366448  0.4296833835  1.9184112005  2.2664630324
##  [716] -0.7971861505  2.7174697980  0.7730044642  4.0792302193  1.7536562838
##  [721]  2.6476610093  2.7283243502  6.2059706304  0.4276443970  0.8445320520
##  [726]  2.6639660356  2.2242532778 -1.8441376650  1.0224420168  1.5060811050
##  [731]  1.6751170065  0.9095302861  2.4803598653  0.0715149275  1.0561032016
##  [736]  1.4248009895  0.7392830282 -0.0628841190  1.7936063834  0.0311991057
##  [741]  1.9193789974  2.6198320956  3.5164743265  1.6931345966  3.3557300586
##  [746]  1.0420774595  2.1855784431  3.9107249766  0.3100616868  2.1646560705
##  [751]  1.1410565275  1.2644993463  1.2377345439  0.1381258180  0.5780400516
##  [756]  1.9006393111  1.2018879540  1.7155320601  1.2282705095  1.3384569977
##  [761]  3.9959433305  2.0272682050  1.3256919251  2.2619180499  2.5807455786
##  [766]  4.2313819294  5.6640721024  3.1374718413  3.3340031416  1.0511211373
##  [771]  3.4837832018  1.8376705428  2.8970215591 -0.7609370829  2.2100209658
##  [776]  2.4432635426  0.9998218708  4.5408676419  2.5788652429 -0.2165940995
##  [781]  1.5221807575  2.0141453943  4.0438403193  3.3991070933  2.0510468342
##  [786]  0.0004246439  1.7981137122  0.8178735706  4.6341367789  2.6656376154
##  [791]  2.1970665143  0.9416566708  2.1476519069  2.7072427316  0.4658037616
##  [796]  1.7661642078  3.1972138650  1.6461498639  2.5888941862  1.6009994446
##  [801]  2.2449174075  1.0496757387 -0.0638206326 -1.2305559264  2.6562230407
##  [806]  3.6416780679 -0.5734915897  2.2574035374  1.9532002423  1.0608641956
##  [811]  3.6836530255  0.0399968364  0.8047669184  1.9432655374  1.9776747791
##  [816]  2.2025980223  4.1372662622  2.4065132275 -0.3601002918  2.7069701628
##  [821]  3.3660584590  1.9983183802  2.5340867666  2.1163225300  5.3113199194
##  [826]  3.9101523815  5.8203852084  4.1981460969  0.4555228722  2.1887783818
##  [831]  2.0325715808  1.5711214320  0.6317774579  0.2682633897  0.9581680340
##  [836]  0.3318954535  3.0586919060  0.6933212970  1.6334732007  2.5918311877
##  [841]  1.3902865947  1.6701099068  1.6135096630  2.2927429862  0.6711404253
##  [846]  2.1828932713  4.8493456652  3.7965209135  3.8648597390  1.4645560190
##  [851]  1.3541359868  2.8188770359  4.4493900035  2.4735648165  2.1698280275
##  [856]  3.0925699117  1.8173659363  4.3724579677  0.0306542627  0.9374968819
##  [861]  2.0207597666 -0.2240882570  1.9859404443  0.5007259133  1.6624396185
##  [866]  2.0007032235  2.5055315290  2.4656119193  3.3430747443  0.8755670059
##  [871]  0.9816477859  3.1686401036  1.1820014132  0.1534070817  4.5153848536
##  [876]  0.3678423958  0.4607830246  2.2984375559  2.1411022594  1.7832746511
##  [881]  1.3723506835  3.0091515973  4.1085793035  1.0943778421  5.3687896787
##  [886]  0.0801480130 -0.1011923638 -0.8332575223  0.3525053309  0.3223568306
##  [891]  1.9345408277  0.5617142808  3.1416159884  2.5375224315  3.1937659062
##  [896]  1.3492688626  2.3236703898  0.7281553117  1.7542004151  3.7501098667
##  [901]  2.2481481925  5.7259971132  1.2488983056  1.8374185169  2.4499439401
##  [906]  1.5687678922  3.4931874898  1.4035691763  2.4302233825  1.7427789504
##  [911]  1.8662041381  2.6848750574  2.0803193979  0.6175123183  2.1388385296
##  [916] -0.1573091912  4.6865153821  0.7115272281  1.3994525365  1.4098451328
##  [921]  1.9599361344  2.3994431269  1.5763687859  3.1574621499  1.0075798278
##  [926]  1.8087194378  4.0930613017  4.7808078845  1.7401554544  1.3912735154
##  [931] -0.0300881871 -0.3622824267  3.2014087691 -0.1309192015  3.1516436084
##  [936]  0.1994585622  1.9822406220  2.6500358402  0.5090287951  2.0694589695
##  [941]  1.2653544677  1.8871403824  0.8404483935  3.4009761770  0.8828216676
##  [946]  3.7273084741  1.7213583493  1.6537979996  3.1252688730  3.3602046904
##  [951]  1.9099708805  1.5442247792  1.7201209048  1.4949009279  1.3671944423
##  [956]  1.2458677529 -0.6744004595  1.1203730710  4.6478960674  0.1398417532
##  [961]  3.0005450711  2.8975349086  3.3949388840  2.4174680123 -2.7494923984
##  [966]  3.3309851316  3.5025186552  2.0023282452  1.6567949528  4.5548934166
##  [971]  1.2246024240  4.1805546204  1.3585226248  3.3880296541  2.2810538242
##  [976]  3.2597378293  2.2768841349  4.6594269692  3.6756392393  5.8829899433
##  [981]  3.3918674292 -0.3866070581  1.5459698358  5.6906828317  1.4922370455
##  [986]  0.7445866608  3.5726733650  1.1279315978  3.5012367620 -0.3764357598
##  [991] -0.5201370695  1.1691489942 -0.1536423317  3.8673038817  2.9274228660
##  [996]  1.1622594499  0.7313016439  1.7035707639  7.1490612003  1.4464237075
summary(data)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  -2.749   1.079   2.000   2.081   3.093   7.186
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)
# Add density curve (define the range of the density curve)
x = seq(from=min(data), to=max(data), length.out=100)
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/ 20*length(data)
lines(x, norm_dist, col='violet',lwd=4)
abline(v = mean(data), col="black", lwd=3, lty=2)
# Add legend
legend("topright", # Add legend to plot
       legend = c("Histogram", "density curve", "Average"),
       col = c("lightblue", "violet", "black"),
       lty = 1)
# Locate lowest 5% and highest 5% of the data
quantile(data,prob = 0.05)
##         5% 
## -0.3184556
abline(v = quantile(data,prob = 0.05), col="red", lwd=3, lty=3)
# Area to the left of the red line is lowest 5% of the data
1
## [1] 1
quantile(data,prob = 0.95)
##      95% 
## 4.615885
abline(v = quantile(data,prob = 0.95), col="blue", lwd=3, lty=3)

# Area to the right of the blue line is top 5% of the data
# Area in between the red line and the blue line is 90%
# of the data
# How to get the values (lowest 5%)
(Cutoff <- quantile(data,prob = 0.05))
##         5% 
## -0.3184556
# mark those values that is lower than -.42 as true
# and higher than -.42 as false
(Low5Percent <- (data < Cutoff))
##    [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [61] FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE
##   [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [97] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [121] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [157] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [169]  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [205]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [217] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [229] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [253] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [277] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [325] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [337] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [385]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [397] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [421] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [433]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [445] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [469] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [481] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
##  [505] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [517] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [541]  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [553] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [577] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [589] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [613] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [649] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [661]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [673] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [685] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [697] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [733] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [745] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [769] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [805] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [817] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [877] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [913] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [925] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [961] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [985] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [997] FALSE FALSE FALSE FALSE
# count all true values using the sum command
sum(Low5Percent[TRUE]) # there are 50 of them
## [1] 50
#
# filter those 50 values that are smaller than the cutoff
data[Low5Percent==TRUE]
##  [1] -0.6993337 -1.3984157 -1.2758487 -0.9902930 -0.3327268 -0.9927641
##  [7] -0.3541250 -1.0408916 -0.5328155 -0.4983736 -0.3200530 -1.3407471
## [13] -1.1296467 -0.4240712 -0.4891697 -2.3399082 -0.7076725 -1.0385783
## [19] -1.4988755 -0.5350100 -0.8887360 -1.3904212 -0.5078979 -0.5748663
## [25] -0.8663025 -0.5060422 -0.3768328 -0.8664054 -0.3897410 -0.4482421
## [31] -1.2836747 -0.8364379 -0.9569559 -0.5164708 -0.8637713 -1.2263283
## [37] -0.8750735 -0.7971862 -1.8441377 -0.7609371 -1.2305559 -0.5734916
## [43] -0.3601003 -0.8332575 -0.3622824 -0.6744005 -2.7494924 -0.3866071
## [49] -0.3764358 -0.5201371
# How to get the top 5%
(Cutoff <- quantile(data,prob = 0.95))
##      95% 
## 4.615885
(Top5Percent <- (data >= Cutoff))
##    [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [73]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##   [85] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [145] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [157] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [253] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [277] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [325] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [337]  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [361] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [385] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [397] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE
##  [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [445] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [457] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE
##  [469] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [505] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [529] FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [553] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE
##  [577] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [589] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [613] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [625] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [637] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [649] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [673] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [685] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [697] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [721] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [733] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [745] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [817] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE
##  [829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [841] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [877] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [901] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [913] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [925] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [961] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [973] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE
##  [985] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [997] FALSE FALSE  TRUE FALSE
sum(Top5Percent[TRUE]) # counts all the true values
## [1] 50
data[Top5Percent==TRUE]
##  [1] 5.334769 7.185521 4.784208 5.414361 5.587297 5.395219 5.792524 5.638222
##  [9] 6.267783 5.343530 5.606064 4.637098 4.976450 4.713603 5.111775 5.543990
## [17] 7.127860 5.989521 4.680299 4.980499 4.940436 4.755596 5.451563 4.917478
## [25] 4.787636 6.286104 4.767079 5.389407 5.560103 5.020680 5.251047 4.852353
## [33] 4.759472 4.732014 5.106642 6.205971 5.664072 4.634137 5.311320 5.820385
## [41] 4.849346 5.368790 5.725997 4.686515 4.780808 4.647896 4.659427 5.882990
## [49] 5.690683 7.149061