# Mindanao State University
# General Santos City
# Introduction to R base commands
# Submitted by: Zandra Marie C. Delgado
# Submitted to: Prof. Carlito O. Daarol
# Math Department

# Lab Exercise 1: How to create Lines in with different styles in R
# Step 1: Create Data
x <- 1:10 # Create example data
y <- c(3, 1, 5, 2, 3, 8, 4, 7, 6, 9) # using the c() function to create an array
# Step 2: Plot the line graph using the base plot() command
plot(x, y, type = "l")

# Step 3: Add Main Title & Change Axis Labels
plot(x, y, type = "l",
     main = "Hello: This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values")

# Step 4: Add color to the line using the col command
plot(x, y, type = "l",
     main = "This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values",
     col = "red")

# Step 5: Modify Thickness of Line using lwd command
plot(x, y, type = "l",
     main = "This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values",
     lwd=7,
     col = "green")

# Step 6: Add points to line graph by changing the type command 
plot(x, y, type = "b",
     main = "This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values",
     lwd=3,
     col = "blue")

# Lab Exercise 2: How to create Lines in with different styles in R
# Step1: Assign values for different lines. We enclose the entire
# line with parenthesis symbol to force R to display the results instantly
# set the same value for the x variable
(x <- 1:10)
##  [1]  1  2  3  4  5  6  7  8  9 10
# set different values for y variables
(y1 <- c(3, 1, 5, 2, 3, 8, 4, 7, 6, 9))
##  [1] 3 1 5 2 3 8 4 7 6 9
(y2 <- c(5, 1, 4, 6, 2, 3, 7, 8, 2, 8))
##  [1] 5 1 4 6 2 3 7 8 2 8
(y3 <- c(3, 3, 3, 3, 4, 4, 5, 5, 7, 7))
##  [1] 3 3 3 3 4 4 5 5 7 7
# Plot first the pair x and y1.
plot(x, y1, type = "b",
     main = "This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values",
     lwd=3,
     col = "blue")
# then Add the two lines (for x,y2) and (x,y3)
lines(x, y2, type = "b", col = "red",lwd=3)
lines(x, y3, type = "b", col = "green",lwd=3)
# Add legend to the plot
legend("topleft",
       legend = c("Line y1", "Line y2", "Line y3"),
       col = c("black", "red", "green"),
       lty = 1)

# Step 2: Create Different Point Symbol for Each
# Line using the pch command
plot(x, y1, type = "b",pch = 16,
     main = "This is my Line Plot",
     xlab = "My X-Values",
     ylab = "My Y-Values",
     lwd=3,
     col = "blue")
lines(x, y2, type = "b", col = "red",lwd=3, pch = 15)
lines(x, y3, type = "b", col = "green",lwd=3, pch = 8)
# Add legend
legend("topleft",
       legend = c("Line y1", "Line y2", "Line y3"),
       col = c("black", "red", "green"),
       lty = 1)

# Lab Exercise 3: Create Line graph without x values
Pupils <- c(3.55 ,3.54 ,3.53 ,3.61 ,3.65 ,3.63 ,3.61
            ,3.61 ,3.59 ,3.63 ,3.59 ,3.63 ,3.62 ,3.62
            ,3.59 ,3.63 ,3.62 ,3.65 ,3.65)
# get number of elements of Pupils
length(Pupils)
## [1] 19
# Display the elements of Pupils
Pupils
##  [1] 3.55 3.54 3.53 3.61 3.65 3.63 3.61 3.61 3.59 3.63 3.59 3.63 3.62 3.62 3.59
## [16] 3.63 3.62 3.65 3.65
# You can obtain the plot without x values
plot(Pupils, type = 'o')

# Lab Exercise 4: How to Create vertical, horizontal lines
# We will use buit-in cars dataset in R
# display the cars dataset
cars
##    speed dist
## 1      4    2
## 2      4   10
## 3      7    4
## 4      7   22
## 5      8   16
## 6      9   10
## 7     10   18
## 8     10   26
## 9     10   34
## 10    11   17
## 11    11   28
## 12    12   14
## 13    12   20
## 14    12   24
## 15    12   28
## 16    13   26
## 17    13   34
## 18    13   34
## 19    13   46
## 20    14   26
## 21    14   36
## 22    14   60
## 23    14   80
## 24    15   20
## 25    15   26
## 26    15   54
## 27    16   32
## 28    16   40
## 29    17   32
## 30    17   40
## 31    17   50
## 32    18   42
## 33    18   56
## 34    18   76
## 35    18   84
## 36    19   36
## 37    19   46
## 38    19   68
## 39    20   32
## 40    20   48
## 41    20   52
## 42    20   56
## 43    20   64
## 44    22   66
## 45    23   54
## 46    24   70
## 47    24   92
## 48    24   93
## 49    24  120
## 50    25   85
# get the number of rows and columns using dim() command
dim(cars)
## [1] 50  2
# display the variable names of the cars dataset
names(cars)
## [1] "speed" "dist"
# display only the first column of the dataset
cars$speed # using the column name
##  [1]  4  4  7  7  8  9 10 10 10 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15
## [26] 15 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 22 23 24 24 24 24 25
cars[,1] # using the column number
##  [1]  4  4  7  7  8  9 10 10 10 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15
## [26] 15 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 22 23 24 24 24 24 25
# Remarks: the following commands will give you the same result
plot(cars,) # using the comma after the name

plot(cars[,1],cars[,2]) # using the column index 1 and 2 

attach(cars); plot(speed,dist) # using the attach command to load the variables

plot(cars$speed,cars$dist) # using the dollar notation

# combine all 4 plots using the par() command
par(mfrow = c(2,2)) # set a 2x2 plot output
plot(cars,) # using the comma after the name
plot(cars[,1],cars[,2]) # using the column index 1 and 2
attach(cars); plot(speed,dist) # using the attach command to load the variables
## The following objects are masked from cars (pos = 3):
## 
##     dist, speed
plot(cars$speed,cars$dist) # using the dollar notation

par(mfrow = c(1,1)) # reset to default plot setting
# Problem: Create vertical lines using the v command
plot(cars)
abline(v = 15, col = "darkgreen",lwd=3) # vertical line
abline(v = 10, col = "blue",lwd=3) # vertical line
# Problem: Create horizontal lines using the h command
abline(h = 80, col = "darkgreen",lwd=3) # vertical line
abline(h = 20, col = "blue",lwd=3) # vertical line

# Create more lines simultaneously, using a vector of values 
plot(cars)
abline(v = c(9, 22,25), col = c("darkgreen", "blue","red"),
       lwd = c(1, 3,2), # line thickness
       lty = c(2,2,2)) # dashed lines

plot(cars)
abline(v = c(9, 22,25), col = c("darkgreen", "blue","red"),
       lwd = c(1, 3,2)) # line thickness and solid lines

# create horizontal lines
plot(cars)
abline(h = 60, col = "red",lty = 1, lwd = 3)
abline(h = 100, col = "red",lty = 2, lwd = 3)
abline(h = 20, col = "red",lty = 3, lwd = 3)

# Lab Exercise 5: How to Plot data by group
# We will use buit-in iris dataset in R
# this dataset is a collection of 4 species of flowers with different
# sepal length and width and also with different petal length and width
dim(iris) # iris dataset has 150 rows and 5 columns
## [1] 150   5
names(iris)
## [1] "Sepal.Length" "Sepal.Width"  "Petal.Length" "Petal.Width"  "Species"
# two different commands to get the frequency table
table(iris$Species) # refer to the dataset by variable name
## 
##     setosa versicolor  virginica 
##         50         50         50
table(iris[,5]) # refer to the dataset by column number
## 
##     setosa versicolor  virginica 
##         50         50         50
# get summary of all columns
summary(iris)
##   Sepal.Length    Sepal.Width     Petal.Length    Petal.Width   
##  Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100  
##  1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300  
##  Median :5.800   Median :3.000   Median :4.350   Median :1.300  
##  Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199  
##  3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800  
##  Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500  
##        Species  
##  setosa    :50  
##  versicolor:50  
##  virginica :50  
##                 
##                 
## 
#create scatterplot of sepal width vs. sepal length
plot(iris$Sepal.Width, iris$Sepal.Length,
     col='steelblue',
     main='Scatterplot',
     xlab='Sepal Width',
     ylab='Sepal Length',
     pch=19)

plot(iris$Sepal.Width, iris$Sepal.Length,
     col='steelblue',
     main='Scatterplot',
     xlab='Sepal Width',
     ylab='Sepal Length',
     pch=1)

# another way to retrieve columns of data
PL <- iris$Petal.Length
PW <- iris$Petal.Width
plot(PL, PW)

# add color by species
plot(PL, PW, col = iris$Species, main= "My Plot")
# draw a line along with the distribution of points
# using the abline and lm commands
abline(lm(PW ~ PL))
# add text annotation
text(5, 0.5, "Regression Line")
legend("topleft", # specify the location of the legend
       levels(iris$Species), # specify the levels of species
       pch = 1:3, # specify three symbols used for the three species
       col = 1:3 # specify three colors for the three species
)

# Lab Exercise 6: Generate advance scatter plot
pairs(iris, col = rainbow(3)[iris$Species]) # set colors by species

# How to filter data for each flower
(Versicolor <- subset(iris, Species == "versicolor"))
##     Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
## 51           7.0         3.2          4.7         1.4 versicolor
## 52           6.4         3.2          4.5         1.5 versicolor
## 53           6.9         3.1          4.9         1.5 versicolor
## 54           5.5         2.3          4.0         1.3 versicolor
## 55           6.5         2.8          4.6         1.5 versicolor
## 56           5.7         2.8          4.5         1.3 versicolor
## 57           6.3         3.3          4.7         1.6 versicolor
## 58           4.9         2.4          3.3         1.0 versicolor
## 59           6.6         2.9          4.6         1.3 versicolor
## 60           5.2         2.7          3.9         1.4 versicolor
## 61           5.0         2.0          3.5         1.0 versicolor
## 62           5.9         3.0          4.2         1.5 versicolor
## 63           6.0         2.2          4.0         1.0 versicolor
## 64           6.1         2.9          4.7         1.4 versicolor
## 65           5.6         2.9          3.6         1.3 versicolor
## 66           6.7         3.1          4.4         1.4 versicolor
## 67           5.6         3.0          4.5         1.5 versicolor
## 68           5.8         2.7          4.1         1.0 versicolor
## 69           6.2         2.2          4.5         1.5 versicolor
## 70           5.6         2.5          3.9         1.1 versicolor
## 71           5.9         3.2          4.8         1.8 versicolor
## 72           6.1         2.8          4.0         1.3 versicolor
## 73           6.3         2.5          4.9         1.5 versicolor
## 74           6.1         2.8          4.7         1.2 versicolor
## 75           6.4         2.9          4.3         1.3 versicolor
## 76           6.6         3.0          4.4         1.4 versicolor
## 77           6.8         2.8          4.8         1.4 versicolor
## 78           6.7         3.0          5.0         1.7 versicolor
## 79           6.0         2.9          4.5         1.5 versicolor
## 80           5.7         2.6          3.5         1.0 versicolor
## 81           5.5         2.4          3.8         1.1 versicolor
## 82           5.5         2.4          3.7         1.0 versicolor
## 83           5.8         2.7          3.9         1.2 versicolor
## 84           6.0         2.7          5.1         1.6 versicolor
## 85           5.4         3.0          4.5         1.5 versicolor
## 86           6.0         3.4          4.5         1.6 versicolor
## 87           6.7         3.1          4.7         1.5 versicolor
## 88           6.3         2.3          4.4         1.3 versicolor
## 89           5.6         3.0          4.1         1.3 versicolor
## 90           5.5         2.5          4.0         1.3 versicolor
## 91           5.5         2.6          4.4         1.2 versicolor
## 92           6.1         3.0          4.6         1.4 versicolor
## 93           5.8         2.6          4.0         1.2 versicolor
## 94           5.0         2.3          3.3         1.0 versicolor
## 95           5.6         2.7          4.2         1.3 versicolor
## 96           5.7         3.0          4.2         1.2 versicolor
## 97           5.7         2.9          4.2         1.3 versicolor
## 98           6.2         2.9          4.3         1.3 versicolor
## 99           5.1         2.5          3.0         1.1 versicolor
## 100          5.7         2.8          4.1         1.3 versicolor
(Setosa <- subset(iris, Species == "setosa"))
##    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1           5.1         3.5          1.4         0.2  setosa
## 2           4.9         3.0          1.4         0.2  setosa
## 3           4.7         3.2          1.3         0.2  setosa
## 4           4.6         3.1          1.5         0.2  setosa
## 5           5.0         3.6          1.4         0.2  setosa
## 6           5.4         3.9          1.7         0.4  setosa
## 7           4.6         3.4          1.4         0.3  setosa
## 8           5.0         3.4          1.5         0.2  setosa
## 9           4.4         2.9          1.4         0.2  setosa
## 10          4.9         3.1          1.5         0.1  setosa
## 11          5.4         3.7          1.5         0.2  setosa
## 12          4.8         3.4          1.6         0.2  setosa
## 13          4.8         3.0          1.4         0.1  setosa
## 14          4.3         3.0          1.1         0.1  setosa
## 15          5.8         4.0          1.2         0.2  setosa
## 16          5.7         4.4          1.5         0.4  setosa
## 17          5.4         3.9          1.3         0.4  setosa
## 18          5.1         3.5          1.4         0.3  setosa
## 19          5.7         3.8          1.7         0.3  setosa
## 20          5.1         3.8          1.5         0.3  setosa
## 21          5.4         3.4          1.7         0.2  setosa
## 22          5.1         3.7          1.5         0.4  setosa
## 23          4.6         3.6          1.0         0.2  setosa
## 24          5.1         3.3          1.7         0.5  setosa
## 25          4.8         3.4          1.9         0.2  setosa
## 26          5.0         3.0          1.6         0.2  setosa
## 27          5.0         3.4          1.6         0.4  setosa
## 28          5.2         3.5          1.5         0.2  setosa
## 29          5.2         3.4          1.4         0.2  setosa
## 30          4.7         3.2          1.6         0.2  setosa
## 31          4.8         3.1          1.6         0.2  setosa
## 32          5.4         3.4          1.5         0.4  setosa
## 33          5.2         4.1          1.5         0.1  setosa
## 34          5.5         4.2          1.4         0.2  setosa
## 35          4.9         3.1          1.5         0.2  setosa
## 36          5.0         3.2          1.2         0.2  setosa
## 37          5.5         3.5          1.3         0.2  setosa
## 38          4.9         3.6          1.4         0.1  setosa
## 39          4.4         3.0          1.3         0.2  setosa
## 40          5.1         3.4          1.5         0.2  setosa
## 41          5.0         3.5          1.3         0.3  setosa
## 42          4.5         2.3          1.3         0.3  setosa
## 43          4.4         3.2          1.3         0.2  setosa
## 44          5.0         3.5          1.6         0.6  setosa
## 45          5.1         3.8          1.9         0.4  setosa
## 46          4.8         3.0          1.4         0.3  setosa
## 47          5.1         3.8          1.6         0.2  setosa
## 48          4.6         3.2          1.4         0.2  setosa
## 49          5.3         3.7          1.5         0.2  setosa
## 50          5.0         3.3          1.4         0.2  setosa
(Virginica <- subset(iris, Species == "virginica"))
##     Sepal.Length Sepal.Width Petal.Length Petal.Width   Species
## 101          6.3         3.3          6.0         2.5 virginica
## 102          5.8         2.7          5.1         1.9 virginica
## 103          7.1         3.0          5.9         2.1 virginica
## 104          6.3         2.9          5.6         1.8 virginica
## 105          6.5         3.0          5.8         2.2 virginica
## 106          7.6         3.0          6.6         2.1 virginica
## 107          4.9         2.5          4.5         1.7 virginica
## 108          7.3         2.9          6.3         1.8 virginica
## 109          6.7         2.5          5.8         1.8 virginica
## 110          7.2         3.6          6.1         2.5 virginica
## 111          6.5         3.2          5.1         2.0 virginica
## 112          6.4         2.7          5.3         1.9 virginica
## 113          6.8         3.0          5.5         2.1 virginica
## 114          5.7         2.5          5.0         2.0 virginica
## 115          5.8         2.8          5.1         2.4 virginica
## 116          6.4         3.2          5.3         2.3 virginica
## 117          6.5         3.0          5.5         1.8 virginica
## 118          7.7         3.8          6.7         2.2 virginica
## 119          7.7         2.6          6.9         2.3 virginica
## 120          6.0         2.2          5.0         1.5 virginica
## 121          6.9         3.2          5.7         2.3 virginica
## 122          5.6         2.8          4.9         2.0 virginica
## 123          7.7         2.8          6.7         2.0 virginica
## 124          6.3         2.7          4.9         1.8 virginica
## 125          6.7         3.3          5.7         2.1 virginica
## 126          7.2         3.2          6.0         1.8 virginica
## 127          6.2         2.8          4.8         1.8 virginica
## 128          6.1         3.0          4.9         1.8 virginica
## 129          6.4         2.8          5.6         2.1 virginica
## 130          7.2         3.0          5.8         1.6 virginica
## 131          7.4         2.8          6.1         1.9 virginica
## 132          7.9         3.8          6.4         2.0 virginica
## 133          6.4         2.8          5.6         2.2 virginica
## 134          6.3         2.8          5.1         1.5 virginica
## 135          6.1         2.6          5.6         1.4 virginica
## 136          7.7         3.0          6.1         2.3 virginica
## 137          6.3         3.4          5.6         2.4 virginica
## 138          6.4         3.1          5.5         1.8 virginica
## 139          6.0         3.0          4.8         1.8 virginica
## 140          6.9         3.1          5.4         2.1 virginica
## 141          6.7         3.1          5.6         2.4 virginica
## 142          6.9         3.1          5.1         2.3 virginica
## 143          5.8         2.7          5.1         1.9 virginica
## 144          6.8         3.2          5.9         2.3 virginica
## 145          6.7         3.3          5.7         2.5 virginica
## 146          6.7         3.0          5.2         2.3 virginica
## 147          6.3         2.5          5.0         1.9 virginica
## 148          6.5         3.0          5.2         2.0 virginica
## 149          6.2         3.4          5.4         2.3 virginica
## 150          5.9         3.0          5.1         1.8 virginica
# Draw boxplot for each type of flower
boxplot(Versicolor[,1:4], main="Versicolor, Rainbow Palette",ylim =c(0,8),las=2, col=rainbow(4))

boxplot(Setosa[,1:4], main="Setosa, Heat color Palette",ylim = c(0,8),las=2,col=heat.colors(4))

boxplot(Virginica[,1:4], main="Virginica, Topo colors Palette",ylim =c(0,8),las=2, col=topo.colors(4))

# Lab Exercise 7: How to load external datasets
# From a local directory
# the folder that contains the file should be specified completely
# using the forward slash symbol instead of the backward splash
folder <- "C:/Users/Admin/Desktop/Class Lectures/BLecture 0 Graphics in R"
filename <- "Cancer.csv"
(file <- paste0(folder,"/",filename))
## [1] "C:/Users/Admin/Desktop/Class Lectures/BLecture 0 Graphics in R/Cancer.csv"
library(readr)
cancer <- read_csv('Cancer.csv')
## Rows: 173 Columns: 17
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (2): country, continent
## dbl (15): incomeperperson, alcconsumption, armedforcesrate, breastcancer, co...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
dim(cancer)
## [1] 173  17
names(cancer)
##  [1] "country"            "incomeperperson"    "alcconsumption"    
##  [4] "armedforcesrate"    "breastcancer"       "co2emissions"      
##  [7] "femaleemployrate"   "hivrate"            "internetuserate"   
## [10] "lifeexpectancy"     "oilperperson"       "polityscore"       
## [13] "relectricperperson" "suicideper100th"    "employrate"        
## [16] "urbanrate"          "continent"
# compute mean value for every continent
(means <- round(tapply(cancer$breastcancer, cancer$continent, mean),
                digits=2))
##    AF    AS    EE LATAM NORAM    OC    WE 
## 24.02 24.51 49.44 36.70 71.73 45.80 74.80
# draw boxplot per continent
boxplot(cancer$breastcancer ~ cancer$continent, main= "Breast cancer by
continent (brown dot = mean value)", xlab="continents", ylab="new
cases per 100,00 residents", col=rainbow(7))
# insert the mean value using brown dot
points(means, col="brown", pch=18)

# Lab Exercise 8: How to load external datasets and change data layout
folder <- "C:/Users/Admin/Desktop/Class Lectures/BLecture 0 Graphics in R"
filename <- "hsb2.csv"
(file <- paste0(folder,"/",filename))
## [1] "C:/Users/Admin/Desktop/Class Lectures/BLecture 0 Graphics in R/hsb2.csv"
library(readr)
hsb2 <- read_csv('hsb2.csv')
## New names:
## Rows: 200 Columns: 12
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," dbl
## (12): ...1, id, female, race, ses, schtyp, prog, read, write, math, scie...
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`
# display only the top 6 rows
head(hsb2)
## # A tibble: 6 × 12
##    ...1    id female  race   ses schtyp  prog  read write  math science socst
##   <dbl> <dbl>  <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1     1    70      0     4     1      1     1    57    52    41      47    57
## 2     2   121      1     4     2      1     3    68    59    53      63    61
## 3     3    86      0     4     3      1     1    44    33    54      58    31
## 4     4   141      0     4     3      1     3    63    44    47      53    56
## 5     5   172      0     4     2      1     2    47    52    57      53    61
## 6     6   113      0     4     2      1     2    44    52    51      63    61
# display only the last 6 rows
tail(hsb2)
## # A tibble: 6 × 12
##    ...1    id female  race   ses schtyp  prog  read write  math science socst
##   <dbl> <dbl>  <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>   <dbl> <dbl>
## 1   195   179      1     4     2      2     2    47    65    60      50    56
## 2   196    31      1     2     2      2     1    55    59    52      42    56
## 3   197   145      1     4     2      1     3    42    46    38      36    46
## 4   198   187      1     4     2      2     1    57    41    57      55    52
## 5   199   118      1     4     2      1     1    55    62    58      58    61
## 6   200   137      1     4     3      1     2    63    65    65      53    61
# delete redundant first column (run only once)
(hsb2<- hsb2[-1])
## # A tibble: 200 × 11
##       id female  race   ses schtyp  prog  read write  math science socst
##    <dbl>  <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>   <dbl> <dbl>
##  1    70      0     4     1      1     1    57    52    41      47    57
##  2   121      1     4     2      1     3    68    59    53      63    61
##  3    86      0     4     3      1     1    44    33    54      58    31
##  4   141      0     4     3      1     3    63    44    47      53    56
##  5   172      0     4     2      1     2    47    52    57      53    61
##  6   113      0     4     2      1     2    44    52    51      63    61
##  7    50      0     3     2      1     1    50    59    42      53    61
##  8    11      0     1     2      1     2    34    46    45      39    36
##  9    84      0     4     2      1     1    63    57    54      58    51
## 10    48      0     3     2      1     2    57    55    52      50    51
## # ℹ 190 more rows
# Remarks
# hsb2 dataset consists of 200 selected random samples from senior
# high school students in the US.
# We want to compare the student performance across different subjects
# change data layout by grouping different subjects
# into one column using melt() command. Install first reshape2 package
#install.packages("reshape2")
library(reshape2)
(hsb2_long <- melt(hsb2, measure.vars =
                     c("read","write","math","science","socst")))
##       id female race ses schtyp prog variable value
## 1     70      0    4   1      1    1     read    57
## 2    121      1    4   2      1    3     read    68
## 3     86      0    4   3      1    1     read    44
## 4    141      0    4   3      1    3     read    63
## 5    172      0    4   2      1    2     read    47
## 6    113      0    4   2      1    2     read    44
## 7     50      0    3   2      1    1     read    50
## 8     11      0    1   2      1    2     read    34
## 9     84      0    4   2      1    1     read    63
## 10    48      0    3   2      1    2     read    57
## 11    75      0    4   2      1    3     read    60
## 12    60      0    4   2      1    2     read    57
## 13    95      0    4   3      1    2     read    73
## 14   104      0    4   3      1    2     read    54
## 15    38      0    3   1      1    2     read    45
## 16   115      0    4   1      1    1     read    42
## 17    76      0    4   3      1    2     read    47
## 18   195      0    4   2      2    1     read    57
## 19   114      0    4   3      1    2     read    68
## 20    85      0    4   2      1    1     read    55
## 21   167      0    4   2      1    1     read    63
## 22   143      0    4   2      1    3     read    63
## 23    41      0    3   2      1    2     read    50
## 24    20      0    1   3      1    2     read    60
## 25    12      0    1   2      1    3     read    37
## 26    53      0    3   2      1    3     read    34
## 27   154      0    4   3      1    2     read    65
## 28   178      0    4   2      2    3     read    47
## 29   196      0    4   3      2    2     read    44
## 30    29      0    2   1      1    1     read    52
## 31   126      0    4   2      1    1     read    42
## 32   103      0    4   3      1    2     read    76
## 33   192      0    4   3      2    2     read    65
## 34   150      0    4   2      1    3     read    42
## 35   199      0    4   3      2    2     read    52
## 36   144      0    4   3      1    1     read    60
## 37   200      0    4   2      2    2     read    68
## 38    80      0    4   3      1    2     read    65
## 39    16      0    1   1      1    3     read    47
## 40   153      0    4   2      1    3     read    39
## 41   176      0    4   2      2    2     read    47
## 42   177      0    4   2      2    2     read    55
## 43   168      0    4   2      1    2     read    52
## 44    40      0    3   1      1    1     read    42
## 45    62      0    4   3      1    1     read    65
## 46   169      0    4   1      1    1     read    55
## 47    49      0    3   3      1    3     read    50
## 48   136      0    4   2      1    2     read    65
## 49   189      0    4   2      2    2     read    47
## 50     7      0    1   2      1    2     read    57
## 51    27      0    2   2      1    2     read    53
## 52   128      0    4   3      1    2     read    39
## 53    21      0    1   2      1    1     read    44
## 54   183      0    4   2      2    2     read    63
## 55   132      0    4   2      1    2     read    73
## 56    15      0    1   3      1    3     read    39
## 57    67      0    4   1      1    3     read    37
## 58    22      0    1   2      1    3     read    42
## 59   185      0    4   2      2    2     read    63
## 60     9      0    1   2      1    3     read    48
## 61   181      0    4   2      2    2     read    50
## 62   170      0    4   3      1    2     read    47
## 63   134      0    4   1      1    1     read    44
## 64   108      0    4   2      1    1     read    34
## 65   197      0    4   3      2    2     read    50
## 66   140      0    4   2      1    3     read    44
## 67   171      0    4   2      1    2     read    60
## 68   107      0    4   1      1    3     read    47
## 69    81      0    4   1      1    2     read    63
## 70    18      0    1   2      1    3     read    50
## 71   155      0    4   2      1    1     read    44
## 72    97      0    4   3      1    2     read    60
## 73    68      0    4   2      1    2     read    73
## 74   157      0    4   2      1    1     read    68
## 75    56      0    4   2      1    3     read    55
## 76     5      0    1   1      1    2     read    47
## 77   159      0    4   3      1    2     read    55
## 78   123      0    4   3      1    1     read    68
## 79   164      0    4   2      1    3     read    31
## 80    14      0    1   3      1    2     read    47
## 81   127      0    4   3      1    2     read    63
## 82   165      0    4   1      1    3     read    36
## 83   174      0    4   2      2    2     read    68
## 84     3      0    1   1      1    2     read    63
## 85    58      0    4   2      1    3     read    55
## 86   146      0    4   3      1    2     read    55
## 87   102      0    4   3      1    2     read    52
## 88   117      0    4   3      1    3     read    34
## 89   133      0    4   2      1    3     read    50
## 90    94      0    4   3      1    2     read    55
## 91    24      0    2   2      1    2     read    52
## 92   149      0    4   1      1    1     read    63
## 93    82      1    4   3      1    2     read    68
## 94     8      1    1   1      1    2     read    39
## 95   129      1    4   1      1    1     read    44
## 96   173      1    4   1      1    1     read    50
## 97    57      1    4   2      1    2     read    71
## 98   100      1    4   3      1    2     read    63
## 99     1      1    1   1      1    3     read    34
## 100  194      1    4   3      2    2     read    63
## 101   88      1    4   3      1    2     read    68
## 102   99      1    4   3      1    1     read    47
## 103   47      1    3   1      1    2     read    47
## 104  120      1    4   3      1    2     read    63
## 105  166      1    4   2      1    2     read    52
## 106   65      1    4   2      1    2     read    55
## 107  101      1    4   3      1    2     read    60
## 108   89      1    4   1      1    3     read    35
## 109   54      1    3   1      2    1     read    47
## 110  180      1    4   3      2    2     read    71
## 111  162      1    4   2      1    3     read    57
## 112    4      1    1   1      1    2     read    44
## 113  131      1    4   3      1    2     read    65
## 114  125      1    4   1      1    2     read    68
## 115   34      1    1   3      2    2     read    73
## 116  106      1    4   2      1    3     read    36
## 117  130      1    4   3      1    1     read    43
## 118   93      1    4   3      1    2     read    73
## 119  163      1    4   1      1    2     read    52
## 120   37      1    3   1      1    3     read    41
## 121   35      1    1   1      2    1     read    60
## 122   87      1    4   2      1    1     read    50
## 123   73      1    4   2      1    2     read    50
## 124  151      1    4   2      1    3     read    47
## 125   44      1    3   1      1    3     read    47
## 126  152      1    4   3      1    2     read    55
## 127  105      1    4   2      1    2     read    50
## 128   28      1    2   2      1    1     read    39
## 129   91      1    4   3      1    3     read    50
## 130   45      1    3   1      1    3     read    34
## 131  116      1    4   2      1    2     read    57
## 132   33      1    2   1      1    2     read    57
## 133   66      1    4   2      1    3     read    68
## 134   72      1    4   2      1    3     read    42
## 135   77      1    4   1      1    2     read    61
## 136   61      1    4   3      1    2     read    76
## 137  190      1    4   2      2    2     read    47
## 138   42      1    3   2      1    3     read    46
## 139    2      1    1   2      1    3     read    39
## 140   55      1    3   2      2    2     read    52
## 141   19      1    1   1      1    1     read    28
## 142   90      1    4   3      1    2     read    42
## 143  142      1    4   2      1    3     read    47
## 144   17      1    1   2      1    2     read    47
## 145  122      1    4   2      1    2     read    52
## 146  191      1    4   3      2    2     read    47
## 147   83      1    4   2      1    3     read    50
## 148  182      1    4   2      2    2     read    44
## 149    6      1    1   1      1    2     read    47
## 150   46      1    3   1      1    2     read    45
## 151   43      1    3   1      1    2     read    47
## 152   96      1    4   3      1    2     read    65
## 153  138      1    4   2      1    3     read    43
## 154   10      1    1   2      1    1     read    47
## 155   71      1    4   2      1    1     read    57
## 156  139      1    4   2      1    2     read    68
## 157  110      1    4   2      1    3     read    52
## 158  148      1    4   2      1    3     read    42
## 159  109      1    4   2      1    1     read    42
## 160   39      1    3   3      1    2     read    66
## 161  147      1    4   1      1    2     read    47
## 162   74      1    4   2      1    2     read    57
## 163  198      1    4   3      2    2     read    47
## 164  161      1    4   1      1    2     read    57
## 165  112      1    4   2      1    2     read    52
## 166   69      1    4   1      1    3     read    44
## 167  156      1    4   2      1    2     read    50
## 168  111      1    4   1      1    1     read    39
## 169  186      1    4   2      2    2     read    57
## 170   98      1    4   1      1    3     read    57
## 171  119      1    4   1      1    1     read    42
## 172   13      1    1   2      1    3     read    47
## 173   51      1    3   3      1    1     read    42
## 174   26      1    2   3      1    2     read    60
## 175   36      1    3   1      1    1     read    44
## 176  135      1    4   1      1    2     read    63
## 177   59      1    4   2      1    2     read    65
## 178   78      1    4   2      1    2     read    39
## 179   64      1    4   3      1    3     read    50
## 180   63      1    4   1      1    1     read    52
## 181   79      1    4   2      1    2     read    60
## 182  193      1    4   2      2    2     read    44
## 183   92      1    4   3      1    1     read    52
## 184  160      1    4   2      1    2     read    55
## 185   32      1    2   3      1    3     read    50
## 186   23      1    2   1      1    2     read    65
## 187  158      1    4   2      1    1     read    52
## 188   25      1    2   2      1    1     read    47
## 189  188      1    4   3      2    2     read    63
## 190   52      1    3   1      1    2     read    50
## 191  124      1    4   1      1    3     read    42
## 192  175      1    4   3      2    1     read    36
## 193  184      1    4   2      2    3     read    50
## 194   30      1    2   3      1    2     read    41
## 195  179      1    4   2      2    2     read    47
## 196   31      1    2   2      2    1     read    55
## 197  145      1    4   2      1    3     read    42
## 198  187      1    4   2      2    1     read    57
## 199  118      1    4   2      1    1     read    55
## 200  137      1    4   3      1    2     read    63
## 201   70      0    4   1      1    1    write    52
## 202  121      1    4   2      1    3    write    59
## 203   86      0    4   3      1    1    write    33
## 204  141      0    4   3      1    3    write    44
## 205  172      0    4   2      1    2    write    52
## 206  113      0    4   2      1    2    write    52
## 207   50      0    3   2      1    1    write    59
## 208   11      0    1   2      1    2    write    46
## 209   84      0    4   2      1    1    write    57
## 210   48      0    3   2      1    2    write    55
## 211   75      0    4   2      1    3    write    46
## 212   60      0    4   2      1    2    write    65
## 213   95      0    4   3      1    2    write    60
## 214  104      0    4   3      1    2    write    63
## 215   38      0    3   1      1    2    write    57
## 216  115      0    4   1      1    1    write    49
## 217   76      0    4   3      1    2    write    52
## 218  195      0    4   2      2    1    write    57
## 219  114      0    4   3      1    2    write    65
## 220   85      0    4   2      1    1    write    39
## 221  167      0    4   2      1    1    write    49
## 222  143      0    4   2      1    3    write    63
## 223   41      0    3   2      1    2    write    40
## 224   20      0    1   3      1    2    write    52
## 225   12      0    1   2      1    3    write    44
## 226   53      0    3   2      1    3    write    37
## 227  154      0    4   3      1    2    write    65
## 228  178      0    4   2      2    3    write    57
## 229  196      0    4   3      2    2    write    38
## 230   29      0    2   1      1    1    write    44
## 231  126      0    4   2      1    1    write    31
## 232  103      0    4   3      1    2    write    52
## 233  192      0    4   3      2    2    write    67
## 234  150      0    4   2      1    3    write    41
## 235  199      0    4   3      2    2    write    59
## 236  144      0    4   3      1    1    write    65
## 237  200      0    4   2      2    2    write    54
## 238   80      0    4   3      1    2    write    62
## 239   16      0    1   1      1    3    write    31
## 240  153      0    4   2      1    3    write    31
## 241  176      0    4   2      2    2    write    47
## 242  177      0    4   2      2    2    write    59
## 243  168      0    4   2      1    2    write    54
## 244   40      0    3   1      1    1    write    41
## 245   62      0    4   3      1    1    write    65
## 246  169      0    4   1      1    1    write    59
## 247   49      0    3   3      1    3    write    40
## 248  136      0    4   2      1    2    write    59
## 249  189      0    4   2      2    2    write    59
## 250    7      0    1   2      1    2    write    54
## 251   27      0    2   2      1    2    write    61
## 252  128      0    4   3      1    2    write    33
## 253   21      0    1   2      1    1    write    44
## 254  183      0    4   2      2    2    write    59
## 255  132      0    4   2      1    2    write    62
## 256   15      0    1   3      1    3    write    39
## 257   67      0    4   1      1    3    write    37
## 258   22      0    1   2      1    3    write    39
## 259  185      0    4   2      2    2    write    57
## 260    9      0    1   2      1    3    write    49
## 261  181      0    4   2      2    2    write    46
## 262  170      0    4   3      1    2    write    62
## 263  134      0    4   1      1    1    write    44
## 264  108      0    4   2      1    1    write    33
## 265  197      0    4   3      2    2    write    42
## 266  140      0    4   2      1    3    write    41
## 267  171      0    4   2      1    2    write    54
## 268  107      0    4   1      1    3    write    39
## 269   81      0    4   1      1    2    write    43
## 270   18      0    1   2      1    3    write    33
## 271  155      0    4   2      1    1    write    44
## 272   97      0    4   3      1    2    write    54
## 273   68      0    4   2      1    2    write    67
## 274  157      0    4   2      1    1    write    59
## 275   56      0    4   2      1    3    write    45
## 276    5      0    1   1      1    2    write    40
## 277  159      0    4   3      1    2    write    61
## 278  123      0    4   3      1    1    write    59
## 279  164      0    4   2      1    3    write    36
## 280   14      0    1   3      1    2    write    41
## 281  127      0    4   3      1    2    write    59
## 282  165      0    4   1      1    3    write    49
## 283  174      0    4   2      2    2    write    59
## 284    3      0    1   1      1    2    write    65
## 285   58      0    4   2      1    3    write    41
## 286  146      0    4   3      1    2    write    62
## 287  102      0    4   3      1    2    write    41
## 288  117      0    4   3      1    3    write    49
## 289  133      0    4   2      1    3    write    31
## 290   94      0    4   3      1    2    write    49
## 291   24      0    2   2      1    2    write    62
## 292  149      0    4   1      1    1    write    49
## 293   82      1    4   3      1    2    write    62
## 294    8      1    1   1      1    2    write    44
## 295  129      1    4   1      1    1    write    44
## 296  173      1    4   1      1    1    write    62
## 297   57      1    4   2      1    2    write    65
## 298  100      1    4   3      1    2    write    65
## 299    1      1    1   1      1    3    write    44
## 300  194      1    4   3      2    2    write    63
## 301   88      1    4   3      1    2    write    60
## 302   99      1    4   3      1    1    write    59
## 303   47      1    3   1      1    2    write    46
## 304  120      1    4   3      1    2    write    52
## 305  166      1    4   2      1    2    write    59
## 306   65      1    4   2      1    2    write    54
## 307  101      1    4   3      1    2    write    62
## 308   89      1    4   1      1    3    write    35
## 309   54      1    3   1      2    1    write    54
## 310  180      1    4   3      2    2    write    65
## 311  162      1    4   2      1    3    write    52
## 312    4      1    1   1      1    2    write    50
## 313  131      1    4   3      1    2    write    59
## 314  125      1    4   1      1    2    write    65
## 315   34      1    1   3      2    2    write    61
## 316  106      1    4   2      1    3    write    44
## 317  130      1    4   3      1    1    write    54
## 318   93      1    4   3      1    2    write    67
## 319  163      1    4   1      1    2    write    57
## 320   37      1    3   1      1    3    write    47
## 321   35      1    1   1      2    1    write    54
## 322   87      1    4   2      1    1    write    52
## 323   73      1    4   2      1    2    write    52
## 324  151      1    4   2      1    3    write    46
## 325   44      1    3   1      1    3    write    62
## 326  152      1    4   3      1    2    write    57
## 327  105      1    4   2      1    2    write    41
## 328   28      1    2   2      1    1    write    53
## 329   91      1    4   3      1    3    write    49
## 330   45      1    3   1      1    3    write    35
## 331  116      1    4   2      1    2    write    59
## 332   33      1    2   1      1    2    write    65
## 333   66      1    4   2      1    3    write    62
## 334   72      1    4   2      1    3    write    54
## 335   77      1    4   1      1    2    write    59
## 336   61      1    4   3      1    2    write    63
## 337  190      1    4   2      2    2    write    59
## 338   42      1    3   2      1    3    write    52
## 339    2      1    1   2      1    3    write    41
## 340   55      1    3   2      2    2    write    49
## 341   19      1    1   1      1    1    write    46
## 342   90      1    4   3      1    2    write    54
## 343  142      1    4   2      1    3    write    42
## 344   17      1    1   2      1    2    write    57
## 345  122      1    4   2      1    2    write    59
## 346  191      1    4   3      2    2    write    52
## 347   83      1    4   2      1    3    write    62
## 348  182      1    4   2      2    2    write    52
## 349    6      1    1   1      1    2    write    41
## 350   46      1    3   1      1    2    write    55
## 351   43      1    3   1      1    2    write    37
## 352   96      1    4   3      1    2    write    54
## 353  138      1    4   2      1    3    write    57
## 354   10      1    1   2      1    1    write    54
## 355   71      1    4   2      1    1    write    62
## 356  139      1    4   2      1    2    write    59
## 357  110      1    4   2      1    3    write    55
## 358  148      1    4   2      1    3    write    57
## 359  109      1    4   2      1    1    write    39
## 360   39      1    3   3      1    2    write    67
## 361  147      1    4   1      1    2    write    62
## 362   74      1    4   2      1    2    write    50
## 363  198      1    4   3      2    2    write    61
## 364  161      1    4   1      1    2    write    62
## 365  112      1    4   2      1    2    write    59
## 366   69      1    4   1      1    3    write    44
## 367  156      1    4   2      1    2    write    59
## 368  111      1    4   1      1    1    write    54
## 369  186      1    4   2      2    2    write    62
## 370   98      1    4   1      1    3    write    60
## 371  119      1    4   1      1    1    write    57
## 372   13      1    1   2      1    3    write    46
## 373   51      1    3   3      1    1    write    36
## 374   26      1    2   3      1    2    write    59
## 375   36      1    3   1      1    1    write    49
## 376  135      1    4   1      1    2    write    60
## 377   59      1    4   2      1    2    write    67
## 378   78      1    4   2      1    2    write    54
## 379   64      1    4   3      1    3    write    52
## 380   63      1    4   1      1    1    write    65
## 381   79      1    4   2      1    2    write    62
## 382  193      1    4   2      2    2    write    49
## 383   92      1    4   3      1    1    write    67
## 384  160      1    4   2      1    2    write    65
## 385   32      1    2   3      1    3    write    67
## 386   23      1    2   1      1    2    write    65
## 387  158      1    4   2      1    1    write    54
## 388   25      1    2   2      1    1    write    44
## 389  188      1    4   3      2    2    write    62
## 390   52      1    3   1      1    2    write    46
## 391  124      1    4   1      1    3    write    54
## 392  175      1    4   3      2    1    write    57
## 393  184      1    4   2      2    3    write    52
## 394   30      1    2   3      1    2    write    59
## 395  179      1    4   2      2    2    write    65
## 396   31      1    2   2      2    1    write    59
## 397  145      1    4   2      1    3    write    46
## 398  187      1    4   2      2    1    write    41
## 399  118      1    4   2      1    1    write    62
## 400  137      1    4   3      1    2    write    65
## 401   70      0    4   1      1    1     math    41
## 402  121      1    4   2      1    3     math    53
## 403   86      0    4   3      1    1     math    54
## 404  141      0    4   3      1    3     math    47
## 405  172      0    4   2      1    2     math    57
## 406  113      0    4   2      1    2     math    51
## 407   50      0    3   2      1    1     math    42
## 408   11      0    1   2      1    2     math    45
## 409   84      0    4   2      1    1     math    54
## 410   48      0    3   2      1    2     math    52
## 411   75      0    4   2      1    3     math    51
## 412   60      0    4   2      1    2     math    51
## 413   95      0    4   3      1    2     math    71
## 414  104      0    4   3      1    2     math    57
## 415   38      0    3   1      1    2     math    50
## 416  115      0    4   1      1    1     math    43
## 417   76      0    4   3      1    2     math    51
## 418  195      0    4   2      2    1     math    60
## 419  114      0    4   3      1    2     math    62
## 420   85      0    4   2      1    1     math    57
## 421  167      0    4   2      1    1     math    35
## 422  143      0    4   2      1    3     math    75
## 423   41      0    3   2      1    2     math    45
## 424   20      0    1   3      1    2     math    57
## 425   12      0    1   2      1    3     math    45
## 426   53      0    3   2      1    3     math    46
## 427  154      0    4   3      1    2     math    66
## 428  178      0    4   2      2    3     math    57
## 429  196      0    4   3      2    2     math    49
## 430   29      0    2   1      1    1     math    49
## 431  126      0    4   2      1    1     math    57
## 432  103      0    4   3      1    2     math    64
## 433  192      0    4   3      2    2     math    63
## 434  150      0    4   2      1    3     math    57
## 435  199      0    4   3      2    2     math    50
## 436  144      0    4   3      1    1     math    58
## 437  200      0    4   2      2    2     math    75
## 438   80      0    4   3      1    2     math    68
## 439   16      0    1   1      1    3     math    44
## 440  153      0    4   2      1    3     math    40
## 441  176      0    4   2      2    2     math    41
## 442  177      0    4   2      2    2     math    62
## 443  168      0    4   2      1    2     math    57
## 444   40      0    3   1      1    1     math    43
## 445   62      0    4   3      1    1     math    48
## 446  169      0    4   1      1    1     math    63
## 447   49      0    3   3      1    3     math    39
## 448  136      0    4   2      1    2     math    70
## 449  189      0    4   2      2    2     math    63
## 450    7      0    1   2      1    2     math    59
## 451   27      0    2   2      1    2     math    61
## 452  128      0    4   3      1    2     math    38
## 453   21      0    1   2      1    1     math    61
## 454  183      0    4   2      2    2     math    49
## 455  132      0    4   2      1    2     math    73
## 456   15      0    1   3      1    3     math    44
## 457   67      0    4   1      1    3     math    42
## 458   22      0    1   2      1    3     math    39
## 459  185      0    4   2      2    2     math    55
## 460    9      0    1   2      1    3     math    52
## 461  181      0    4   2      2    2     math    45
## 462  170      0    4   3      1    2     math    61
## 463  134      0    4   1      1    1     math    39
## 464  108      0    4   2      1    1     math    41
## 465  197      0    4   3      2    2     math    50
## 466  140      0    4   2      1    3     math    40
## 467  171      0    4   2      1    2     math    60
## 468  107      0    4   1      1    3     math    47
## 469   81      0    4   1      1    2     math    59
## 470   18      0    1   2      1    3     math    49
## 471  155      0    4   2      1    1     math    46
## 472   97      0    4   3      1    2     math    58
## 473   68      0    4   2      1    2     math    71
## 474  157      0    4   2      1    1     math    58
## 475   56      0    4   2      1    3     math    46
## 476    5      0    1   1      1    2     math    43
## 477  159      0    4   3      1    2     math    54
## 478  123      0    4   3      1    1     math    56
## 479  164      0    4   2      1    3     math    46
## 480   14      0    1   3      1    2     math    54
## 481  127      0    4   3      1    2     math    57
## 482  165      0    4   1      1    3     math    54
## 483  174      0    4   2      2    2     math    71
## 484    3      0    1   1      1    2     math    48
## 485   58      0    4   2      1    3     math    40
## 486  146      0    4   3      1    2     math    64
## 487  102      0    4   3      1    2     math    51
## 488  117      0    4   3      1    3     math    39
## 489  133      0    4   2      1    3     math    40
## 490   94      0    4   3      1    2     math    61
## 491   24      0    2   2      1    2     math    66
## 492  149      0    4   1      1    1     math    49
## 493   82      1    4   3      1    2     math    65
## 494    8      1    1   1      1    2     math    52
## 495  129      1    4   1      1    1     math    46
## 496  173      1    4   1      1    1     math    61
## 497   57      1    4   2      1    2     math    72
## 498  100      1    4   3      1    2     math    71
## 499    1      1    1   1      1    3     math    40
## 500  194      1    4   3      2    2     math    69
## 501   88      1    4   3      1    2     math    64
## 502   99      1    4   3      1    1     math    56
## 503   47      1    3   1      1    2     math    49
## 504  120      1    4   3      1    2     math    54
## 505  166      1    4   2      1    2     math    53
## 506   65      1    4   2      1    2     math    66
## 507  101      1    4   3      1    2     math    67
## 508   89      1    4   1      1    3     math    40
## 509   54      1    3   1      2    1     math    46
## 510  180      1    4   3      2    2     math    69
## 511  162      1    4   2      1    3     math    40
## 512    4      1    1   1      1    2     math    41
## 513  131      1    4   3      1    2     math    57
## 514  125      1    4   1      1    2     math    58
## 515   34      1    1   3      2    2     math    57
## 516  106      1    4   2      1    3     math    37
## 517  130      1    4   3      1    1     math    55
## 518   93      1    4   3      1    2     math    62
## 519  163      1    4   1      1    2     math    64
## 520   37      1    3   1      1    3     math    40
## 521   35      1    1   1      2    1     math    50
## 522   87      1    4   2      1    1     math    46
## 523   73      1    4   2      1    2     math    53
## 524  151      1    4   2      1    3     math    52
## 525   44      1    3   1      1    3     math    45
## 526  152      1    4   3      1    2     math    56
## 527  105      1    4   2      1    2     math    45
## 528   28      1    2   2      1    1     math    54
## 529   91      1    4   3      1    3     math    56
## 530   45      1    3   1      1    3     math    41
## 531  116      1    4   2      1    2     math    54
## 532   33      1    2   1      1    2     math    72
## 533   66      1    4   2      1    3     math    56
## 534   72      1    4   2      1    3     math    47
## 535   77      1    4   1      1    2     math    49
## 536   61      1    4   3      1    2     math    60
## 537  190      1    4   2      2    2     math    54
## 538   42      1    3   2      1    3     math    55
## 539    2      1    1   2      1    3     math    33
## 540   55      1    3   2      2    2     math    49
## 541   19      1    1   1      1    1     math    43
## 542   90      1    4   3      1    2     math    50
## 543  142      1    4   2      1    3     math    52
## 544   17      1    1   2      1    2     math    48
## 545  122      1    4   2      1    2     math    58
## 546  191      1    4   3      2    2     math    43
## 547   83      1    4   2      1    3     math    41
## 548  182      1    4   2      2    2     math    43
## 549    6      1    1   1      1    2     math    46
## 550   46      1    3   1      1    2     math    44
## 551   43      1    3   1      1    2     math    43
## 552   96      1    4   3      1    2     math    61
## 553  138      1    4   2      1    3     math    40
## 554   10      1    1   2      1    1     math    49
## 555   71      1    4   2      1    1     math    56
## 556  139      1    4   2      1    2     math    61
## 557  110      1    4   2      1    3     math    50
## 558  148      1    4   2      1    3     math    51
## 559  109      1    4   2      1    1     math    42
## 560   39      1    3   3      1    2     math    67
## 561  147      1    4   1      1    2     math    53
## 562   74      1    4   2      1    2     math    50
## 563  198      1    4   3      2    2     math    51
## 564  161      1    4   1      1    2     math    72
## 565  112      1    4   2      1    2     math    48
## 566   69      1    4   1      1    3     math    40
## 567  156      1    4   2      1    2     math    53
## 568  111      1    4   1      1    1     math    39
## 569  186      1    4   2      2    2     math    63
## 570   98      1    4   1      1    3     math    51
## 571  119      1    4   1      1    1     math    45
## 572   13      1    1   2      1    3     math    39
## 573   51      1    3   3      1    1     math    42
## 574   26      1    2   3      1    2     math    62
## 575   36      1    3   1      1    1     math    44
## 576  135      1    4   1      1    2     math    65
## 577   59      1    4   2      1    2     math    63
## 578   78      1    4   2      1    2     math    54
## 579   64      1    4   3      1    3     math    45
## 580   63      1    4   1      1    1     math    60
## 581   79      1    4   2      1    2     math    49
## 582  193      1    4   2      2    2     math    48
## 583   92      1    4   3      1    1     math    57
## 584  160      1    4   2      1    2     math    55
## 585   32      1    2   3      1    3     math    66
## 586   23      1    2   1      1    2     math    64
## 587  158      1    4   2      1    1     math    55
## 588   25      1    2   2      1    1     math    42
## 589  188      1    4   3      2    2     math    56
## 590   52      1    3   1      1    2     math    53
## 591  124      1    4   1      1    3     math    41
## 592  175      1    4   3      2    1     math    42
## 593  184      1    4   2      2    3     math    53
## 594   30      1    2   3      1    2     math    42
## 595  179      1    4   2      2    2     math    60
## 596   31      1    2   2      2    1     math    52
## 597  145      1    4   2      1    3     math    38
## 598  187      1    4   2      2    1     math    57
## 599  118      1    4   2      1    1     math    58
## 600  137      1    4   3      1    2     math    65
## 601   70      0    4   1      1    1  science    47
## 602  121      1    4   2      1    3  science    63
## 603   86      0    4   3      1    1  science    58
## 604  141      0    4   3      1    3  science    53
## 605  172      0    4   2      1    2  science    53
## 606  113      0    4   2      1    2  science    63
## 607   50      0    3   2      1    1  science    53
## 608   11      0    1   2      1    2  science    39
## 609   84      0    4   2      1    1  science    58
## 610   48      0    3   2      1    2  science    50
## 611   75      0    4   2      1    3  science    53
## 612   60      0    4   2      1    2  science    63
## 613   95      0    4   3      1    2  science    61
## 614  104      0    4   3      1    2  science    55
## 615   38      0    3   1      1    2  science    31
## 616  115      0    4   1      1    1  science    50
## 617   76      0    4   3      1    2  science    50
## 618  195      0    4   2      2    1  science    58
## 619  114      0    4   3      1    2  science    55
## 620   85      0    4   2      1    1  science    53
## 621  167      0    4   2      1    1  science    66
## 622  143      0    4   2      1    3  science    72
## 623   41      0    3   2      1    2  science    55
## 624   20      0    1   3      1    2  science    61
## 625   12      0    1   2      1    3  science    39
## 626   53      0    3   2      1    3  science    39
## 627  154      0    4   3      1    2  science    61
## 628  178      0    4   2      2    3  science    58
## 629  196      0    4   3      2    2  science    39
## 630   29      0    2   1      1    1  science    55
## 631  126      0    4   2      1    1  science    47
## 632  103      0    4   3      1    2  science    64
## 633  192      0    4   3      2    2  science    66
## 634  150      0    4   2      1    3  science    72
## 635  199      0    4   3      2    2  science    61
## 636  144      0    4   3      1    1  science    61
## 637  200      0    4   2      2    2  science    66
## 638   80      0    4   3      1    2  science    66
## 639   16      0    1   1      1    3  science    36
## 640  153      0    4   2      1    3  science    39
## 641  176      0    4   2      2    2  science    42
## 642  177      0    4   2      2    2  science    58
## 643  168      0    4   2      1    2  science    55
## 644   40      0    3   1      1    1  science    50
## 645   62      0    4   3      1    1  science    63
## 646  169      0    4   1      1    1  science    69
## 647   49      0    3   3      1    3  science    49
## 648  136      0    4   2      1    2  science    63
## 649  189      0    4   2      2    2  science    53
## 650    7      0    1   2      1    2  science    47
## 651   27      0    2   2      1    2  science    57
## 652  128      0    4   3      1    2  science    47
## 653   21      0    1   2      1    1  science    50
## 654  183      0    4   2      2    2  science    55
## 655  132      0    4   2      1    2  science    69
## 656   15      0    1   3      1    3  science    26
## 657   67      0    4   1      1    3  science    33
## 658   22      0    1   2      1    3  science    56
## 659  185      0    4   2      2    2  science    58
## 660    9      0    1   2      1    3  science    44
## 661  181      0    4   2      2    2  science    58
## 662  170      0    4   3      1    2  science    69
## 663  134      0    4   1      1    1  science    34
## 664  108      0    4   2      1    1  science    36
## 665  197      0    4   3      2    2  science    36
## 666  140      0    4   2      1    3  science    50
## 667  171      0    4   2      1    2  science    55
## 668  107      0    4   1      1    3  science    42
## 669   81      0    4   1      1    2  science    65
## 670   18      0    1   2      1    3  science    44
## 671  155      0    4   2      1    1  science    39
## 672   97      0    4   3      1    2  science    58
## 673   68      0    4   2      1    2  science    63
## 674  157      0    4   2      1    1  science    74
## 675   56      0    4   2      1    3  science    58
## 676    5      0    1   1      1    2  science    45
## 677  159      0    4   3      1    2  science    49
## 678  123      0    4   3      1    1  science    63
## 679  164      0    4   2      1    3  science    39
## 680   14      0    1   3      1    2  science    42
## 681  127      0    4   3      1    2  science    55
## 682  165      0    4   1      1    3  science    61
## 683  174      0    4   2      2    2  science    66
## 684    3      0    1   1      1    2  science    63
## 685   58      0    4   2      1    3  science    44
## 686  146      0    4   3      1    2  science    63
## 687  102      0    4   3      1    2  science    53
## 688  117      0    4   3      1    3  science    42
## 689  133      0    4   2      1    3  science    34
## 690   94      0    4   3      1    2  science    61
## 691   24      0    2   2      1    2  science    47
## 692  149      0    4   1      1    1  science    66
## 693   82      1    4   3      1    2  science    69
## 694    8      1    1   1      1    2  science    44
## 695  129      1    4   1      1    1  science    47
## 696  173      1    4   1      1    1  science    63
## 697   57      1    4   2      1    2  science    66
## 698  100      1    4   3      1    2  science    69
## 699    1      1    1   1      1    3  science    39
## 700  194      1    4   3      2    2  science    61
## 701   88      1    4   3      1    2  science    69
## 702   99      1    4   3      1    1  science    66
## 703   47      1    3   1      1    2  science    33
## 704  120      1    4   3      1    2  science    50
## 705  166      1    4   2      1    2  science    61
## 706   65      1    4   2      1    2  science    42
## 707  101      1    4   3      1    2  science    50
## 708   89      1    4   1      1    3  science    51
## 709   54      1    3   1      2    1  science    50
## 710  180      1    4   3      2    2  science    58
## 711  162      1    4   2      1    3  science    61
## 712    4      1    1   1      1    2  science    39
## 713  131      1    4   3      1    2  science    46
## 714  125      1    4   1      1    2  science    59
## 715   34      1    1   3      2    2  science    55
## 716  106      1    4   2      1    3  science    42
## 717  130      1    4   3      1    1  science    55
## 718   93      1    4   3      1    2  science    58
## 719  163      1    4   1      1    2  science    58
## 720   37      1    3   1      1    3  science    39
## 721   35      1    1   1      2    1  science    50
## 722   87      1    4   2      1    1  science    50
## 723   73      1    4   2      1    2  science    39
## 724  151      1    4   2      1    3  science    48
## 725   44      1    3   1      1    3  science    34
## 726  152      1    4   3      1    2  science    58
## 727  105      1    4   2      1    2  science    44
## 728   28      1    2   2      1    1  science    50
## 729   91      1    4   3      1    3  science    47
## 730   45      1    3   1      1    3  science    29
## 731  116      1    4   2      1    2  science    50
## 732   33      1    2   1      1    2  science    54
## 733   66      1    4   2      1    3  science    50
## 734   72      1    4   2      1    3  science    47
## 735   77      1    4   1      1    2  science    44
## 736   61      1    4   3      1    2  science    67
## 737  190      1    4   2      2    2  science    58
## 738   42      1    3   2      1    3  science    44
## 739    2      1    1   2      1    3  science    42
## 740   55      1    3   2      2    2  science    44
## 741   19      1    1   1      1    1  science    44
## 742   90      1    4   3      1    2  science    50
## 743  142      1    4   2      1    3  science    39
## 744   17      1    1   2      1    2  science    44
## 745  122      1    4   2      1    2  science    53
## 746  191      1    4   3      2    2  science    48
## 747   83      1    4   2      1    3  science    55
## 748  182      1    4   2      2    2  science    44
## 749    6      1    1   1      1    2  science    40
## 750   46      1    3   1      1    2  science    34
## 751   43      1    3   1      1    2  science    42
## 752   96      1    4   3      1    2  science    58
## 753  138      1    4   2      1    3  science    50
## 754   10      1    1   2      1    1  science    53
## 755   71      1    4   2      1    1  science    58
## 756  139      1    4   2      1    2  science    55
## 757  110      1    4   2      1    3  science    54
## 758  148      1    4   2      1    3  science    47
## 759  109      1    4   2      1    1  science    42
## 760   39      1    3   3      1    2  science    61
## 761  147      1    4   1      1    2  science    53
## 762   74      1    4   2      1    2  science    51
## 763  198      1    4   3      2    2  science    63
## 764  161      1    4   1      1    2  science    61
## 765  112      1    4   2      1    2  science    55
## 766   69      1    4   1      1    3  science    40
## 767  156      1    4   2      1    2  science    61
## 768  111      1    4   1      1    1  science    47
## 769  186      1    4   2      2    2  science    55
## 770   98      1    4   1      1    3  science    53
## 771  119      1    4   1      1    1  science    50
## 772   13      1    1   2      1    3  science    47
## 773   51      1    3   3      1    1  science    31
## 774   26      1    2   3      1    2  science    61
## 775   36      1    3   1      1    1  science    35
## 776  135      1    4   1      1    2  science    54
## 777   59      1    4   2      1    2  science    55
## 778   78      1    4   2      1    2  science    53
## 779   64      1    4   3      1    3  science    58
## 780   63      1    4   1      1    1  science    56
## 781   79      1    4   2      1    2  science    50
## 782  193      1    4   2      2    2  science    39
## 783   92      1    4   3      1    1  science    63
## 784  160      1    4   2      1    2  science    50
## 785   32      1    2   3      1    3  science    66
## 786   23      1    2   1      1    2  science    58
## 787  158      1    4   2      1    1  science    53
## 788   25      1    2   2      1    1  science    42
## 789  188      1    4   3      2    2  science    55
## 790   52      1    3   1      1    2  science    53
## 791  124      1    4   1      1    3  science    42
## 792  175      1    4   3      2    1  science    50
## 793  184      1    4   2      2    3  science    55
## 794   30      1    2   3      1    2  science    34
## 795  179      1    4   2      2    2  science    50
## 796   31      1    2   2      2    1  science    42
## 797  145      1    4   2      1    3  science    36
## 798  187      1    4   2      2    1  science    55
## 799  118      1    4   2      1    1  science    58
## 800  137      1    4   3      1    2  science    53
## 801   70      0    4   1      1    1    socst    57
## 802  121      1    4   2      1    3    socst    61
## 803   86      0    4   3      1    1    socst    31
## 804  141      0    4   3      1    3    socst    56
## 805  172      0    4   2      1    2    socst    61
## 806  113      0    4   2      1    2    socst    61
## 807   50      0    3   2      1    1    socst    61
## 808   11      0    1   2      1    2    socst    36
## 809   84      0    4   2      1    1    socst    51
## 810   48      0    3   2      1    2    socst    51
## 811   75      0    4   2      1    3    socst    61
## 812   60      0    4   2      1    2    socst    61
## 813   95      0    4   3      1    2    socst    71
## 814  104      0    4   3      1    2    socst    46
## 815   38      0    3   1      1    2    socst    56
## 816  115      0    4   1      1    1    socst    56
## 817   76      0    4   3      1    2    socst    56
## 818  195      0    4   2      2    1    socst    56
## 819  114      0    4   3      1    2    socst    61
## 820   85      0    4   2      1    1    socst    46
## 821  167      0    4   2      1    1    socst    41
## 822  143      0    4   2      1    3    socst    66
## 823   41      0    3   2      1    2    socst    56
## 824   20      0    1   3      1    2    socst    61
## 825   12      0    1   2      1    3    socst    46
## 826   53      0    3   2      1    3    socst    31
## 827  154      0    4   3      1    2    socst    66
## 828  178      0    4   2      2    3    socst    46
## 829  196      0    4   3      2    2    socst    46
## 830   29      0    2   1      1    1    socst    41
## 831  126      0    4   2      1    1    socst    51
## 832  103      0    4   3      1    2    socst    61
## 833  192      0    4   3      2    2    socst    71
## 834  150      0    4   2      1    3    socst    31
## 835  199      0    4   3      2    2    socst    61
## 836  144      0    4   3      1    1    socst    66
## 837  200      0    4   2      2    2    socst    66
## 838   80      0    4   3      1    2    socst    66
## 839   16      0    1   1      1    3    socst    36
## 840  153      0    4   2      1    3    socst    51
## 841  176      0    4   2      2    2    socst    51
## 842  177      0    4   2      2    2    socst    51
## 843  168      0    4   2      1    2    socst    51
## 844   40      0    3   1      1    1    socst    41
## 845   62      0    4   3      1    1    socst    66
## 846  169      0    4   1      1    1    socst    46
## 847   49      0    3   3      1    3    socst    47
## 848  136      0    4   2      1    2    socst    51
## 849  189      0    4   2      2    2    socst    46
## 850    7      0    1   2      1    2    socst    51
## 851   27      0    2   2      1    2    socst    56
## 852  128      0    4   3      1    2    socst    41
## 853   21      0    1   2      1    1    socst    46
## 854  183      0    4   2      2    2    socst    71
## 855  132      0    4   2      1    2    socst    66
## 856   15      0    1   3      1    3    socst    42
## 857   67      0    4   1      1    3    socst    32
## 858   22      0    1   2      1    3    socst    46
## 859  185      0    4   2      2    2    socst    41
## 860    9      0    1   2      1    3    socst    51
## 861  181      0    4   2      2    2    socst    61
## 862  170      0    4   3      1    2    socst    66
## 863  134      0    4   1      1    1    socst    46
## 864  108      0    4   2      1    1    socst    36
## 865  197      0    4   3      2    2    socst    61
## 866  140      0    4   2      1    3    socst    26
## 867  171      0    4   2      1    2    socst    66
## 868  107      0    4   1      1    3    socst    26
## 869   81      0    4   1      1    2    socst    44
## 870   18      0    1   2      1    3    socst    36
## 871  155      0    4   2      1    1    socst    51
## 872   97      0    4   3      1    2    socst    61
## 873   68      0    4   2      1    2    socst    66
## 874  157      0    4   2      1    1    socst    66
## 875   56      0    4   2      1    3    socst    51
## 876    5      0    1   1      1    2    socst    31
## 877  159      0    4   3      1    2    socst    61
## 878  123      0    4   3      1    1    socst    66
## 879  164      0    4   2      1    3    socst    46
## 880   14      0    1   3      1    2    socst    56
## 881  127      0    4   3      1    2    socst    56
## 882  165      0    4   1      1    3    socst    36
## 883  174      0    4   2      2    2    socst    56
## 884    3      0    1   1      1    2    socst    56
## 885   58      0    4   2      1    3    socst    41
## 886  146      0    4   3      1    2    socst    66
## 887  102      0    4   3      1    2    socst    56
## 888  117      0    4   3      1    3    socst    56
## 889  133      0    4   2      1    3    socst    31
## 890   94      0    4   3      1    2    socst    56
## 891   24      0    2   2      1    2    socst    46
## 892  149      0    4   1      1    1    socst    46
## 893   82      1    4   3      1    2    socst    61
## 894    8      1    1   1      1    2    socst    48
## 895  129      1    4   1      1    1    socst    51
## 896  173      1    4   1      1    1    socst    51
## 897   57      1    4   2      1    2    socst    56
## 898  100      1    4   3      1    2    socst    71
## 899    1      1    1   1      1    3    socst    41
## 900  194      1    4   3      2    2    socst    61
## 901   88      1    4   3      1    2    socst    66
## 902   99      1    4   3      1    1    socst    61
## 903   47      1    3   1      1    2    socst    41
## 904  120      1    4   3      1    2    socst    51
## 905  166      1    4   2      1    2    socst    51
## 906   65      1    4   2      1    2    socst    56
## 907  101      1    4   3      1    2    socst    56
## 908   89      1    4   1      1    3    socst    33
## 909   54      1    3   1      2    1    socst    56
## 910  180      1    4   3      2    2    socst    71
## 911  162      1    4   2      1    3    socst    56
## 912    4      1    1   1      1    2    socst    51
## 913  131      1    4   3      1    2    socst    66
## 914  125      1    4   1      1    2    socst    56
## 915   34      1    1   3      2    2    socst    66
## 916  106      1    4   2      1    3    socst    41
## 917  130      1    4   3      1    1    socst    46
## 918   93      1    4   3      1    2    socst    66
## 919  163      1    4   1      1    2    socst    56
## 920   37      1    3   1      1    3    socst    51
## 921   35      1    1   1      2    1    socst    51
## 922   87      1    4   2      1    1    socst    56
## 923   73      1    4   2      1    2    socst    56
## 924  151      1    4   2      1    3    socst    46
## 925   44      1    3   1      1    3    socst    46
## 926  152      1    4   3      1    2    socst    61
## 927  105      1    4   2      1    2    socst    56
## 928   28      1    2   2      1    1    socst    41
## 929   91      1    4   3      1    3    socst    46
## 930   45      1    3   1      1    3    socst    26
## 931  116      1    4   2      1    2    socst    56
## 932   33      1    2   1      1    2    socst    56
## 933   66      1    4   2      1    3    socst    51
## 934   72      1    4   2      1    3    socst    46
## 935   77      1    4   1      1    2    socst    66
## 936   61      1    4   3      1    2    socst    66
## 937  190      1    4   2      2    2    socst    46
## 938   42      1    3   2      1    3    socst    56
## 939    2      1    1   2      1    3    socst    41
## 940   55      1    3   2      2    2    socst    61
## 941   19      1    1   1      1    1    socst    51
## 942   90      1    4   3      1    2    socst    52
## 943  142      1    4   2      1    3    socst    51
## 944   17      1    1   2      1    2    socst    41
## 945  122      1    4   2      1    2    socst    66
## 946  191      1    4   3      2    2    socst    61
## 947   83      1    4   2      1    3    socst    31
## 948  182      1    4   2      2    2    socst    51
## 949    6      1    1   1      1    2    socst    41
## 950   46      1    3   1      1    2    socst    41
## 951   43      1    3   1      1    2    socst    46
## 952   96      1    4   3      1    2    socst    56
## 953  138      1    4   2      1    3    socst    51
## 954   10      1    1   2      1    1    socst    61
## 955   71      1    4   2      1    1    socst    66
## 956  139      1    4   2      1    2    socst    71
## 957  110      1    4   2      1    3    socst    61
## 958  148      1    4   2      1    3    socst    61
## 959  109      1    4   2      1    1    socst    41
## 960   39      1    3   3      1    2    socst    66
## 961  147      1    4   1      1    2    socst    61
## 962   74      1    4   2      1    2    socst    58
## 963  198      1    4   3      2    2    socst    31
## 964  161      1    4   1      1    2    socst    61
## 965  112      1    4   2      1    2    socst    61
## 966   69      1    4   1      1    3    socst    31
## 967  156      1    4   2      1    2    socst    61
## 968  111      1    4   1      1    1    socst    36
## 969  186      1    4   2      2    2    socst    41
## 970   98      1    4   1      1    3    socst    37
## 971  119      1    4   1      1    1    socst    43
## 972   13      1    1   2      1    3    socst    61
## 973   51      1    3   3      1    1    socst    39
## 974   26      1    2   3      1    2    socst    51
## 975   36      1    3   1      1    1    socst    51
## 976  135      1    4   1      1    2    socst    66
## 977   59      1    4   2      1    2    socst    71
## 978   78      1    4   2      1    2    socst    41
## 979   64      1    4   3      1    3    socst    36
## 980   63      1    4   1      1    1    socst    51
## 981   79      1    4   2      1    2    socst    51
## 982  193      1    4   2      2    2    socst    51
## 983   92      1    4   3      1    1    socst    61
## 984  160      1    4   2      1    2    socst    61
## 985   32      1    2   3      1    3    socst    56
## 986   23      1    2   1      1    2    socst    71
## 987  158      1    4   2      1    1    socst    51
## 988   25      1    2   2      1    1    socst    36
## 989  188      1    4   3      2    2    socst    61
## 990   52      1    3   1      1    2    socst    66
## 991  124      1    4   1      1    3    socst    41
## 992  175      1    4   3      2    1    socst    41
## 993  184      1    4   2      2    3    socst    56
## 994   30      1    2   3      1    2    socst    51
## 995  179      1    4   2      2    2    socst    56
## 996   31      1    2   2      2    1    socst    56
## 997  145      1    4   2      1    3    socst    46
## 998  187      1    4   2      2    1    socst    52
## 999  118      1    4   2      1    1    socst    61
## 1000 137      1    4   3      1    2    socst    61
#Remark: Pay extra attention to the last 2 columns
head(hsb2_long)
##    id female race ses schtyp prog variable value
## 1  70      0    4   1      1    1     read    57
## 2 121      1    4   2      1    3     read    68
## 3  86      0    4   3      1    1     read    44
## 4 141      0    4   3      1    3     read    63
## 5 172      0    4   2      1    2     read    47
## 6 113      0    4   2      1    2     read    44
tail(hsb2_long)
##       id female race ses schtyp prog variable value
## 995  179      1    4   2      2    2    socst    56
## 996   31      1    2   2      2    1    socst    56
## 997  145      1    4   2      1    3    socst    46
## 998  187      1    4   2      2    1    socst    52
## 999  118      1    4   2      1    1    socst    61
## 1000 137      1    4   3      1    2    socst    61
# get thefrequency
table(hsb2_long$variable)
## 
##    read   write    math science   socst 
##     200     200     200     200     200
# This means that the tables hsb2_long and hsb2_wide are the same
# tables displayed in two ways
# display data structure of the hsb2_long dataset
str(hsb2_long)
## 'data.frame':    1000 obs. of  8 variables:
##  $ id      : num  70 121 86 141 172 113 50 11 84 48 ...
##  $ female  : num  0 1 0 0 0 0 0 0 0 0 ...
##  $ race    : num  4 4 4 4 4 4 3 1 4 3 ...
##  $ ses     : num  1 2 3 3 2 2 2 2 2 2 ...
##  $ schtyp  : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ prog    : num  1 3 1 3 2 2 1 2 1 2 ...
##  $ variable: Factor w/ 5 levels "read","write",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ value   : num  57 68 44 63 47 44 50 34 63 57 ...
# the variables female, race, ses, schtyp, prog are stored as numbers
# for encoding purposes. However these variables are actually qualitative variables
# so we convert each from integer type to categorical type
# defining some variables to become factor variable
# we use another variable to preserve the file hsb2_long
data <- hsb2_long
data$ses = factor(data$ses, labels=c("low", "middle", "high"))
data$schtyp = factor(data$schtyp, labels=c("public", "private"))
data$prog = factor(data$prog, labels=c("general", "academic", "vocational"))
data$race = factor(data$race, labels=c("hispanic", "asian", "african-
amer","white"))
data$female = factor(data$female, labels=c("female", "male"))
# check data structure again. The former integer variables are now categorical variable
str(data)
## 'data.frame':    1000 obs. of  8 variables:
##  $ id      : num  70 121 86 141 172 113 50 11 84 48 ...
##  $ female  : Factor w/ 2 levels "female","male": 1 2 1 1 1 1 1 1 1 1 ...
##  $ race    : Factor w/ 4 levels "hispanic","asian",..: 4 4 4 4 4 4 3 1 4 3 ...
##  $ ses     : Factor w/ 3 levels "low","middle",..: 1 2 3 3 2 2 2 2 2 2 ...
##  $ schtyp  : Factor w/ 2 levels "public","private": 1 1 1 1 1 1 1 1 1 1 ...
##  $ prog    : Factor w/ 3 levels "general","academic",..: 1 3 1 3 2 2 1 2 1 2 ...
##  $ variable: Factor w/ 5 levels "read","write",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ value   : num  57 68 44 63 47 44 50 34 63 57 ...
# we compare student performance by using boxplots
#install.packages("gplots")
library(gplots)
## 
## Attaching package: 'gplots'
## 
## The following object is masked from 'package:stats':
## 
##     lowess
# compute the average value by group using tapply() command
means <- round(tapply(data$value, data$variable, mean), digits=2)
# create boxplot by group
boxplot(data$value ~ data$variable, main= "Student Performance by Subject
(brown dot = mean score)",
        xlab="Subject matter", ylab="Percentage Scores", col=rainbow(5))
# insert the average values
points(means, col="brown", pch=18)
# can also compute the median values
medians = round(tapply(data$value, data$variable, median), digits=2)
medians
##    read   write    math science   socst 
##      50      54      52      53      52
points(medians, col="red", pch=18)

# Lab Exercise 9: How to plot categorical variables
#install.packages("ggplot2")
library(ggplot2)

# we load variable names to memory to avoid the dollar notation
attach(hsb2_long)
# create the plot object p
p <- ggplot(hsb2_long, aes(ses, fill = prog)) + facet_wrap(~race)
p + geom_bar()
## Warning: The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

p + geom_bar(position = "dodge")
## Warning: The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

library(ggplot2)
attach(hsb2_long)
## The following objects are masked from hsb2_long (pos = 3):
## 
##     female, id, prog, race, schtyp, ses, value, variable
p <- ggplot(hsb2_long, aes(ses, fill = prog)) + facet_wrap(~schtyp)
p + geom_bar()
## Warning: The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

p + geom_bar(position = "dodge")
## Warning: The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

# Lab Exercise 10: Scatter Plots with marginal Distributions
# Advance Scatter plots using libraries
#install.packages("ggExtra")
#install.packages("tidyverse")
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.1     ✔ stringr   1.5.0
## ✔ forcats   1.0.0     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(ggExtra)
# set theme appearance of grid background
theme_set(theme_bw(1))
# create X and Y vector
(xAxis <- rnorm(1000)) # normal distribution with mean 0 and sd=1
##    [1] -0.155028582  2.208922861  0.170881735  0.108656811 -0.363087520
##    [6]  1.804882542  0.928650633 -0.134423907  0.044976105 -1.699982941
##   [11]  0.153022506 -0.681904279 -0.416370540 -1.257946474  0.638934914
##   [16]  1.175156472 -0.027954806 -1.420717713  1.020615171 -1.333668766
##   [21] -1.053169595  1.260857362  0.202690573  0.412463576 -0.872132990
##   [26] -0.652902543 -0.587783477 -0.136087093 -0.248963930 -0.857764357
##   [31] -1.785726853 -1.115411505  1.040771810 -0.562934442  0.759742650
##   [36] -2.142030608 -0.174475977 -0.666088261  0.945104131 -0.724342684
##   [41]  0.295304114  0.191575628 -0.699116075  0.371368803 -0.252765569
##   [46] -0.911589413 -0.046322348 -1.348549584 -0.855483241  0.749146258
##   [51]  0.485654353 -0.609144219 -2.081105130 -0.907363392 -1.912323768
##   [56] -0.818722216 -1.289054412 -0.995328244 -1.204224236 -0.605004143
##   [61]  1.240115152 -0.015582942 -1.931407784 -0.948070541  1.356661279
##   [66] -0.782543321 -1.236417083 -1.275640549 -1.515160458 -0.683749268
##   [71] -0.445331699 -0.628607103 -0.308833193 -0.188850326 -0.309678444
##   [76]  1.708317491 -0.690355554  0.146336094 -1.795275020 -0.880603123
##   [81]  0.953640058 -0.323013773 -0.688701852 -1.024318436  0.761180372
##   [86]  0.272560219 -0.276414107 -1.466785473  0.914511283  1.010988139
##   [91] -2.792182864  1.383007645  0.537292275 -0.541279322 -0.855697166
##   [96]  1.633718255  0.406766848  0.914717761  0.368407654 -0.274709599
##  [101]  0.333203848 -1.171962662  2.571335590  0.622988077  0.034082753
##  [106]  1.580614373  0.859004104 -0.245354197  0.820408779 -0.728453632
##  [111]  0.148324704 -0.485234976 -1.190783340 -0.217498702  1.450168637
##  [116] -0.197409556 -1.073158870  0.483071104 -0.247582878  0.812239924
##  [121] -1.418465915  0.154618149 -1.598765208 -2.204247941 -2.017053055
##  [126]  0.254732919 -0.840263516  0.998329054  1.853135313  2.713059417
##  [131] -1.158191978 -0.193515317 -1.013184915 -0.163921212  1.893988945
##  [136] -0.314754307 -0.088082163 -0.598472805 -0.841521775  0.206938315
##  [141]  0.257435631  0.476659820 -0.207560484 -0.927694077 -0.309566313
##  [146]  0.395798057  0.179952236 -0.412898623 -0.069360065 -1.859269236
##  [151]  1.892084426  0.503125917 -1.028791682 -2.715918172 -1.015008805
##  [156] -0.463429977  1.546780021  0.280902393  0.268363048  0.985480748
##  [161]  0.777581628 -1.398520744  0.106497921 -0.686214255  0.401637537
##  [166] -1.044281026  1.008532215 -0.475341120 -0.556533290 -1.869553998
##  [171]  0.553663713  0.831992373  0.585651419  0.163164777 -1.195091742
##  [176] -0.062031831  1.571951719  0.322209425  0.832534607  0.958174958
##  [181]  0.146066739  0.095735983  0.259558195  1.456445106 -1.132521159
##  [186] -1.970164962  0.983028106  1.543378591 -0.571995081  0.296507377
##  [191] -0.372614367 -0.086923407  0.951250924  0.758236837  1.134700563
##  [196] -0.343718840 -1.108046672 -0.751104271  1.758104111  0.428562907
##  [201]  0.877356931 -0.175087153  0.103923768  0.914429191 -0.914741025
##  [206]  0.196957654  1.069394371 -1.449318241 -0.232985059 -0.635602702
##  [211] -0.197789653  0.568397664 -0.292850551 -1.715705266 -0.398067343
##  [216] -0.437196309 -0.786758723 -0.483338588  0.354802914 -0.722448185
##  [221]  1.525750551 -0.672976370  1.270271150 -0.063856072  1.010116375
##  [226]  0.785416347  0.233025169  1.149894511  1.622269596  0.834835924
##  [231]  0.047527106  1.180337761  1.173556689 -0.681048598  0.200329311
##  [236] -1.339036621 -0.355560176  0.321452723  0.230216621  1.116193331
##  [241]  0.266154267  0.231357320 -0.475202828  0.075195741  0.076399103
##  [246] -0.074048782  0.780322548 -1.005520567 -1.872631771  1.131086907
##  [251] -0.219866086  0.750954829 -0.122783612 -1.703776764 -0.914033572
##  [256]  0.677071622 -1.681143489 -0.492807771  2.200873910  0.580000843
##  [261] -0.159288758 -1.296878504 -0.514852536 -0.266360079  0.384664616
##  [266] -1.660384658  0.783596345  1.254265970  0.884533169 -0.430179256
##  [271]  1.830098737 -1.231879167 -0.608257467  0.469396559 -0.776693071
##  [276]  1.117166444 -0.920988261 -0.132083699  1.192898430 -2.878583670
##  [281] -0.592846395 -0.296777091 -0.389013351 -0.215322191 -0.994537022
##  [286]  0.408754743 -0.659195369  0.119576760 -0.811635657 -0.098050940
##  [291]  0.428408170  0.439474311 -1.966096071 -0.041996164 -0.709289741
##  [296] -1.192959114  2.071779644  1.203190318  1.225259239  0.407813557
##  [301]  1.567990912  1.172500447 -0.321551830  0.357636623  1.433137724
##  [306]  2.534201377 -0.126875950  0.544901965 -0.574877818 -0.468529103
##  [311] -2.319969024 -0.056668696  1.103934643 -0.584960674  0.930552124
##  [316] -0.899458366  0.638716850  0.277054158  0.653562486  0.295539225
##  [321] -1.089602058  1.560273795  0.598732080  0.132945048  0.069700460
##  [326]  1.342566085 -1.330451964 -0.091785385  0.519319513  0.710125980
##  [331]  0.112736220  0.027337147 -1.530230476  0.844420417  0.416278633
##  [336]  0.915221035  0.408666359  1.067413947 -1.314192860 -0.968797730
##  [341] -1.141929295 -0.676117836  1.663199062 -0.840444493 -2.311289535
##  [346] -0.705074935  1.596542606  0.496894976  0.176405742 -1.183106053
##  [351] -0.765861108 -1.744091153  1.407640942  0.539037565 -1.262275970
##  [356] -0.819021386  0.084443333  1.655635182 -0.761144085  0.599587992
##  [361] -0.431243229  0.169278800 -1.229609031 -1.727879812 -0.859348961
##  [366]  0.617012363  1.405670380  0.852964853 -1.084351536 -2.312713492
##  [371] -1.271537317  0.994059960  2.446990352  1.666516610  0.200622292
##  [376] -0.235105152  0.796149904 -0.629276506  1.388243836  1.305648316
##  [381] -0.107646397 -0.257038540  0.950245831  0.855006915 -0.548905776
##  [386] -0.190902912 -1.142174906 -1.319857325 -0.384108095 -0.582369241
##  [391] -0.658055891 -0.484060528 -0.522190761 -0.364898624 -0.924955433
##  [396]  0.475980806 -0.683692133 -1.340226865 -0.504438542  0.753078720
##  [401] -1.129252132  1.242615405  1.331265939 -1.283259400  1.507197353
##  [406]  0.023014617  0.086194306  1.021427376 -0.449875859 -0.135652849
##  [411]  0.601783418 -0.957280807 -0.827221785  1.264890218 -0.287232629
##  [416]  1.231255358 -0.061742348  0.589316466  0.893516661  0.753376301
##  [421]  1.528673401  2.795093324 -0.152730481  0.830246665 -1.111604286
##  [426] -1.701777384  0.052971574  2.033798101  0.321112006  1.703520185
##  [431] -0.003977174  1.446035817 -0.172326783 -0.227928345 -0.402167141
##  [436]  0.070201048  1.317654461 -0.217847416 -0.200442983  0.953767508
##  [441]  1.021959712 -0.484104176 -1.248013354 -0.326895707 -1.231188549
##  [446] -0.448098855 -0.250595344  0.016752005 -1.483712782  0.686055133
##  [451] -0.942894647 -0.562974983 -0.790681121 -0.135641938 -0.214893590
##  [456] -0.083525928 -0.491255573 -0.371755545 -0.391293525  0.465290938
##  [461]  0.305214557  0.607022758  0.567897217 -1.179229813 -0.704388871
##  [466]  0.084594814 -0.421357666  0.924070618 -0.348904618  1.425227315
##  [471] -0.972579206 -0.352570908  0.594964916  1.685407215 -0.036400862
##  [476]  1.675701066 -0.864271870  1.263539288  0.440005765 -2.558970051
##  [481] -1.093068412 -0.339532443  0.489177538 -0.159935432  1.357078831
##  [486]  0.777851334  1.050886356 -0.094045104  0.924013584  1.367836837
##  [491]  0.013751444  0.810689110  1.149571815 -0.529036026  0.204814654
##  [496]  0.632226440 -0.621015633 -0.056263209 -0.226515654  0.175037131
##  [501]  0.214737894  0.746883154 -1.064052909 -1.012590716  0.425173276
##  [506] -0.213387952 -0.082697923 -0.655666424  0.333483202  1.192386051
##  [511]  0.632495785  1.138908739 -0.728106188  0.594988295  0.102243129
##  [516]  0.969534437  0.632077922 -1.054075014  0.552455547 -0.399187509
##  [521]  1.817422498 -0.344210913 -0.951993187  0.189964396  0.845948629
##  [526]  1.364955245  1.442541637 -1.252624813  0.606982665  0.542609212
##  [531] -0.352452469  0.257585721 -1.811964869  1.370155680 -0.277362115
##  [536] -1.105841409  0.117762217  0.118535581  1.550854759  0.712507029
##  [541] -0.481973990  1.103079795 -1.604011345  0.630526343 -0.962670880
##  [546] -1.222529102 -0.067705589 -0.749491102  1.490778490  0.795756489
##  [551] -1.167724862  1.176040709 -0.435005038  1.025811998 -0.785072134
##  [556]  0.939796301  0.346281597  1.313103029 -1.240198850 -0.397915485
##  [561]  1.132404617  1.211370570 -0.507909760 -1.373562680  0.811508616
##  [566]  0.243696522  0.063083724  0.213362309  0.536639225 -0.347343326
##  [571]  0.619716144  1.354796953  0.514620791 -0.164318791 -0.173541581
##  [576]  1.330500873  0.738546762 -0.179670105 -0.339337679 -1.030940059
##  [581]  1.222362431 -2.304045090 -0.778704563 -1.102305016 -0.827276577
##  [586]  1.438359654  0.238448356  0.180222322 -0.511689604  0.685601853
##  [591] -0.173736975  1.393242352  0.268567472 -1.636987901  1.835401450
##  [596] -0.452340186 -0.799696683  0.342219809 -0.353939015  1.977588803
##  [601]  0.156095028  1.330314077  0.373039571  0.039292500 -0.735188560
##  [606] -0.568704789  0.910888117 -1.039822198 -0.446081135  0.339036768
##  [611]  2.041368495  0.422898863 -0.736497930 -0.733804134  0.482995879
##  [616]  0.696803489  3.633343526  0.511877324 -0.708571127 -0.022713203
##  [621] -2.393468733  0.877525064  0.047464191 -1.238311704 -0.169411845
##  [626] -0.026160161 -0.246515797 -0.849054433  1.220447980 -1.510251887
##  [631] -0.649352107 -0.320965500 -0.696965277 -0.304541229  0.764456235
##  [636]  0.289808745  1.221231701 -1.496836064  0.311338887 -1.000608106
##  [641]  0.178684627 -0.624976282  0.866190328  0.344259276  1.157662672
##  [646] -0.862599037 -0.080423045  0.451994064 -0.526567937  0.537115310
##  [651] -0.097080570  0.804204989  0.738336536 -0.430079887 -1.535874838
##  [656]  1.216348927  1.454712323 -0.313291418 -0.836432773 -0.295746759
##  [661]  0.993337166 -1.401550426 -1.125641573 -0.711517253 -0.486156265
##  [666]  0.502995136  2.614270345 -0.576199784 -0.857397592  0.137195258
##  [671]  0.318882336  0.024703052  0.158303803 -1.425814196  0.371423749
##  [676]  0.318076130  0.430468549  0.545856328 -0.012467912 -1.447402800
##  [681]  0.311743071  2.856327646 -0.457657321 -1.150473592  0.149492379
##  [686]  2.423869254  0.395327997 -1.527483685  1.365710510 -0.673812145
##  [691]  1.515602878 -0.358122716  1.842390844  0.954318140 -0.537679316
##  [696]  1.024942002 -0.640428791  0.014079927 -0.394273722 -0.848514690
##  [701] -0.882087076  0.488054416 -1.117098200 -0.236689028  1.229212626
##  [706]  1.214564766  0.417955752 -1.029026208 -0.790772210 -0.233274513
##  [711] -0.178465186 -0.611748988  0.297573889  0.351467912  0.950206323
##  [716]  0.619830891  0.652940729  1.609661899 -1.112584895  0.301157915
##  [721]  0.185421612 -0.386202397 -1.509704250 -0.402616598 -1.349040948
##  [726] -0.566518178 -0.810069881 -0.866561669 -1.015456617  0.672428938
##  [731]  1.681489902  0.219160618 -1.115863464 -2.197214400  0.222240021
##  [736] -0.526806820 -0.705000571 -0.773870395 -0.082765624  0.428134207
##  [741] -0.761585464  0.511173322  0.098474513 -1.067026430 -0.189400718
##  [746] -0.209701091  1.318980008 -0.695208127  1.565795656  0.646710027
##  [751]  2.062260897 -1.122716193  1.367181151  0.347070939  0.666595959
##  [756] -0.471986713 -1.119960991  1.186151053  0.110329404 -0.296145520
##  [761]  0.019476223  0.642921601  1.153550042  0.217569800  0.194562245
##  [766]  0.574655626  0.445753531 -0.001587512 -0.266466115  0.440174315
##  [771]  1.605834445 -2.184962862  0.053045413  0.252361299  1.384573894
##  [776] -0.016832347  0.339376285  0.999618311 -1.118477120  0.038661747
##  [781]  0.420254572  1.345955007  1.723048285  0.127475974  1.458209851
##  [786]  0.963515546 -0.588626672  0.444490832 -1.032276210 -0.668430393
##  [791]  0.873407289  0.833224729  2.271878466  0.255736117  0.376063997
##  [796]  1.947897616  0.868894272  0.492040811  0.354914300  1.535273189
##  [801] -0.943101462 -0.127551883 -0.374099223  0.030379884 -1.184353212
##  [806] -1.170239614 -1.476686808  0.929672907 -0.351656971 -0.078793027
##  [811]  0.346331255  1.609488250 -0.353341447 -1.505750407  1.205623116
##  [816] -0.175405449  1.008333337  1.119052917 -0.084413981 -0.487624889
##  [821] -0.896476785 -0.104155564 -1.546350502 -1.381647879 -1.086599099
##  [826]  0.274759667  0.067845835 -1.378202034 -0.627744015  0.133071924
##  [831] -0.974501201  0.117196628  0.927324581 -1.410320812  0.799335537
##  [836]  1.587728636  0.147760748  3.194282906  1.051718456  0.188189825
##  [841] -0.515968383 -0.792191341 -1.981952785 -0.350479395 -0.064674821
##  [846] -0.286263985  0.494415545  0.112288515 -0.467552607  1.586948329
##  [851] -0.126201740  0.051947111  0.087883797 -1.590680247  0.860790330
##  [856] -1.640144348 -1.171312894  0.444754685 -0.062342041  1.116424241
##  [861] -0.502700124  1.237276928 -0.843897488  0.483690078 -1.565059812
##  [866]  0.069694073 -0.076104262  0.816691816  1.312575851 -0.374282934
##  [871]  0.688907145 -0.591798927 -2.266263362  0.539052145  0.899224022
##  [876] -1.929334546 -1.587267416  0.277486776 -0.771515305 -0.032668146
##  [881] -0.468886125 -0.260407292 -0.697860868  0.557115515  0.496068227
##  [886] -0.087442385 -1.048683653 -0.986622766  0.971358240 -1.814334416
##  [891]  1.535161166  1.899382008 -0.175227059 -0.359634567  0.611845755
##  [896]  0.999593162  0.467231144 -1.605175509 -0.377313254 -0.178539511
##  [901] -0.195058964  0.085191133 -0.291610254 -0.033744288 -0.798038918
##  [906]  1.403306854  0.082348305  1.807967426  1.318182064 -0.618966352
##  [911] -1.410583695  0.774142672  0.054344103  0.210064889 -1.761873394
##  [916] -1.994768236 -1.253102214  0.246012840 -0.095518180  0.672101908
##  [921] -0.720362286  1.041246838 -0.907743325 -0.954030346 -0.464865883
##  [926] -0.831112181 -1.719333878 -0.529865230  0.069169634  1.938121500
##  [931] -0.766743801 -0.053625169  1.671530581 -0.308250139  0.389268530
##  [936] -1.402964733  1.341743219 -1.683303067  1.929079119  1.221879440
##  [941]  1.883072266  0.656096562 -0.844346400  0.874849359 -0.147104935
##  [946]  0.399214411 -1.678881792  0.675934449  0.434027638  0.943389646
##  [951]  0.658900519  0.233482301  0.595119424 -1.570496768  0.060599542
##  [956] -0.313366595  1.420448070 -0.310187279  0.560290759 -0.081891366
##  [961] -0.910669904 -0.726287992  1.120339395 -0.799183906  1.308598132
##  [966] -1.263226872 -1.034056381  0.118231469  0.628168597 -0.681237335
##  [971] -0.819949284 -1.271380526  1.396863907 -2.334221090 -1.843780431
##  [976]  0.833667310  0.231888285 -1.387196784  1.018121197 -0.604045816
##  [981]  0.385617493 -0.316093351 -1.272109874 -1.602642187  0.670563997
##  [986]  0.484104046 -1.546103890  0.326592883  0.435211345  0.858593482
##  [991]  0.318474272 -0.399719724 -0.363564173  1.185831416 -1.391081983
##  [996]  0.133193482  0.257032225  1.687801740 -0.958605890 -0.351586614
yAxis <- rnorm(1000) + xAxis + 10
yAxis
##    [1]  9.750155 13.104507  8.996033 11.147891  8.149292 12.025218 13.304326
##    [8]  8.897192  9.481206  8.217555  9.741676  7.333804 10.320227  7.935584
##   [15] 10.036874 11.124679  9.418852  7.956847 11.371119  8.680243  8.703816
##   [22] 12.052154  9.755605  9.821180  8.385890  9.354205  9.791223 11.424547
##   [29] 10.812874  8.832205  9.440706 10.391366 10.653324  9.590935 10.804253
##   [36]  6.879106  8.635284  8.628554 12.821082  5.620303 10.326903 11.399695
##   [43] 11.769888  9.068200 10.899725  9.719059 10.316025  9.441790  9.887422
##   [50] 11.533724 10.541930  8.980886  7.215192 10.087672  9.691778  9.245021
##   [57]  7.550562  7.270466  7.749321  8.656972 10.803994  9.401961  9.114226
##   [64]  9.535293 11.353747  9.490201  7.623853  8.738544  8.389946  9.274118
##   [71]  9.536341  8.374417  8.325803  9.506638  9.846191 11.611072  8.183614
##   [78] 10.129385  8.020511  7.475398 10.335822 10.598625  9.432273  8.855001
##   [85] 12.052765 10.161479  8.759742  9.044128 10.462298  9.451920  5.342545
##   [92] 12.586777 10.245986  9.382789 10.473890 10.825021 10.990099 10.475948
##   [99] 10.908866  9.855189 10.304862  9.356206 10.987957 12.247468  9.704770
##  [106] 11.041568 11.816178 10.061964 10.070202  9.798294  9.580124  9.363662
##  [113]  8.261100 11.421028 10.864255 10.531513  8.747188 11.166837  9.403810
##  [120]  9.618064  7.491411 10.213503 10.406680  7.907770  9.157060  8.835585
##  [127]  8.399849 11.400940 13.203964 13.013078  8.729743 10.955493  9.029416
##  [134]  8.363676  9.667519 10.044654  9.684563 10.733382  8.219613  9.021054
##  [141]  9.685964  8.681353  8.592991  7.665586 11.069013 10.749040  8.285453
##  [148]  9.028834 10.411081  8.228147 12.000226  8.178472  8.220224  5.999581
##  [155]  9.926917 11.586390 11.238996 10.252901 11.719350 11.238928 11.666701
##  [162]  8.283939 10.863527  7.582434  8.348577  8.297230 12.187906 10.035416
##  [169] 10.471427  6.833436 10.660144 10.717658 10.705939  9.853059  9.496669
##  [176]  8.609673 10.635864  9.868432  7.904131 12.286457 10.187018 11.379614
##  [183] 11.365162 12.751979  9.722127  8.647252 12.466512 11.053757 10.414391
##  [190] 11.287816  9.097938 10.501825 11.450471 12.003442 12.737243  9.784834
##  [197]  9.752620  9.514236 12.248908  9.570944 10.643108  9.490487  8.951493
##  [204]  9.140549  9.097628  8.722146 11.680465  9.418769 11.211224 10.447175
##  [211] 10.250779 11.011298  8.049642  8.962410 10.778146 11.858127  9.403653
##  [218]  9.706241 12.136141  8.699294 10.201928  9.520901 11.289440 12.125443
##  [225]  9.020947 12.575919  6.538257 11.374715 10.483309 11.977090 10.201080
##  [232] 10.719268 10.620088  9.659804 10.406953  7.864280  9.312387  9.617595
##  [239] 10.892095 12.403322 10.385336 13.061986  9.217389 10.053365 10.850267
##  [246] 10.642185 11.237522  8.964389  9.553085 11.021174 10.833211  9.908978
##  [253]  9.259604  8.885497  8.660511 10.747754  9.503562  9.210095 12.007206
##  [260]  8.510831  9.061853  9.203409  9.775782 10.334496  8.673586  8.086048
##  [267] 10.136250  9.387125 10.263004  9.522951 10.970589  9.473602  8.669649
##  [274] 11.051231  9.788867  9.353879 12.331941  9.852171 10.205129  7.533713
##  [281] 10.713775  8.827367 11.059878  9.561270  7.717949 11.410304  8.796306
##  [288]  9.597984  9.165756  7.821919 12.064879 10.746980  7.216644 10.397127
##  [295]  7.685632 10.158131  9.590801 10.437931  9.621523 12.152181 10.202260
##  [302] 12.794688  8.960848 10.395990 11.923899 14.395995  9.159228 10.893301
##  [309]  7.712228 10.104771  7.047884  9.304316 12.807543  8.458234 10.556386
##  [316]  8.853793 11.008628 11.359530  9.944939 10.750933 10.455724 12.481169
##  [323]  9.062878 11.590007 10.522503 11.795377  7.911905  8.889611 11.270920
##  [330] 10.273720 10.916578  9.434960  5.852508 11.775338 11.656264  9.780581
##  [337]  8.748385 10.609405  8.982722  8.373326  7.602466  8.367506 12.768169
##  [344]  9.470809  6.963773  8.959454 11.410654  9.872479 11.305556  9.336345
##  [351]  7.974286  6.903040 10.035708  9.712760  8.611073  9.762323 11.466727
##  [358] 11.750452 10.268400 10.785572 10.396007  8.907319  8.892100 10.112504
##  [365]  8.971061 11.838970 11.858656  9.627901  9.337348  7.527780  6.066960
##  [372] 13.391127 12.344379 11.214903 10.972005  8.867331 11.469944 10.568384
##  [379] 12.207091 11.046726 11.478804  9.810857 10.240439 10.977199  9.886558
##  [386]  8.864351  7.078065  8.828687 10.796343  7.958320 12.139472  9.161661
##  [393] 11.451706  8.148984 10.315236 10.816695  8.839829  9.290958  9.295412
##  [400] 12.134553  8.055043 12.292466 11.125181  8.073672 10.493905  8.445574
##  [407] 10.768051 12.243423  9.666155 10.065225 10.076909  8.024411 10.111769
##  [414]  9.713765 10.324611 10.331420 10.347420  9.984822 10.722834  8.772753
##  [421] 12.098128 13.679311 10.332527 10.760365  9.976705  7.908665  9.431424
##  [428] 11.256797  9.834050 12.372530 10.051197 10.041493 10.320952 10.270083
##  [435] 10.765569  9.356329 13.392141  8.362899  7.872689 10.041995  9.923325
##  [442]  9.774246  8.543134  9.493121  7.905285 11.078051  9.575527  9.106483
##  [449]  8.366521  9.646669 10.398356 10.873289 10.605158  9.154703  9.121472
##  [456] 10.994492 10.693452  9.409262 10.713829  9.972363 11.141290 10.992861
##  [463]  9.876650  7.967628  8.240005 11.225062  9.909064 10.532264 10.447527
##  [470] 13.147958  7.707965 10.337607 11.168726 11.481029 10.329662 11.671007
##  [477]  9.467700 13.162093 10.465028  8.710950  8.820819 10.409847 10.092411
##  [484]  8.952898 11.184659 10.994684 11.469251  9.650554 11.768263 11.546650
##  [491] 10.611465 11.457199 11.374605  9.775579  8.436483 12.056218  9.126379
##  [498]  9.071476 11.233276 10.974702 11.419345 12.384360  9.062416  9.788668
##  [505] 10.684802 10.005126  8.488677  8.620350 10.540273 10.061680 13.198406
##  [512] 10.743986 10.911648  9.826184 11.025116 11.069260 10.408438  8.947493
##  [519]  9.304245 10.868556 13.339092 11.136936  7.419198  9.501921 10.435858
##  [526] 11.657430 11.409151 10.648867 10.888368 11.191315 10.060782  9.726270
##  [533]  8.737779 11.009612  8.136827  9.736647 10.649201 11.640859  9.315512
##  [540] 11.345422  9.943945 10.910801  8.780855  9.053180 11.536861  7.843455
##  [547] 11.249383  9.477040 11.429913 10.445752  8.982761 11.840644  8.783217
##  [554] 11.364053  9.578009 12.898945  8.849220 12.060871  8.424914 10.550608
##  [561] 11.834295 12.420962  8.207255  7.827062 11.761251 10.203006 10.051239
##  [568]  9.713337 10.229620  8.904122  9.881136 11.131929 10.482300 11.141203
##  [575]  9.139562 10.580514 11.946220  9.407565 11.274290 10.069357 12.363877
##  [582]  8.100223  8.728576 11.003491  8.477681 11.444028 10.075390  9.902681
##  [589]  9.002705  9.465013 11.552403 11.026206  8.917892  8.199546 12.681166
##  [596]  9.815489  9.252606 10.090585 10.245691 11.975860  9.654226 11.846375
##  [603] 10.078217 11.492283  8.028287  9.301923 10.219764  8.907092  9.714929
##  [610] 12.474010 10.819858 12.223897  9.913714  9.964526  9.727539 10.176896
##  [617] 13.019397 10.850425  9.307165 10.450980  7.688616 11.811493 11.065506
##  [624]  9.362130  8.330338  9.269468  9.382262  7.136076 11.014648  9.175019
##  [631]  8.589935 10.018683 10.445505 11.270258 11.349821  9.719309 12.524224
##  [638]  7.442716 10.790022  9.680948 10.486747  9.548832  9.133469 10.696756
##  [645] 11.834561  8.534549  9.059114 10.359601  9.551346 10.324670  9.064945
##  [652] 11.189868 10.740445 10.238990  8.545631 11.712319 12.204567  8.407766
##  [659]  8.052433  9.271798 10.410425  8.823774  9.227253 10.528583  8.452535
##  [666] 10.903379 15.071731  9.311928  6.997753 11.285416 10.463431 10.702481
##  [673]  8.773425  6.994759  9.011063 10.177514 12.464415 12.406933  9.316919
##  [680]  8.916007  9.045722 12.979599 10.434997  8.223449  8.944800 13.813703
##  [687] 10.472259  9.843736 11.095547 10.127107 13.557439  9.275831 11.391560
##  [694] 10.636711 10.100710 11.120377  7.780269  9.796239  9.496444 11.143255
##  [701]  9.237568 10.559141  8.488661 10.045898  9.078606 11.830064 12.594175
##  [708]  8.087597  9.132502  9.989098 10.857012 10.265914 10.594799  9.562976
##  [715] 11.493958  9.889379  9.298894 11.555792 10.551086 11.603649  8.669364
##  [722] 10.148311 10.460288  9.652828  7.615671  8.727064  8.163192  8.175029
##  [729]  7.271877 10.618652 12.103066 11.450964  9.081102  7.022454 10.493002
##  [736] 10.470843  9.095891  9.052765 10.547792 10.357840 10.585478  9.605057
##  [743] 12.156613  7.754746 10.543373  8.314623 11.430427  9.692359 12.684276
##  [750]  9.596862 10.067107  8.484594 11.810593  8.491581 11.278247  8.238620
##  [757]  9.355622 11.476648  9.826685  8.168130 11.017276  9.737289 11.037234
##  [764]  9.240368 11.839535 10.965067 13.404731 10.112906  8.635663 10.895380
##  [771] 13.305036  7.381334 10.850331  9.038404 11.981798  9.829934 10.322054
##  [778] 10.446503  8.380640 10.062248 10.678152 11.108574 11.925439  9.628064
##  [785] 11.787096 10.400436  9.560403 11.489886  7.379175 11.319282 12.247187
##  [792] 12.360997 11.412067 11.410415 10.400289 12.202441 12.144919 10.290248
##  [799]  9.313601 11.303707  9.855678 10.759481 11.254170  8.225531 10.158240
##  [806]  7.811101  9.366942 10.920415  9.860297 11.583371  9.720313 11.443166
##  [813] 11.506478  9.510469 11.015020  9.699391 10.997322 11.773492 10.334790
##  [820]  9.898777  8.100210 11.012343  7.434018  8.954092 10.225131  9.818568
##  [827]  9.966354  9.084129  8.242704  9.946897 10.177354  8.488433 10.287727
##  [834]  7.327594 10.576108 11.358532 10.733016 14.982182 11.830982 10.036710
##  [841] 11.218291  9.032089 10.005177 11.017484  8.665182  8.672658 11.341519
##  [848] 10.812344 10.046133 11.230429 10.346817 10.495213  9.643246  8.774723
##  [855] 11.621867  8.482963  7.786355 10.014583  8.471249 11.648936  9.480058
##  [862] 10.859979  9.786859  9.697075  9.932802 10.588391 11.697944 10.341865
##  [869] 11.287815  8.839471 10.208274  9.075006  6.340023 11.827315 10.301752
##  [876]  8.087192  8.220668 10.902335 10.106298  8.931037 10.334087  7.695363
##  [883]  7.857187 10.323482 10.294313 10.261645  9.391015  8.602027 11.987372
##  [890]  8.316403 10.790542 11.523205  9.266662 10.474661 10.170352 11.444453
##  [897] 10.957611  7.855888  9.873629 10.582727  9.247469  9.108741 10.638910
##  [904]  9.710543  9.485555 12.118528  9.745099 11.854030 12.030871  8.283995
##  [911]  8.140877 11.471567 11.020107 10.321634  8.777337  7.587117  7.882229
##  [918] 11.666532 10.652013 10.863807 10.229232 10.600186 10.704549 10.102389
##  [925]  9.277763  6.798473  6.718707  9.046435 10.350717 11.987272  9.406434
##  [932]  9.382576 12.988683  7.747107 10.487333  8.783498 10.663062  8.095103
##  [939] 11.235099 10.881206 10.872247  9.148822  8.724568  9.853004 10.604037
##  [946] 11.887905  9.301167 10.348077 10.785635 11.485176  9.833480  9.333621
##  [953] 10.043656  8.002941  8.976663  9.033830 12.643838  8.643599 10.570244
##  [960]  9.220717  9.729632  8.684801 11.137318  8.299191 10.184550 10.634919
##  [967]  8.981974  8.713351  9.144875  7.741870  8.572559  9.128785 10.100143
##  [974]  7.861970  9.022187 10.039965  9.635857  7.127667 12.168637 10.127696
##  [981] 11.103067 10.278076  9.900749  8.718282 10.469986 11.087765  8.640413
##  [988]  9.111453  8.549869 10.414574  9.403956  9.480204 10.991421 11.856783
##  [995]  8.580385 10.730682 10.778513 11.517225  7.126223  8.357242
# create groups for different values of X
(group <- rep(1,1000)) # a vector consisting of 1000 elements
##    [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [112] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [186] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [223] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [260] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [297] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [334] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [371] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [408] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [445] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [482] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [519] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [556] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [593] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [630] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [667] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [704] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [741] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [778] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [815] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [852] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [889] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [926] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [963] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1000] 1
group[xAxis > -1.5] <- 2
group[xAxis > -.5] <- 3
group[xAxis > .5] <- 4
group[xAxis > 1.5] <- 5
group
##    [1] 3 5 3 3 3 5 4 3 3 1 3 2 3 2 4 4 3 2 4 2 2 4 3 3 2 2 2 3 3 2 1 2 4 2 4 1 3
##   [38] 2 4 2 3 3 2 3 3 2 3 2 2 4 3 2 1 2 1 2 2 2 2 2 4 3 1 2 4 2 2 2 1 2 3 2 3 3
##   [75] 3 5 2 3 1 2 4 3 2 2 4 3 3 2 4 4 1 4 4 2 2 5 3 4 3 3 3 2 5 4 3 5 4 3 4 2 3
##  [112] 3 2 3 4 3 2 3 3 4 2 3 1 1 1 3 2 4 5 5 2 3 2 3 5 3 3 2 2 3 3 3 3 2 3 3 3 3
##  [149] 3 1 5 4 2 1 2 3 5 3 3 4 4 2 3 2 3 2 4 3 2 1 4 4 4 3 2 3 5 3 4 4 3 3 3 4 2
##  [186] 1 4 5 2 3 3 3 4 4 4 3 2 2 5 3 4 3 3 4 2 3 4 2 3 2 3 4 3 1 3 3 2 3 3 2 5 2
##  [223] 4 3 4 4 3 4 5 4 3 4 4 2 3 2 3 3 3 4 3 3 3 3 3 3 4 2 1 4 3 4 3 1 2 4 1 3 5
##  [260] 4 3 2 2 3 3 1 4 4 4 3 5 2 2 3 2 4 2 3 4 1 2 3 3 3 2 3 2 3 2 3 3 3 1 3 2 2
##  [297] 5 4 4 3 5 4 3 3 4 5 3 4 2 3 1 3 4 2 4 2 4 3 4 3 2 5 4 3 3 4 2 3 4 4 3 3 1
##  [334] 4 3 4 3 4 2 2 2 2 5 2 1 2 5 3 3 2 2 1 4 4 2 2 3 5 2 4 3 3 2 1 2 4 4 4 2 1
##  [371] 2 4 5 5 3 3 4 2 4 4 3 3 4 4 2 3 2 2 3 2 2 3 2 3 2 3 2 2 2 4 2 4 4 2 5 3 3
##  [408] 4 3 3 4 2 2 4 3 4 3 4 4 4 5 5 3 4 2 1 3 5 3 5 3 4 3 3 3 3 4 3 3 4 4 3 2 3
##  [445] 2 3 3 3 2 4 2 2 2 3 3 3 3 3 3 3 3 4 4 2 2 3 3 4 3 4 2 3 4 5 3 5 2 4 3 1 2
##  [482] 3 3 3 4 4 4 3 4 4 3 4 4 2 3 4 2 3 3 3 3 4 2 2 3 3 3 2 3 4 4 4 2 4 3 4 4 2
##  [519] 4 3 5 3 2 3 4 4 4 2 4 4 3 3 1 4 3 2 3 3 5 4 3 4 1 4 2 2 3 2 4 4 2 4 3 4 2
##  [556] 4 3 4 2 3 4 4 2 2 4 3 3 3 4 3 4 4 4 3 3 4 4 3 3 2 4 1 2 2 2 4 3 3 2 4 3 4
##  [593] 3 1 5 3 2 3 3 5 3 4 3 3 2 2 4 2 3 3 5 3 2 2 3 4 5 4 2 3 1 4 3 2 3 3 3 2 4
##  [630] 1 2 3 2 3 4 3 4 2 3 2 3 2 4 3 4 2 3 3 2 4 3 4 4 3 1 4 4 3 2 3 4 2 2 2 3 4
##  [667] 5 2 2 3 3 3 3 2 3 3 3 4 3 2 3 5 3 2 3 5 3 1 4 2 5 3 5 4 2 4 2 3 3 2 2 3 2
##  [704] 3 4 4 3 2 2 3 3 2 3 3 4 4 4 5 2 3 3 3 1 3 2 2 2 2 2 4 5 3 2 1 3 2 2 2 3 3
##  [741] 2 4 3 2 3 3 4 2 5 4 5 2 4 3 4 3 2 4 3 3 3 4 4 3 3 4 3 3 3 3 5 1 3 3 4 3 3
##  [778] 4 2 3 3 4 5 3 4 4 2 3 2 2 4 4 5 3 3 5 4 3 3 5 2 3 3 3 2 2 2 4 3 3 3 5 3 1
##  [815] 4 3 4 4 3 3 2 3 1 2 2 3 3 2 2 3 2 3 4 2 4 5 3 5 4 3 2 2 1 3 3 3 3 3 3 5 3
##  [852] 3 3 1 4 1 2 3 3 4 2 4 2 3 1 3 3 4 4 3 4 2 1 4 4 1 1 3 2 3 3 3 2 4 3 3 2 2
##  [889] 4 1 5 5 3 3 4 4 3 1 3 3 3 3 3 3 2 4 3 5 4 2 2 4 3 3 1 1 2 3 3 4 2 4 2 2 3
##  [926] 2 1 2 3 5 2 3 5 3 3 2 4 1 5 4 5 4 2 4 3 3 1 4 3 4 4 3 4 1 3 3 4 3 4 3 2 2
##  [963] 4 2 4 2 2 3 4 2 2 2 4 1 1 4 3 2 4 2 3 3 2 1 4 3 1 3 3 4 3 3 3 4 2 3 3 5 2
## [1000] 3
# create sample dataframe by joining variables
sample_data <- data.frame(xAxis,yAxis,group)
sample_data
##             xAxis     yAxis group
## 1    -0.155028582  9.750155     3
## 2     2.208922861 13.104507     5
## 3     0.170881735  8.996033     3
## 4     0.108656811 11.147891     3
## 5    -0.363087520  8.149292     3
## 6     1.804882542 12.025218     5
## 7     0.928650633 13.304326     4
## 8    -0.134423907  8.897192     3
## 9     0.044976105  9.481206     3
## 10   -1.699982941  8.217555     1
## 11    0.153022506  9.741676     3
## 12   -0.681904279  7.333804     2
## 13   -0.416370540 10.320227     3
## 14   -1.257946474  7.935584     2
## 15    0.638934914 10.036874     4
## 16    1.175156472 11.124679     4
## 17   -0.027954806  9.418852     3
## 18   -1.420717713  7.956847     2
## 19    1.020615171 11.371119     4
## 20   -1.333668766  8.680243     2
## 21   -1.053169595  8.703816     2
## 22    1.260857362 12.052154     4
## 23    0.202690573  9.755605     3
## 24    0.412463576  9.821180     3
## 25   -0.872132990  8.385890     2
## 26   -0.652902543  9.354205     2
## 27   -0.587783477  9.791223     2
## 28   -0.136087093 11.424547     3
## 29   -0.248963930 10.812874     3
## 30   -0.857764357  8.832205     2
## 31   -1.785726853  9.440706     1
## 32   -1.115411505 10.391366     2
## 33    1.040771810 10.653324     4
## 34   -0.562934442  9.590935     2
## 35    0.759742650 10.804253     4
## 36   -2.142030608  6.879106     1
## 37   -0.174475977  8.635284     3
## 38   -0.666088261  8.628554     2
## 39    0.945104131 12.821082     4
## 40   -0.724342684  5.620303     2
## 41    0.295304114 10.326903     3
## 42    0.191575628 11.399695     3
## 43   -0.699116075 11.769888     2
## 44    0.371368803  9.068200     3
## 45   -0.252765569 10.899725     3
## 46   -0.911589413  9.719059     2
## 47   -0.046322348 10.316025     3
## 48   -1.348549584  9.441790     2
## 49   -0.855483241  9.887422     2
## 50    0.749146258 11.533724     4
## 51    0.485654353 10.541930     3
## 52   -0.609144219  8.980886     2
## 53   -2.081105130  7.215192     1
## 54   -0.907363392 10.087672     2
## 55   -1.912323768  9.691778     1
## 56   -0.818722216  9.245021     2
## 57   -1.289054412  7.550562     2
## 58   -0.995328244  7.270466     2
## 59   -1.204224236  7.749321     2
## 60   -0.605004143  8.656972     2
## 61    1.240115152 10.803994     4
## 62   -0.015582942  9.401961     3
## 63   -1.931407784  9.114226     1
## 64   -0.948070541  9.535293     2
## 65    1.356661279 11.353747     4
## 66   -0.782543321  9.490201     2
## 67   -1.236417083  7.623853     2
## 68   -1.275640549  8.738544     2
## 69   -1.515160458  8.389946     1
## 70   -0.683749268  9.274118     2
## 71   -0.445331699  9.536341     3
## 72   -0.628607103  8.374417     2
## 73   -0.308833193  8.325803     3
## 74   -0.188850326  9.506638     3
## 75   -0.309678444  9.846191     3
## 76    1.708317491 11.611072     5
## 77   -0.690355554  8.183614     2
## 78    0.146336094 10.129385     3
## 79   -1.795275020  8.020511     1
## 80   -0.880603123  7.475398     2
## 81    0.953640058 10.335822     4
## 82   -0.323013773 10.598625     3
## 83   -0.688701852  9.432273     2
## 84   -1.024318436  8.855001     2
## 85    0.761180372 12.052765     4
## 86    0.272560219 10.161479     3
## 87   -0.276414107  8.759742     3
## 88   -1.466785473  9.044128     2
## 89    0.914511283 10.462298     4
## 90    1.010988139  9.451920     4
## 91   -2.792182864  5.342545     1
## 92    1.383007645 12.586777     4
## 93    0.537292275 10.245986     4
## 94   -0.541279322  9.382789     2
## 95   -0.855697166 10.473890     2
## 96    1.633718255 10.825021     5
## 97    0.406766848 10.990099     3
## 98    0.914717761 10.475948     4
## 99    0.368407654 10.908866     3
## 100  -0.274709599  9.855189     3
## 101   0.333203848 10.304862     3
## 102  -1.171962662  9.356206     2
## 103   2.571335590 10.987957     5
## 104   0.622988077 12.247468     4
## 105   0.034082753  9.704770     3
## 106   1.580614373 11.041568     5
## 107   0.859004104 11.816178     4
## 108  -0.245354197 10.061964     3
## 109   0.820408779 10.070202     4
## 110  -0.728453632  9.798294     2
## 111   0.148324704  9.580124     3
## 112  -0.485234976  9.363662     3
## 113  -1.190783340  8.261100     2
## 114  -0.217498702 11.421028     3
## 115   1.450168637 10.864255     4
## 116  -0.197409556 10.531513     3
## 117  -1.073158870  8.747188     2
## 118   0.483071104 11.166837     3
## 119  -0.247582878  9.403810     3
## 120   0.812239924  9.618064     4
## 121  -1.418465915  7.491411     2
## 122   0.154618149 10.213503     3
## 123  -1.598765208 10.406680     1
## 124  -2.204247941  7.907770     1
## 125  -2.017053055  9.157060     1
## 126   0.254732919  8.835585     3
## 127  -0.840263516  8.399849     2
## 128   0.998329054 11.400940     4
## 129   1.853135313 13.203964     5
## 130   2.713059417 13.013078     5
## 131  -1.158191978  8.729743     2
## 132  -0.193515317 10.955493     3
## 133  -1.013184915  9.029416     2
## 134  -0.163921212  8.363676     3
## 135   1.893988945  9.667519     5
## 136  -0.314754307 10.044654     3
## 137  -0.088082163  9.684563     3
## 138  -0.598472805 10.733382     2
## 139  -0.841521775  8.219613     2
## 140   0.206938315  9.021054     3
## 141   0.257435631  9.685964     3
## 142   0.476659820  8.681353     3
## 143  -0.207560484  8.592991     3
## 144  -0.927694077  7.665586     2
## 145  -0.309566313 11.069013     3
## 146   0.395798057 10.749040     3
## 147   0.179952236  8.285453     3
## 148  -0.412898623  9.028834     3
## 149  -0.069360065 10.411081     3
## 150  -1.859269236  8.228147     1
## 151   1.892084426 12.000226     5
## 152   0.503125917  8.178472     4
## 153  -1.028791682  8.220224     2
## 154  -2.715918172  5.999581     1
## 155  -1.015008805  9.926917     2
## 156  -0.463429977 11.586390     3
## 157   1.546780021 11.238996     5
## 158   0.280902393 10.252901     3
## 159   0.268363048 11.719350     3
## 160   0.985480748 11.238928     4
## 161   0.777581628 11.666701     4
## 162  -1.398520744  8.283939     2
## 163   0.106497921 10.863527     3
## 164  -0.686214255  7.582434     2
## 165   0.401637537  8.348577     3
## 166  -1.044281026  8.297230     2
## 167   1.008532215 12.187906     4
## 168  -0.475341120 10.035416     3
## 169  -0.556533290 10.471427     2
## 170  -1.869553998  6.833436     1
## 171   0.553663713 10.660144     4
## 172   0.831992373 10.717658     4
## 173   0.585651419 10.705939     4
## 174   0.163164777  9.853059     3
## 175  -1.195091742  9.496669     2
## 176  -0.062031831  8.609673     3
## 177   1.571951719 10.635864     5
## 178   0.322209425  9.868432     3
## 179   0.832534607  7.904131     4
## 180   0.958174958 12.286457     4
## 181   0.146066739 10.187018     3
## 182   0.095735983 11.379614     3
## 183   0.259558195 11.365162     3
## 184   1.456445106 12.751979     4
## 185  -1.132521159  9.722127     2
## 186  -1.970164962  8.647252     1
## 187   0.983028106 12.466512     4
## 188   1.543378591 11.053757     5
## 189  -0.571995081 10.414391     2
## 190   0.296507377 11.287816     3
## 191  -0.372614367  9.097938     3
## 192  -0.086923407 10.501825     3
## 193   0.951250924 11.450471     4
## 194   0.758236837 12.003442     4
## 195   1.134700563 12.737243     4
## 196  -0.343718840  9.784834     3
## 197  -1.108046672  9.752620     2
## 198  -0.751104271  9.514236     2
## 199   1.758104111 12.248908     5
## 200   0.428562907  9.570944     3
## 201   0.877356931 10.643108     4
## 202  -0.175087153  9.490487     3
## 203   0.103923768  8.951493     3
## 204   0.914429191  9.140549     4
## 205  -0.914741025  9.097628     2
## 206   0.196957654  8.722146     3
## 207   1.069394371 11.680465     4
## 208  -1.449318241  9.418769     2
## 209  -0.232985059 11.211224     3
## 210  -0.635602702 10.447175     2
## 211  -0.197789653 10.250779     3
## 212   0.568397664 11.011298     4
## 213  -0.292850551  8.049642     3
## 214  -1.715705266  8.962410     1
## 215  -0.398067343 10.778146     3
## 216  -0.437196309 11.858127     3
## 217  -0.786758723  9.403653     2
## 218  -0.483338588  9.706241     3
## 219   0.354802914 12.136141     3
## 220  -0.722448185  8.699294     2
## 221   1.525750551 10.201928     5
## 222  -0.672976370  9.520901     2
## 223   1.270271150 11.289440     4
## 224  -0.063856072 12.125443     3
## 225   1.010116375  9.020947     4
## 226   0.785416347 12.575919     4
## 227   0.233025169  6.538257     3
## 228   1.149894511 11.374715     4
## 229   1.622269596 10.483309     5
## 230   0.834835924 11.977090     4
## 231   0.047527106 10.201080     3
## 232   1.180337761 10.719268     4
## 233   1.173556689 10.620088     4
## 234  -0.681048598  9.659804     2
## 235   0.200329311 10.406953     3
## 236  -1.339036621  7.864280     2
## 237  -0.355560176  9.312387     3
## 238   0.321452723  9.617595     3
## 239   0.230216621 10.892095     3
## 240   1.116193331 12.403322     4
## 241   0.266154267 10.385336     3
## 242   0.231357320 13.061986     3
## 243  -0.475202828  9.217389     3
## 244   0.075195741 10.053365     3
## 245   0.076399103 10.850267     3
## 246  -0.074048782 10.642185     3
## 247   0.780322548 11.237522     4
## 248  -1.005520567  8.964389     2
## 249  -1.872631771  9.553085     1
## 250   1.131086907 11.021174     4
## 251  -0.219866086 10.833211     3
## 252   0.750954829  9.908978     4
## 253  -0.122783612  9.259604     3
## 254  -1.703776764  8.885497     1
## 255  -0.914033572  8.660511     2
## 256   0.677071622 10.747754     4
## 257  -1.681143489  9.503562     1
## 258  -0.492807771  9.210095     3
## 259   2.200873910 12.007206     5
## 260   0.580000843  8.510831     4
## 261  -0.159288758  9.061853     3
## 262  -1.296878504  9.203409     2
## 263  -0.514852536  9.775782     2
## 264  -0.266360079 10.334496     3
## 265   0.384664616  8.673586     3
## 266  -1.660384658  8.086048     1
## 267   0.783596345 10.136250     4
## 268   1.254265970  9.387125     4
## 269   0.884533169 10.263004     4
## 270  -0.430179256  9.522951     3
## 271   1.830098737 10.970589     5
## 272  -1.231879167  9.473602     2
## 273  -0.608257467  8.669649     2
## 274   0.469396559 11.051231     3
## 275  -0.776693071  9.788867     2
## 276   1.117166444  9.353879     4
## 277  -0.920988261 12.331941     2
## 278  -0.132083699  9.852171     3
## 279   1.192898430 10.205129     4
## 280  -2.878583670  7.533713     1
## 281  -0.592846395 10.713775     2
## 282  -0.296777091  8.827367     3
## 283  -0.389013351 11.059878     3
## 284  -0.215322191  9.561270     3
## 285  -0.994537022  7.717949     2
## 286   0.408754743 11.410304     3
## 287  -0.659195369  8.796306     2
## 288   0.119576760  9.597984     3
## 289  -0.811635657  9.165756     2
## 290  -0.098050940  7.821919     3
## 291   0.428408170 12.064879     3
## 292   0.439474311 10.746980     3
## 293  -1.966096071  7.216644     1
## 294  -0.041996164 10.397127     3
## 295  -0.709289741  7.685632     2
## 296  -1.192959114 10.158131     2
## 297   2.071779644  9.590801     5
## 298   1.203190318 10.437931     4
## 299   1.225259239  9.621523     4
## 300   0.407813557 12.152181     3
## 301   1.567990912 10.202260     5
## 302   1.172500447 12.794688     4
## 303  -0.321551830  8.960848     3
## 304   0.357636623 10.395990     3
## 305   1.433137724 11.923899     4
## 306   2.534201377 14.395995     5
## 307  -0.126875950  9.159228     3
## 308   0.544901965 10.893301     4
## 309  -0.574877818  7.712228     2
## 310  -0.468529103 10.104771     3
## 311  -2.319969024  7.047884     1
## 312  -0.056668696  9.304316     3
## 313   1.103934643 12.807543     4
## 314  -0.584960674  8.458234     2
## 315   0.930552124 10.556386     4
## 316  -0.899458366  8.853793     2
## 317   0.638716850 11.008628     4
## 318   0.277054158 11.359530     3
## 319   0.653562486  9.944939     4
## 320   0.295539225 10.750933     3
## 321  -1.089602058 10.455724     2
## 322   1.560273795 12.481169     5
## 323   0.598732080  9.062878     4
## 324   0.132945048 11.590007     3
## 325   0.069700460 10.522503     3
## 326   1.342566085 11.795377     4
## 327  -1.330451964  7.911905     2
## 328  -0.091785385  8.889611     3
## 329   0.519319513 11.270920     4
## 330   0.710125980 10.273720     4
## 331   0.112736220 10.916578     3
## 332   0.027337147  9.434960     3
## 333  -1.530230476  5.852508     1
## 334   0.844420417 11.775338     4
## 335   0.416278633 11.656264     3
## 336   0.915221035  9.780581     4
## 337   0.408666359  8.748385     3
## 338   1.067413947 10.609405     4
## 339  -1.314192860  8.982722     2
## 340  -0.968797730  8.373326     2
## 341  -1.141929295  7.602466     2
## 342  -0.676117836  8.367506     2
## 343   1.663199062 12.768169     5
## 344  -0.840444493  9.470809     2
## 345  -2.311289535  6.963773     1
## 346  -0.705074935  8.959454     2
## 347   1.596542606 11.410654     5
## 348   0.496894976  9.872479     3
## 349   0.176405742 11.305556     3
## 350  -1.183106053  9.336345     2
## 351  -0.765861108  7.974286     2
## 352  -1.744091153  6.903040     1
## 353   1.407640942 10.035708     4
## 354   0.539037565  9.712760     4
## 355  -1.262275970  8.611073     2
## 356  -0.819021386  9.762323     2
## 357   0.084443333 11.466727     3
## 358   1.655635182 11.750452     5
## 359  -0.761144085 10.268400     2
## 360   0.599587992 10.785572     4
## 361  -0.431243229 10.396007     3
## 362   0.169278800  8.907319     3
## 363  -1.229609031  8.892100     2
## 364  -1.727879812 10.112504     1
## 365  -0.859348961  8.971061     2
## 366   0.617012363 11.838970     4
## 367   1.405670380 11.858656     4
## 368   0.852964853  9.627901     4
## 369  -1.084351536  9.337348     2
## 370  -2.312713492  7.527780     1
## 371  -1.271537317  6.066960     2
## 372   0.994059960 13.391127     4
## 373   2.446990352 12.344379     5
## 374   1.666516610 11.214903     5
## 375   0.200622292 10.972005     3
## 376  -0.235105152  8.867331     3
## 377   0.796149904 11.469944     4
## 378  -0.629276506 10.568384     2
## 379   1.388243836 12.207091     4
## 380   1.305648316 11.046726     4
## 381  -0.107646397 11.478804     3
## 382  -0.257038540  9.810857     3
## 383   0.950245831 10.240439     4
## 384   0.855006915 10.977199     4
## 385  -0.548905776  9.886558     2
## 386  -0.190902912  8.864351     3
## 387  -1.142174906  7.078065     2
## 388  -1.319857325  8.828687     2
## 389  -0.384108095 10.796343     3
## 390  -0.582369241  7.958320     2
## 391  -0.658055891 12.139472     2
## 392  -0.484060528  9.161661     3
## 393  -0.522190761 11.451706     2
## 394  -0.364898624  8.148984     3
## 395  -0.924955433 10.315236     2
## 396   0.475980806 10.816695     3
## 397  -0.683692133  8.839829     2
## 398  -1.340226865  9.290958     2
## 399  -0.504438542  9.295412     2
## 400   0.753078720 12.134553     4
## 401  -1.129252132  8.055043     2
## 402   1.242615405 12.292466     4
## 403   1.331265939 11.125181     4
## 404  -1.283259400  8.073672     2
## 405   1.507197353 10.493905     5
## 406   0.023014617  8.445574     3
## 407   0.086194306 10.768051     3
## 408   1.021427376 12.243423     4
## 409  -0.449875859  9.666155     3
## 410  -0.135652849 10.065225     3
## 411   0.601783418 10.076909     4
## 412  -0.957280807  8.024411     2
## 413  -0.827221785 10.111769     2
## 414   1.264890218  9.713765     4
## 415  -0.287232629 10.324611     3
## 416   1.231255358 10.331420     4
## 417  -0.061742348 10.347420     3
## 418   0.589316466  9.984822     4
## 419   0.893516661 10.722834     4
## 420   0.753376301  8.772753     4
## 421   1.528673401 12.098128     5
## 422   2.795093324 13.679311     5
## 423  -0.152730481 10.332527     3
## 424   0.830246665 10.760365     4
## 425  -1.111604286  9.976705     2
## 426  -1.701777384  7.908665     1
## 427   0.052971574  9.431424     3
## 428   2.033798101 11.256797     5
## 429   0.321112006  9.834050     3
## 430   1.703520185 12.372530     5
## 431  -0.003977174 10.051197     3
## 432   1.446035817 10.041493     4
## 433  -0.172326783 10.320952     3
## 434  -0.227928345 10.270083     3
## 435  -0.402167141 10.765569     3
## 436   0.070201048  9.356329     3
## 437   1.317654461 13.392141     4
## 438  -0.217847416  8.362899     3
## 439  -0.200442983  7.872689     3
## 440   0.953767508 10.041995     4
## 441   1.021959712  9.923325     4
## 442  -0.484104176  9.774246     3
## 443  -1.248013354  8.543134     2
## 444  -0.326895707  9.493121     3
## 445  -1.231188549  7.905285     2
## 446  -0.448098855 11.078051     3
## 447  -0.250595344  9.575527     3
## 448   0.016752005  9.106483     3
## 449  -1.483712782  8.366521     2
## 450   0.686055133  9.646669     4
## 451  -0.942894647 10.398356     2
## 452  -0.562974983 10.873289     2
## 453  -0.790681121 10.605158     2
## 454  -0.135641938  9.154703     3
## 455  -0.214893590  9.121472     3
## 456  -0.083525928 10.994492     3
## 457  -0.491255573 10.693452     3
## 458  -0.371755545  9.409262     3
## 459  -0.391293525 10.713829     3
## 460   0.465290938  9.972363     3
## 461   0.305214557 11.141290     3
## 462   0.607022758 10.992861     4
## 463   0.567897217  9.876650     4
## 464  -1.179229813  7.967628     2
## 465  -0.704388871  8.240005     2
## 466   0.084594814 11.225062     3
## 467  -0.421357666  9.909064     3
## 468   0.924070618 10.532264     4
## 469  -0.348904618 10.447527     3
## 470   1.425227315 13.147958     4
## 471  -0.972579206  7.707965     2
## 472  -0.352570908 10.337607     3
## 473   0.594964916 11.168726     4
## 474   1.685407215 11.481029     5
## 475  -0.036400862 10.329662     3
## 476   1.675701066 11.671007     5
## 477  -0.864271870  9.467700     2
## 478   1.263539288 13.162093     4
## 479   0.440005765 10.465028     3
## 480  -2.558970051  8.710950     1
## 481  -1.093068412  8.820819     2
## 482  -0.339532443 10.409847     3
## 483   0.489177538 10.092411     3
## 484  -0.159935432  8.952898     3
## 485   1.357078831 11.184659     4
## 486   0.777851334 10.994684     4
## 487   1.050886356 11.469251     4
## 488  -0.094045104  9.650554     3
## 489   0.924013584 11.768263     4
## 490   1.367836837 11.546650     4
## 491   0.013751444 10.611465     3
## 492   0.810689110 11.457199     4
## 493   1.149571815 11.374605     4
## 494  -0.529036026  9.775579     2
## 495   0.204814654  8.436483     3
## 496   0.632226440 12.056218     4
## 497  -0.621015633  9.126379     2
## 498  -0.056263209  9.071476     3
## 499  -0.226515654 11.233276     3
## 500   0.175037131 10.974702     3
## 501   0.214737894 11.419345     3
## 502   0.746883154 12.384360     4
## 503  -1.064052909  9.062416     2
## 504  -1.012590716  9.788668     2
## 505   0.425173276 10.684802     3
## 506  -0.213387952 10.005126     3
## 507  -0.082697923  8.488677     3
## 508  -0.655666424  8.620350     2
## 509   0.333483202 10.540273     3
## 510   1.192386051 10.061680     4
## 511   0.632495785 13.198406     4
## 512   1.138908739 10.743986     4
## 513  -0.728106188 10.911648     2
## 514   0.594988295  9.826184     4
## 515   0.102243129 11.025116     3
## 516   0.969534437 11.069260     4
## 517   0.632077922 10.408438     4
## 518  -1.054075014  8.947493     2
## 519   0.552455547  9.304245     4
## 520  -0.399187509 10.868556     3
## 521   1.817422498 13.339092     5
## 522  -0.344210913 11.136936     3
## 523  -0.951993187  7.419198     2
## 524   0.189964396  9.501921     3
## 525   0.845948629 10.435858     4
## 526   1.364955245 11.657430     4
## 527   1.442541637 11.409151     4
## 528  -1.252624813 10.648867     2
## 529   0.606982665 10.888368     4
## 530   0.542609212 11.191315     4
## 531  -0.352452469 10.060782     3
## 532   0.257585721  9.726270     3
## 533  -1.811964869  8.737779     1
## 534   1.370155680 11.009612     4
## 535  -0.277362115  8.136827     3
## 536  -1.105841409  9.736647     2
## 537   0.117762217 10.649201     3
## 538   0.118535581 11.640859     3
## 539   1.550854759  9.315512     5
## 540   0.712507029 11.345422     4
## 541  -0.481973990  9.943945     3
## 542   1.103079795 10.910801     4
## 543  -1.604011345  8.780855     1
## 544   0.630526343  9.053180     4
## 545  -0.962670880 11.536861     2
## 546  -1.222529102  7.843455     2
## 547  -0.067705589 11.249383     3
## 548  -0.749491102  9.477040     2
## 549   1.490778490 11.429913     4
## 550   0.795756489 10.445752     4
## 551  -1.167724862  8.982761     2
## 552   1.176040709 11.840644     4
## 553  -0.435005038  8.783217     3
## 554   1.025811998 11.364053     4
## 555  -0.785072134  9.578009     2
## 556   0.939796301 12.898945     4
## 557   0.346281597  8.849220     3
## 558   1.313103029 12.060871     4
## 559  -1.240198850  8.424914     2
## 560  -0.397915485 10.550608     3
## 561   1.132404617 11.834295     4
## 562   1.211370570 12.420962     4
## 563  -0.507909760  8.207255     2
## 564  -1.373562680  7.827062     2
## 565   0.811508616 11.761251     4
## 566   0.243696522 10.203006     3
## 567   0.063083724 10.051239     3
## 568   0.213362309  9.713337     3
## 569   0.536639225 10.229620     4
## 570  -0.347343326  8.904122     3
## 571   0.619716144  9.881136     4
## 572   1.354796953 11.131929     4
## 573   0.514620791 10.482300     4
## 574  -0.164318791 11.141203     3
## 575  -0.173541581  9.139562     3
## 576   1.330500873 10.580514     4
## 577   0.738546762 11.946220     4
## 578  -0.179670105  9.407565     3
## 579  -0.339337679 11.274290     3
## 580  -1.030940059 10.069357     2
## 581   1.222362431 12.363877     4
## 582  -2.304045090  8.100223     1
## 583  -0.778704563  8.728576     2
## 584  -1.102305016 11.003491     2
## 585  -0.827276577  8.477681     2
## 586   1.438359654 11.444028     4
## 587   0.238448356 10.075390     3
## 588   0.180222322  9.902681     3
## 589  -0.511689604  9.002705     2
## 590   0.685601853  9.465013     4
## 591  -0.173736975 11.552403     3
## 592   1.393242352 11.026206     4
## 593   0.268567472  8.917892     3
## 594  -1.636987901  8.199546     1
## 595   1.835401450 12.681166     5
## 596  -0.452340186  9.815489     3
## 597  -0.799696683  9.252606     2
## 598   0.342219809 10.090585     3
## 599  -0.353939015 10.245691     3
## 600   1.977588803 11.975860     5
## 601   0.156095028  9.654226     3
## 602   1.330314077 11.846375     4
## 603   0.373039571 10.078217     3
## 604   0.039292500 11.492283     3
## 605  -0.735188560  8.028287     2
## 606  -0.568704789  9.301923     2
## 607   0.910888117 10.219764     4
## 608  -1.039822198  8.907092     2
## 609  -0.446081135  9.714929     3
## 610   0.339036768 12.474010     3
## 611   2.041368495 10.819858     5
## 612   0.422898863 12.223897     3
## 613  -0.736497930  9.913714     2
## 614  -0.733804134  9.964526     2
## 615   0.482995879  9.727539     3
## 616   0.696803489 10.176896     4
## 617   3.633343526 13.019397     5
## 618   0.511877324 10.850425     4
## 619  -0.708571127  9.307165     2
## 620  -0.022713203 10.450980     3
## 621  -2.393468733  7.688616     1
## 622   0.877525064 11.811493     4
## 623   0.047464191 11.065506     3
## 624  -1.238311704  9.362130     2
## 625  -0.169411845  8.330338     3
## 626  -0.026160161  9.269468     3
## 627  -0.246515797  9.382262     3
## 628  -0.849054433  7.136076     2
## 629   1.220447980 11.014648     4
## 630  -1.510251887  9.175019     1
## 631  -0.649352107  8.589935     2
## 632  -0.320965500 10.018683     3
## 633  -0.696965277 10.445505     2
## 634  -0.304541229 11.270258     3
## 635   0.764456235 11.349821     4
## 636   0.289808745  9.719309     3
## 637   1.221231701 12.524224     4
## 638  -1.496836064  7.442716     2
## 639   0.311338887 10.790022     3
## 640  -1.000608106  9.680948     2
## 641   0.178684627 10.486747     3
## 642  -0.624976282  9.548832     2
## 643   0.866190328  9.133469     4
## 644   0.344259276 10.696756     3
## 645   1.157662672 11.834561     4
## 646  -0.862599037  8.534549     2
## 647  -0.080423045  9.059114     3
## 648   0.451994064 10.359601     3
## 649  -0.526567937  9.551346     2
## 650   0.537115310 10.324670     4
## 651  -0.097080570  9.064945     3
## 652   0.804204989 11.189868     4
## 653   0.738336536 10.740445     4
## 654  -0.430079887 10.238990     3
## 655  -1.535874838  8.545631     1
## 656   1.216348927 11.712319     4
## 657   1.454712323 12.204567     4
## 658  -0.313291418  8.407766     3
## 659  -0.836432773  8.052433     2
## 660  -0.295746759  9.271798     3
## 661   0.993337166 10.410425     4
## 662  -1.401550426  8.823774     2
## 663  -1.125641573  9.227253     2
## 664  -0.711517253 10.528583     2
## 665  -0.486156265  8.452535     3
## 666   0.502995136 10.903379     4
## 667   2.614270345 15.071731     5
## 668  -0.576199784  9.311928     2
## 669  -0.857397592  6.997753     2
## 670   0.137195258 11.285416     3
## 671   0.318882336 10.463431     3
## 672   0.024703052 10.702481     3
## 673   0.158303803  8.773425     3
## 674  -1.425814196  6.994759     2
## 675   0.371423749  9.011063     3
## 676   0.318076130 10.177514     3
## 677   0.430468549 12.464415     3
## 678   0.545856328 12.406933     4
## 679  -0.012467912  9.316919     3
## 680  -1.447402800  8.916007     2
## 681   0.311743071  9.045722     3
## 682   2.856327646 12.979599     5
## 683  -0.457657321 10.434997     3
## 684  -1.150473592  8.223449     2
## 685   0.149492379  8.944800     3
## 686   2.423869254 13.813703     5
## 687   0.395327997 10.472259     3
## 688  -1.527483685  9.843736     1
## 689   1.365710510 11.095547     4
## 690  -0.673812145 10.127107     2
## 691   1.515602878 13.557439     5
## 692  -0.358122716  9.275831     3
## 693   1.842390844 11.391560     5
## 694   0.954318140 10.636711     4
## 695  -0.537679316 10.100710     2
## 696   1.024942002 11.120377     4
## 697  -0.640428791  7.780269     2
## 698   0.014079927  9.796239     3
## 699  -0.394273722  9.496444     3
## 700  -0.848514690 11.143255     2
## 701  -0.882087076  9.237568     2
## 702   0.488054416 10.559141     3
## 703  -1.117098200  8.488661     2
## 704  -0.236689028 10.045898     3
## 705   1.229212626  9.078606     4
## 706   1.214564766 11.830064     4
## 707   0.417955752 12.594175     3
## 708  -1.029026208  8.087597     2
## 709  -0.790772210  9.132502     2
## 710  -0.233274513  9.989098     3
## 711  -0.178465186 10.857012     3
## 712  -0.611748988 10.265914     2
## 713   0.297573889 10.594799     3
## 714   0.351467912  9.562976     3
## 715   0.950206323 11.493958     4
## 716   0.619830891  9.889379     4
## 717   0.652940729  9.298894     4
## 718   1.609661899 11.555792     5
## 719  -1.112584895 10.551086     2
## 720   0.301157915 11.603649     3
## 721   0.185421612  8.669364     3
## 722  -0.386202397 10.148311     3
## 723  -1.509704250 10.460288     1
## 724  -0.402616598  9.652828     3
## 725  -1.349040948  7.615671     2
## 726  -0.566518178  8.727064     2
## 727  -0.810069881  8.163192     2
## 728  -0.866561669  8.175029     2
## 729  -1.015456617  7.271877     2
## 730   0.672428938 10.618652     4
## 731   1.681489902 12.103066     5
## 732   0.219160618 11.450964     3
## 733  -1.115863464  9.081102     2
## 734  -2.197214400  7.022454     1
## 735   0.222240021 10.493002     3
## 736  -0.526806820 10.470843     2
## 737  -0.705000571  9.095891     2
## 738  -0.773870395  9.052765     2
## 739  -0.082765624 10.547792     3
## 740   0.428134207 10.357840     3
## 741  -0.761585464 10.585478     2
## 742   0.511173322  9.605057     4
## 743   0.098474513 12.156613     3
## 744  -1.067026430  7.754746     2
## 745  -0.189400718 10.543373     3
## 746  -0.209701091  8.314623     3
## 747   1.318980008 11.430427     4
## 748  -0.695208127  9.692359     2
## 749   1.565795656 12.684276     5
## 750   0.646710027  9.596862     4
## 751   2.062260897 10.067107     5
## 752  -1.122716193  8.484594     2
## 753   1.367181151 11.810593     4
## 754   0.347070939  8.491581     3
## 755   0.666595959 11.278247     4
## 756  -0.471986713  8.238620     3
## 757  -1.119960991  9.355622     2
## 758   1.186151053 11.476648     4
## 759   0.110329404  9.826685     3
## 760  -0.296145520  8.168130     3
## 761   0.019476223 11.017276     3
## 762   0.642921601  9.737289     4
## 763   1.153550042 11.037234     4
## 764   0.217569800  9.240368     3
## 765   0.194562245 11.839535     3
## 766   0.574655626 10.965067     4
## 767   0.445753531 13.404731     3
## 768  -0.001587512 10.112906     3
## 769  -0.266466115  8.635663     3
## 770   0.440174315 10.895380     3
## 771   1.605834445 13.305036     5
## 772  -2.184962862  7.381334     1
## 773   0.053045413 10.850331     3
## 774   0.252361299  9.038404     3
## 775   1.384573894 11.981798     4
## 776  -0.016832347  9.829934     3
## 777   0.339376285 10.322054     3
## 778   0.999618311 10.446503     4
## 779  -1.118477120  8.380640     2
## 780   0.038661747 10.062248     3
## 781   0.420254572 10.678152     3
## 782   1.345955007 11.108574     4
## 783   1.723048285 11.925439     5
## 784   0.127475974  9.628064     3
## 785   1.458209851 11.787096     4
## 786   0.963515546 10.400436     4
## 787  -0.588626672  9.560403     2
## 788   0.444490832 11.489886     3
## 789  -1.032276210  7.379175     2
## 790  -0.668430393 11.319282     2
## 791   0.873407289 12.247187     4
## 792   0.833224729 12.360997     4
## 793   2.271878466 11.412067     5
## 794   0.255736117 11.410415     3
## 795   0.376063997 10.400289     3
## 796   1.947897616 12.202441     5
## 797   0.868894272 12.144919     4
## 798   0.492040811 10.290248     3
## 799   0.354914300  9.313601     3
## 800   1.535273189 11.303707     5
## 801  -0.943101462  9.855678     2
## 802  -0.127551883 10.759481     3
## 803  -0.374099223 11.254170     3
## 804   0.030379884  8.225531     3
## 805  -1.184353212 10.158240     2
## 806  -1.170239614  7.811101     2
## 807  -1.476686808  9.366942     2
## 808   0.929672907 10.920415     4
## 809  -0.351656971  9.860297     3
## 810  -0.078793027 11.583371     3
## 811   0.346331255  9.720313     3
## 812   1.609488250 11.443166     5
## 813  -0.353341447 11.506478     3
## 814  -1.505750407  9.510469     1
## 815   1.205623116 11.015020     4
## 816  -0.175405449  9.699391     3
## 817   1.008333337 10.997322     4
## 818   1.119052917 11.773492     4
## 819  -0.084413981 10.334790     3
## 820  -0.487624889  9.898777     3
## 821  -0.896476785  8.100210     2
## 822  -0.104155564 11.012343     3
## 823  -1.546350502  7.434018     1
## 824  -1.381647879  8.954092     2
## 825  -1.086599099 10.225131     2
## 826   0.274759667  9.818568     3
## 827   0.067845835  9.966354     3
## 828  -1.378202034  9.084129     2
## 829  -0.627744015  8.242704     2
## 830   0.133071924  9.946897     3
## 831  -0.974501201 10.177354     2
## 832   0.117196628  8.488433     3
## 833   0.927324581 10.287727     4
## 834  -1.410320812  7.327594     2
## 835   0.799335537 10.576108     4
## 836   1.587728636 11.358532     5
## 837   0.147760748 10.733016     3
## 838   3.194282906 14.982182     5
## 839   1.051718456 11.830982     4
## 840   0.188189825 10.036710     3
## 841  -0.515968383 11.218291     2
## 842  -0.792191341  9.032089     2
## 843  -1.981952785 10.005177     1
## 844  -0.350479395 11.017484     3
## 845  -0.064674821  8.665182     3
## 846  -0.286263985  8.672658     3
## 847   0.494415545 11.341519     3
## 848   0.112288515 10.812344     3
## 849  -0.467552607 10.046133     3
## 850   1.586948329 11.230429     5
## 851  -0.126201740 10.346817     3
## 852   0.051947111 10.495213     3
## 853   0.087883797  9.643246     3
## 854  -1.590680247  8.774723     1
## 855   0.860790330 11.621867     4
## 856  -1.640144348  8.482963     1
## 857  -1.171312894  7.786355     2
## 858   0.444754685 10.014583     3
## 859  -0.062342041  8.471249     3
## 860   1.116424241 11.648936     4
## 861  -0.502700124  9.480058     2
## 862   1.237276928 10.859979     4
## 863  -0.843897488  9.786859     2
## 864   0.483690078  9.697075     3
## 865  -1.565059812  9.932802     1
## 866   0.069694073 10.588391     3
## 867  -0.076104262 11.697944     3
## 868   0.816691816 10.341865     4
## 869   1.312575851 11.287815     4
## 870  -0.374282934  8.839471     3
## 871   0.688907145 10.208274     4
## 872  -0.591798927  9.075006     2
## 873  -2.266263362  6.340023     1
## 874   0.539052145 11.827315     4
## 875   0.899224022 10.301752     4
## 876  -1.929334546  8.087192     1
## 877  -1.587267416  8.220668     1
## 878   0.277486776 10.902335     3
## 879  -0.771515305 10.106298     2
## 880  -0.032668146  8.931037     3
## 881  -0.468886125 10.334087     3
## 882  -0.260407292  7.695363     3
## 883  -0.697860868  7.857187     2
## 884   0.557115515 10.323482     4
## 885   0.496068227 10.294313     3
## 886  -0.087442385 10.261645     3
## 887  -1.048683653  9.391015     2
## 888  -0.986622766  8.602027     2
## 889   0.971358240 11.987372     4
## 890  -1.814334416  8.316403     1
## 891   1.535161166 10.790542     5
## 892   1.899382008 11.523205     5
## 893  -0.175227059  9.266662     3
## 894  -0.359634567 10.474661     3
## 895   0.611845755 10.170352     4
## 896   0.999593162 11.444453     4
## 897   0.467231144 10.957611     3
## 898  -1.605175509  7.855888     1
## 899  -0.377313254  9.873629     3
## 900  -0.178539511 10.582727     3
## 901  -0.195058964  9.247469     3
## 902   0.085191133  9.108741     3
## 903  -0.291610254 10.638910     3
## 904  -0.033744288  9.710543     3
## 905  -0.798038918  9.485555     2
## 906   1.403306854 12.118528     4
## 907   0.082348305  9.745099     3
## 908   1.807967426 11.854030     5
## 909   1.318182064 12.030871     4
## 910  -0.618966352  8.283995     2
## 911  -1.410583695  8.140877     2
## 912   0.774142672 11.471567     4
## 913   0.054344103 11.020107     3
## 914   0.210064889 10.321634     3
## 915  -1.761873394  8.777337     1
## 916  -1.994768236  7.587117     1
## 917  -1.253102214  7.882229     2
## 918   0.246012840 11.666532     3
## 919  -0.095518180 10.652013     3
## 920   0.672101908 10.863807     4
## 921  -0.720362286 10.229232     2
## 922   1.041246838 10.600186     4
## 923  -0.907743325 10.704549     2
## 924  -0.954030346 10.102389     2
## 925  -0.464865883  9.277763     3
## 926  -0.831112181  6.798473     2
## 927  -1.719333878  6.718707     1
## 928  -0.529865230  9.046435     2
## 929   0.069169634 10.350717     3
## 930   1.938121500 11.987272     5
## 931  -0.766743801  9.406434     2
## 932  -0.053625169  9.382576     3
## 933   1.671530581 12.988683     5
## 934  -0.308250139  7.747107     3
## 935   0.389268530 10.487333     3
## 936  -1.402964733  8.783498     2
## 937   1.341743219 10.663062     4
## 938  -1.683303067  8.095103     1
## 939   1.929079119 11.235099     5
## 940   1.221879440 10.881206     4
## 941   1.883072266 10.872247     5
## 942   0.656096562  9.148822     4
## 943  -0.844346400  8.724568     2
## 944   0.874849359  9.853004     4
## 945  -0.147104935 10.604037     3
## 946   0.399214411 11.887905     3
## 947  -1.678881792  9.301167     1
## 948   0.675934449 10.348077     4
## 949   0.434027638 10.785635     3
## 950   0.943389646 11.485176     4
## 951   0.658900519  9.833480     4
## 952   0.233482301  9.333621     3
## 953   0.595119424 10.043656     4
## 954  -1.570496768  8.002941     1
## 955   0.060599542  8.976663     3
## 956  -0.313366595  9.033830     3
## 957   1.420448070 12.643838     4
## 958  -0.310187279  8.643599     3
## 959   0.560290759 10.570244     4
## 960  -0.081891366  9.220717     3
## 961  -0.910669904  9.729632     2
## 962  -0.726287992  8.684801     2
## 963   1.120339395 11.137318     4
## 964  -0.799183906  8.299191     2
## 965   1.308598132 10.184550     4
## 966  -1.263226872 10.634919     2
## 967  -1.034056381  8.981974     2
## 968   0.118231469  8.713351     3
## 969   0.628168597  9.144875     4
## 970  -0.681237335  7.741870     2
## 971  -0.819949284  8.572559     2
## 972  -1.271380526  9.128785     2
## 973   1.396863907 10.100143     4
## 974  -2.334221090  7.861970     1
## 975  -1.843780431  9.022187     1
## 976   0.833667310 10.039965     4
## 977   0.231888285  9.635857     3
## 978  -1.387196784  7.127667     2
## 979   1.018121197 12.168637     4
## 980  -0.604045816 10.127696     2
## 981   0.385617493 11.103067     3
## 982  -0.316093351 10.278076     3
## 983  -1.272109874  9.900749     2
## 984  -1.602642187  8.718282     1
## 985   0.670563997 10.469986     4
## 986   0.484104046 11.087765     3
## 987  -1.546103890  8.640413     1
## 988   0.326592883  9.111453     3
## 989   0.435211345  8.549869     3
## 990   0.858593482 10.414574     4
## 991   0.318474272  9.403956     3
## 992  -0.399719724  9.480204     3
## 993  -0.363564173 10.991421     3
## 994   1.185831416 11.856783     4
## 995  -1.391081983  8.580385     2
## 996   0.133193482 10.730682     3
## 997   0.257032225 10.778513     3
## 998   1.687801740 11.517225     5
## 999  -0.958605890  7.126223     2
## 1000 -0.351586614  8.357242     3
# creates plot object using ggplot
plot <- ggplot(sample_data, aes(x = xAxis, y= yAxis, col = as.factor(group)))+
  geom_point()+theme(legend.position = "none")
# Display plot
plot
# Insert marginal ditribution using marginal function
ggMarginal(plot,type= 'histogram',groupColour=TRUE,groupFill=TRUE)