1. descriptives

a. stimui

table.means <- aggregate(cbind(money, donate, propDonate, need, diff) ~ stimulus, data = d, FUN = mean)
table.means[2:6] <- round(table.means[2:6], 2)
table.means
##                                 stimulus money donate propDonate need diff
## 1                          A Home Within  0.55   0.17       0.32 4.80 3.12
## 2                                 Andrea  0.57   0.17       0.31 4.59 2.84
## 3                              anonymous  0.52   0.12       0.22 3.34 2.31
## 4                                   Asia  0.57   0.18       0.33 4.58 3.01
## 5  Community Forward Holiday Gift Giving  0.56   0.17       0.31 4.82 3.07
## 6            Community Table Food Pantry  0.58   0.18       0.32 4.83 3.00
## 7       Covid-19 Emergency Response Fund  0.59   0.20       0.32 4.74 3.05
## 8                                    Jay  0.56   0.18       0.32 4.63 2.97
## 9                                   John  0.57   0.19       0.33 4.51 2.92
## 10          Kids In Need of Desks (KIND)  0.56   0.19       0.32 4.86 3.18
## 11                            Lighthouse  0.58   0.18       0.31 4.69 3.02
## 12                                  Lisa  0.58   0.19       0.33 4.61 2.95
## 13        Motor City Transportation Fund  0.60   0.19       0.32 4.86 3.06
## 14                                 Nancy  0.59   0.20       0.32 4.54 2.91
## 15                                  Nate  0.56   0.18       0.33 4.67 2.96
## 16              Project Homeless Connect  0.59   0.18       0.31 4.80 3.03
## 17                                Stacey  0.60   0.20       0.34 4.61 2.94
## 18                               Stanley  0.58   0.19       0.32 4.58 2.93
## 19                               Tamekia  0.59   0.19       0.33 4.55 2.91
## 20                             U-Inspire  0.59   0.19       0.32 4.74 3.12
## 21                  Wildfire Relief Fund  0.57   0.18       0.32 4.75 3.02
table.sd <- aggregate(cbind(money, donate, propDonate, need, diff) ~ stimulus, data = d, FUN = sd)
table.sd[2:6] <- round(table.sd[2:6], 2)
table.sd
##                                 stimulus money donate propDonate need diff
## 1                          A Home Within  0.27   0.22       0.36 1.81 1.91
## 2                                 Andrea  0.27   0.23       0.36 1.79 1.80
## 3                              anonymous  0.26   0.15       0.25 1.58 1.58
## 4                                   Asia  0.27   0.23       0.35 1.75 1.87
## 5  Community Forward Holiday Gift Giving  0.27   0.22       0.35 1.74 1.93
## 6            Community Table Food Pantry  0.27   0.25       0.37 1.72 1.88
## 7       Covid-19 Emergency Response Fund  0.27   0.26       0.36 1.80 1.92
## 8                                    Jay  0.27   0.23       0.36 1.71 1.83
## 9                                   John  0.27   0.25       0.37 1.78 1.79
## 10          Kids In Need of Desks (KIND)  0.28   0.25       0.36 1.77 1.94
## 11                            Lighthouse  0.28   0.24       0.36 1.77 1.85
## 12                                  Lisa  0.28   0.26       0.36 1.76 1.85
## 13        Motor City Transportation Fund  0.27   0.24       0.35 1.72 1.89
## 14                                 Nancy  0.28   0.26       0.36 1.84 1.82
## 15                                  Nate  0.27   0.23       0.36 1.78 1.89
## 16              Project Homeless Connect  0.27   0.23       0.35 1.77 1.88
## 17                                Stacey  0.28   0.26       0.37 1.85 1.85
## 18                               Stanley  0.27   0.25       0.36 1.78 1.82
## 19                               Tamekia  0.26   0.24       0.35 1.79 1.86
## 20                             U-Inspire  0.27   0.25       0.35 1.77 1.93
## 21                  Wildfire Relief Fund  0.27   0.24       0.36 1.79 1.89

b. condition

table.means <- aggregate(cbind(money, donate, propDonate, need, diff) ~ condition, data = d, FUN = mean)
table.means[2:6] <- round(table.means[2:6], 2)
table.means
##    condition money donate propDonate need diff
## 1    charity  0.58   0.18       0.32 4.79 3.07
## 2 individual  0.58   0.19       0.33 4.59 2.93
## 3   practice  0.52   0.12       0.22 3.34 2.31
table.sd <- aggregate(cbind(money, donate, propDonate, need, diff) ~ condition, data = d, FUN = sd)
table.sd[2:6] <- round(table.sd[2:6], 2)
table.sd
##    condition money donate propDonate need diff
## 1    charity  0.27   0.24       0.35 1.76 1.90
## 2 individual  0.27   0.24       0.36 1.78 1.84
## 3   practice  0.26   0.15       0.25 1.58 1.58

1. does condition predict difference or need?

singular random intercepts for stimulus

summary(m1 <- lmer(need ~ indiv_1 + charity_1 + (indiv_1 + charity_1 | participant),
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)), data = d))
## Linear mixed model fit by REML ['lmerMod']
## Formula: need ~ indiv_1 + charity_1 + (indiv_1 + charity_1 | participant)
##    Data: d
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
## REML criterion at convergence: 33266.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8292 -0.4541  0.0383  0.5284  4.5838 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev. Corr       
##  participant (Intercept) 1.917    1.385               
##              indiv_1     1.463    1.209    -0.56      
##              charity_1   1.662    1.289    -0.55  0.78
##  Residual                1.360    1.166               
## Number of obs: 9827, groups:  participant, 378
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  3.33907    0.07531   44.34
## indiv_1      1.24797    0.06949   17.96
## charity_1    1.44930    0.07320   19.80
## 
## Correlation of Fixed Effects:
##           (Intr) indv_1
## indiv_1   -0.590       
## charity_1 -0.584  0.753
summary(m2 <- lmer(diff ~ indiv_1 + charity_1 + (indiv_1 + charity_1 | participant),
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)), data = d))
## Linear mixed model fit by REML ['lmerMod']
## Formula: diff ~ indiv_1 + charity_1 + (indiv_1 + charity_1 | participant)
##    Data: d
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
## REML criterion at convergence: 29722.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.9340 -0.4237 -0.0409  0.4092  5.3215 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev. Corr       
##  participant (Intercept) 1.9329   1.3903              
##              indiv_1     1.2910   1.1362   -0.26      
##              charity_1   1.4443   1.2018   -0.25  0.82
##  Residual                0.9105   0.9542              
## Number of obs: 9827, groups:  participant, 378
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  2.30908    0.07426  31.093
## indiv_1      0.62531    0.06370   9.817
## charity_1    0.75760    0.06681  11.340
## 
## Correlation of Fixed Effects:
##           (Intr) indv_1
## indiv_1   -0.310       
## charity_1 -0.301  0.791
tab_model(m1, m2,
          show.ci = .95,
          show.se = T,
          show.stat = T,
          string.stat = "t",
          string.se="SE",
          string.est = "B",
          digits = 2)
  need diff
Predictors B SE CI t p B SE CI t p
(Intercept) 3.34 0.08 3.19 – 3.49 44.34 <0.001 2.31 0.07 2.16 – 2.45 31.09 <0.001
indiv_1 1.25 0.07 1.11 – 1.38 17.96 <0.001 0.63 0.06 0.50 – 0.75 9.82 <0.001
charity_1 1.45 0.07 1.31 – 1.59 19.80 <0.001 0.76 0.07 0.63 – 0.89 11.34 <0.001
Random Effects
σ2 1.36 0.91
τ00 1.92 participant 1.93 participant
τ11 1.46 participant.indiv_1 1.29 participant.indiv_1
1.66 participant.charity_1 1.44 participant.charity_1
ρ01 -0.56 -0.26
-0.55 -0.25
ICC 0.55 0.72
N 378 participant 378 participant
Observations 9827 9827
Marginal R2 / Conditional R2 0.099 / 0.591 0.026 / 0.729

- difference plot

ggplot(data = d[(!is.na(d$condition)) & !is.na(d$diff),]) + #exclude NA pts on DV + IV manip
  geom_point(shape = 16, #scatter points
             size = .5,
             position = position_jitterdodge( #spreads scatter points out
               dodge.width = 0.9, 
               jitter.height = 0.8),
             aes(y = diff, x = condition, #categorical IV
                 color = condition, #for third var add here 
                 fill = condition), #for third var add here 
             alpha = .2) +
  geom_bar(stat = 'summary', 
           fun.y = 'mean', 
           position = 'dodge',
           aes(y = diff, 
               x = condition,
               color = condition, 
               fill = condition),  
           alpha = .3) + #data point transparency
  scale_color_manual(values = c("darkseagreen", "darkorchid1", "coral1")) + #aesthetic
  scale_fill_manual(values = c("darkseagreen", "darkorchid1", "coral1")) + #aesthetic
  ylab("By sending money, how much of a  \ndifference do you think you could make?") + #aesthetic
  theme(panel.grid = element_blank(), #aesthetic
        legend.title = element_blank(),
        panel.background = element_rect(fill = 'white'), 
        axis.text.x  = element_text(size = 14),
        axis.title.x = element_blank(),
        axis.title.y = element_text(size = 14), 
        axis.text.y  = element_text(size = 14)) +
  coord_cartesian(ylim = c(1, 7)) + #aesthetic
  stat_summary(fun.data = mean_se, # adds SE bars--may need to do some trial and error to get SE colors to match the chart bars
               geom = "errorbar",
               position = position_dodge(.9),
               width = .3, aes(y = diff, x = condition, color = condition, 
                             fill = condition), 
               colour = c("darkseagreen4", "darkorchid3", "coral3")) + 
  geom_hline(yintercept = 0, color = 'gray70') 
## Warning: Ignoring unknown parameters: fun.y
## Warning: Ignoring unknown aesthetics: fill
## No summary function supplied, defaulting to `mean_se()`

  #+ facet_grid(~variablename) -- if want to add 4th variable

- need plot

ggplot(data = d[(!is.na(d$condition)) & !is.na(d$need),]) + #exclude NA pts on DV + IV manip
  geom_point(shape = 16, #scatter points
             size = .5,
             position = position_jitterdodge( #spreads scatter points out
               dodge.width = 0.9, 
               jitter.height = 0.8),
             aes(y = need, x = condition, #categorical IV
                 color = condition, #for third var add here 
                 fill = condition), #for third var add here 
             alpha = .2) +
  geom_bar(stat = 'summary', 
           fun.y = 'mean', 
           position = 'dodge',
           aes(y = need, 
               x = condition,
               color = condition, 
               fill = condition),  
           alpha = .3) + #data point transparency
  scale_color_manual(values = c("darkseagreen", "darkorchid1", "coral1")) + #aesthetic
  scale_fill_manual(values = c("darkseagreen", "darkorchid1", "coral1")) + #aesthetic
  ylab("How much do you think ____ is in\n genuine need?") + #aesthetic
  theme(panel.grid = element_blank(), #aesthetic
        legend.title = element_blank(),
        panel.background = element_rect(fill = 'white'), 
        axis.text.x  = element_text(size = 14),
        axis.title.x = element_blank(),
        axis.title.y = element_text(size = 14), 
        axis.text.y  = element_text(size = 14)) +
  coord_cartesian(ylim = c(1, 7)) + #aesthetic
  stat_summary(fun.data = mean_se, # adds SE bars--may need to do some trial and error to get SE colors to match the chart bars
               geom = "errorbar",
               position = position_dodge(.9),
               width = .3, aes(y = need, x = condition, color = condition, 
                             fill = condition), 
               colour = c("darkseagreen4", "darkorchid3", "coral3")) + 
  geom_hline(yintercept = 0, color = 'gray70') 
## Warning: Ignoring unknown parameters: fun.y
## Warning: Ignoring unknown aesthetics: fill
## No summary function supplied, defaulting to `mean_se()`

  #+ facet_grid(~variablename) -- if want to add 4th variable

1. does condition predict donations?

a. raw donated

summary(m1 <- lmer(donate ~ indiv_1 + charity_1 + (indiv_1 + charity_1 | participant) + (1 | stimulus),
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)), data = d))
## Linear mixed model fit by REML ['lmerMod']
## Formula: donate ~ indiv_1 + charity_1 + (indiv_1 + charity_1 | participant) +  
##     (1 | stimulus)
##    Data: d
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
## REML criterion at convergence: -6459
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0574 -0.4435 -0.0785  0.2429  5.7846 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. Corr     
##  participant (Intercept) 9.628e-03 0.098123          
##              indiv_1     7.087e-03 0.084183 0.77     
##              charity_1   7.300e-03 0.085441 0.67 0.91
##  stimulus    (Intercept) 4.279e-05 0.006541          
##  Residual                2.633e-02 0.162251          
## Number of obs: 9828, groups:  participant, 378; stimulus, 21
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept) 0.115520   0.008937  12.926
## indiv_1     0.072178   0.009186   7.857
## charity_1   0.066646   0.009217   7.231
## 
## Correlation of Fixed Effects:
##           (Intr) indv_1
## indiv_1   -0.458       
## charity_1 -0.480  0.848
summary(m2 <- lmer(donate ~ pract_1 + charity_1 + (pract_1 + charity_1 | participant) + (1 | stimulus),
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)), data = d))
## Linear mixed model fit by REML ['lmerMod']
## Formula: donate ~ pract_1 + charity_1 + (pract_1 + charity_1 | participant) +  
##     (1 | stimulus)
##    Data: d
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
## REML criterion at convergence: -6459
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0574 -0.4435 -0.0785  0.2429  5.7846 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. Corr       
##  participant (Intercept) 2.942e-02 0.171515            
##              pract_1     7.087e-03 0.084183 -0.93      
##              charity_1   1.257e-03 0.035452 -0.21  0.17
##  stimulus    (Intercept) 4.279e-05 0.006541            
##  Residual                2.633e-02 0.162251            
## Number of obs: 9828, groups:  participant, 378; stimulus, 21
## 
## Fixed effects:
##              Estimate Std. Error t value
## (Intercept)  0.187698   0.009438  19.888
## pract_1     -0.072178   0.009186  -7.857
## charity_1   -0.005532   0.005080  -1.089
## 
## Correlation of Fixed Effects:
##           (Intr) prct_1
## pract_1   -0.540       
## charity_1 -0.304  0.270
summary(m3 <- lmer(donate ~ pract_1 + indiv_1 + (indiv_1 + pract_1 | participant),
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)), data = d))
## Linear mixed model fit by REML ['lmerMod']
## Formula: donate ~ pract_1 + indiv_1 + (indiv_1 + pract_1 | participant)
##    Data: d
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
## REML criterion at convergence: -6456.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0330 -0.4495 -0.0798  0.2411  5.7928 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev. Corr       
##  participant (Intercept) 0.028166 0.16783             
##              indiv_1     0.001250 0.03536   0.00      
##              pract_1     0.007291 0.08539  -0.90  0.24
##  Residual                0.026359 0.16235             
## Number of obs: 9828, groups:  participant, 378
## 
## Fixed effects:
##              Estimate Std. Error t value
## (Intercept)  0.182167   0.009027  20.180
## pract_1     -0.066646   0.006155 -10.828
## indiv_1      0.005532   0.004154   1.332
## 
## Correlation of Fixed Effects:
##         (Intr) prct_1
## pract_1 -0.741       
## indiv_1 -0.186  0.348
tab_model(m1, m2, m3,
          show.ci = .95,
          show.se = T,
          show.stat = T,
          string.stat = "t",
          string.se="SE",
          string.est = "B",
          digits = 2)
  donate donate donate
Predictors B SE CI t p B SE CI t p B SE CI t p
(Intercept) 0.12 0.01 0.10 – 0.13 12.93 <0.001 0.19 0.01 0.17 – 0.21 19.89 <0.001 0.18 0.01 0.16 – 0.20 20.18 <0.001
indiv_1 0.07 0.01 0.05 – 0.09 7.86 <0.001 0.01 0.00 -0.00 – 0.01 1.33 0.183
charity_1 0.07 0.01 0.05 – 0.08 7.23 <0.001 -0.01 0.01 -0.02 – 0.00 -1.09 0.276
pract_1 -0.07 0.01 -0.09 – -0.05 -7.86 <0.001 -0.07 0.01 -0.08 – -0.05 -10.83 <0.001
Random Effects
σ2 0.03 0.03 0.03
τ00 0.01 participant 0.03 participant 0.03 participant
0.00 stimulus 0.00 stimulus  
τ11 0.01 participant.indiv_1 0.01 participant.pract_1 0.00 participant.indiv_1
0.01 participant.charity_1 0.00 participant.charity_1 0.01 participant.pract_1
ρ01 0.77 participant.indiv_1 -0.93 participant.pract_1 -0.00
0.67 participant.charity_1 -0.21 participant.charity_1 -0.90
ICC 0.48 0.48 0.48
N 378 participant 378 participant 378 participant
21 stimulus 21 stimulus  
Observations 9828 9828 9828
Marginal R2 / Conditional R2 0.017 / 0.490 0.017 / 0.490 0.017 / 0.489

2. proportion donated

singular random intercepts for stimulus

summary(m4 <- lmer(propDonate ~ indiv_1 + charity_1 + (indiv_1 + charity_1 | participant),
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)), data = d))
## Linear mixed model fit by REML ['lmerMod']
## Formula: propDonate ~ indiv_1 + charity_1 + (indiv_1 + charity_1 | participant)
##    Data: d
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
## REML criterion at convergence: -3361.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.7629 -0.3035 -0.0273  0.2403  5.0872 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev. Corr     
##  participant (Intercept) 0.04671  0.2161            
##              indiv_1     0.03234  0.1798   0.16     
##              charity_1   0.03400  0.1844   0.10 0.82
##  Residual                0.03240  0.1800            
## Number of obs: 9828, groups:  participant, 378
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  0.22262    0.01174  18.960
## indiv_1      0.10333    0.01041   9.924
## charity_1    0.09376    0.01062   8.828
## 
## Correlation of Fixed Effects:
##           (Intr) indv_1
## indiv_1    0.016       
## charity_1 -0.028  0.780
summary(m5 <- lmer(propDonate ~ pract_1 + charity_1 + (pract_1 + charity_1 | participant),
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)), data = d))
## Linear mixed model fit by REML ['lmerMod']
## Formula: propDonate ~ pract_1 + charity_1 + (pract_1 + charity_1 | participant)
##    Data: d
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
## REML criterion at convergence: -3361.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.7629 -0.3035 -0.0273  0.2403  5.0872 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev. Corr       
##  participant (Intercept) 0.09129  0.3021              
##              pract_1     0.03234  0.1798   -0.71      
##              charity_1   0.01189  0.1091   -0.22  0.26
##  Residual                0.03240  0.1800              
## Number of obs: 9828, groups:  participant, 378
## 
## Fixed effects:
##              Estimate Std. Error t value
## (Intercept)  0.325947   0.015814  20.611
## pract_1     -0.103330   0.010412  -9.924
## charity_1   -0.009566   0.006972  -1.372
## 
## Correlation of Fixed Effects:
##           (Intr) prct_1
## pract_1   -0.670       
## charity_1 -0.249  0.304
summary(m6 <- lmer(propDonate ~ pract_1 + indiv_1 + (indiv_1 + pract_1 | participant),
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000)), data = d))
## Linear mixed model fit by REML ['lmerMod']
## Formula: propDonate ~ pract_1 + indiv_1 + (indiv_1 + pract_1 | participant)
##    Data: d
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05))
## 
## REML criterion at convergence: -3361.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.7629 -0.3035 -0.0273  0.2403  5.0872 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev. Corr       
##  participant (Intercept) 0.08892  0.2982              
##              indiv_1     0.01189  0.1091   -0.15      
##              pract_1     0.03400  0.1844   -0.69  0.34
##  Residual                0.03240  0.1800              
## Number of obs: 9828, groups:  participant, 378
## 
## Fixed effects:
##              Estimate Std. Error t value
## (Intercept)  0.316381   0.015615  20.262
## pract_1     -0.093764   0.010621  -8.828
## indiv_1      0.009566   0.006972   1.372
## 
## Correlation of Fixed Effects:
##         (Intr) prct_1
## pract_1 -0.660       
## indiv_1 -0.194  0.358
tab_model(m4, m5, m6,
          show.ci = .95,
          show.se = T,
          show.stat = T,
          string.stat = "t",
          string.se="SE",
          string.est = "B",
          digits = 2)
  propDonate propDonate propDonate
Predictors B SE CI t p B SE CI t p B SE CI t p
(Intercept) 0.22 0.01 0.20 – 0.25 18.96 <0.001 0.33 0.02 0.29 – 0.36 20.61 <0.001 0.32 0.02 0.29 – 0.35 20.26 <0.001
indiv_1 0.10 0.01 0.08 – 0.12 9.92 <0.001 0.01 0.01 -0.00 – 0.02 1.37 0.170
charity_1 0.09 0.01 0.07 – 0.11 8.83 <0.001 -0.01 0.01 -0.02 – 0.00 -1.37 0.170
pract_1 -0.10 0.01 -0.12 – -0.08 -9.92 <0.001 -0.09 0.01 -0.11 – -0.07 -8.83 <0.001
Random Effects
σ2 0.03 0.03 0.03
τ00 0.05 participant 0.09 participant 0.09 participant
τ11 0.03 participant.indiv_1 0.03 participant.pract_1 0.01 participant.indiv_1
0.03 participant.charity_1 0.01 participant.charity_1 0.03 participant.pract_1
ρ01 0.16 -0.71 -0.15
0.10 -0.22 -0.69
ICC 0.71 0.71 0.71
N 378 participant 378 participant 378 participant
Observations 9828 9828 9828
Marginal R2 / Conditional R2 0.015 / 0.716 0.015 / 0.716 0.015 / 0.716

3. do people donate more when allocated more money?

a. raw donated

singular with money.c random slopes

summary(m7 <- lmer(donate ~ (indiv_1 + charity_1) * money.c + (indiv_1 + charity_1 | participant) + (1 | stimulus), 
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000)), data = d))
## Linear mixed model fit by REML ['lmerMod']
## Formula: donate ~ (indiv_1 + charity_1) * money.c + (indiv_1 + charity_1 |  
##     participant) + (1 | stimulus)
##    Data: d
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000))
## 
## REML criterion at convergence: -9298.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0749 -0.5785 -0.0534  0.4756  5.7576 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. Corr     
##  participant (Intercept) 1.086e-02 0.104196          
##              indiv_1     9.053e-03 0.095146 0.52     
##              charity_1   9.266e-03 0.096261 0.44 0.85
##  stimulus    (Intercept) 1.844e-05 0.004294          
##  Residual                1.895e-02 0.137671          
## Number of obs: 9828, groups:  participant, 378; stimulus, 21
## 
## Fixed effects:
##                   Estimate Std. Error t value
## (Intercept)       0.125271   0.007467  16.777
## indiv_1           0.058189   0.007606   7.650
## charity_1         0.052753   0.007643   6.902
## money.c           0.222396   0.011108  20.022
## indiv_1:money.c   0.099772   0.013830   7.214
## charity_1:money.c 0.092507   0.013832   6.688
## 
## Correlation of Fixed Effects:
##             (Intr) indv_1 chrt_1 mony.c in_1:.
## indiv_1     -0.237                            
## charity_1   -0.270  0.820                     
## money.c      0.065 -0.064 -0.064              
## indv_1:mny. -0.052  0.043  0.051 -0.803       
## chrty_1:mn. -0.052  0.051  0.043 -0.803  0.645
summary(m8 <- lmer(donate ~ (pract_1 + charity_1) * money.c + (pract_1 + charity_1 | participant) + (1 | stimulus), 
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000)), data = d))
## Linear mixed model fit by REML ['lmerMod']
## Formula: donate ~ (pract_1 + charity_1) * money.c + (pract_1 + charity_1 |  
##     participant) + (1 | stimulus)
##    Data: d
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000))
## 
## REML criterion at convergence: -9298.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0749 -0.5785 -0.0534  0.4756  5.7576 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. Corr       
##  participant (Intercept) 3.015e-02 0.173651            
##              pract_1     9.053e-03 0.095146 -0.86      
##              charity_1   2.731e-03 0.052262 -0.22  0.25
##  stimulus    (Intercept) 1.844e-05 0.004294            
##  Residual                1.895e-02 0.137671            
## Number of obs: 9828, groups:  participant, 378; stimulus, 21
## 
## Fixed effects:
##                    Estimate Std. Error t value
## (Intercept)        0.183461   0.009308  19.709
## pract_1           -0.058189   0.007606  -7.650
## charity_1         -0.005436   0.004579  -1.187
## money.c            0.322168   0.008240  39.097
## pract_1:money.c   -0.099772   0.013830  -7.214
## charity_1:money.c -0.007265   0.011655  -0.623
## 
## Correlation of Fixed Effects:
##             (Intr) prct_1 chrt_1 mony.c pr_1:.
## pract_1     -0.627                            
## charity_1   -0.285  0.293                     
## money.c     -0.012  0.014  0.024              
## prct_1:mny.  0.007  0.043 -0.014 -0.596       
## chrty_1:mn.  0.008 -0.010 -0.033 -0.707  0.421
tab_model(m7, m8,
          show.ci = .95,
          show.se = T,
          show.stat = T,
          string.stat = "t",
          string.se="SE",
          string.est = "B",
          digits = 2)
  donate donate
Predictors B SE CI t p B SE CI t p
(Intercept) 0.13 0.01 0.11 – 0.14 16.78 <0.001 0.18 0.01 0.17 – 0.20 19.71 <0.001
indiv_1 0.06 0.01 0.04 – 0.07 7.65 <0.001
charity_1 0.05 0.01 0.04 – 0.07 6.90 <0.001 -0.01 0.00 -0.01 – 0.00 -1.19 0.235
money.c 0.22 0.01 0.20 – 0.24 20.02 <0.001 0.32 0.01 0.31 – 0.34 39.10 <0.001
indiv_1 * money.c 0.10 0.01 0.07 – 0.13 7.21 <0.001
charity_1 * money.c 0.09 0.01 0.07 – 0.12 6.69 <0.001 -0.01 0.01 -0.03 – 0.02 -0.62 0.533
pract_1 -0.06 0.01 -0.07 – -0.04 -7.65 <0.001
pract_1 * money.c -0.10 0.01 -0.13 – -0.07 -7.21 <0.001
Random Effects
σ2 0.02 0.02
τ00 0.01 participant 0.03 participant
0.00 stimulus 0.00 stimulus
τ11 0.01 participant.indiv_1 0.01 participant.pract_1
0.01 participant.charity_1 0.00 participant.charity_1
ρ01 0.52 participant.indiv_1 -0.86 participant.pract_1
0.44 participant.charity_1 -0.22 participant.charity_1
ICC 0.57 0.57
N 378 participant 378 participant
21 stimulus 21 stimulus
Observations 9828 9828
Marginal R2 / Conditional R2 0.143 / 0.633 0.143 / 0.633

4.

b. proportion donated

random int for stimulus is singular for both models

summary(m9 <- lmer(propDonate ~ (indiv_1 + charity_1) * money.c + (indiv_1 + charity_1 + money.c | participant), 
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000)), data = d))
## Linear mixed model fit by REML ['lmerMod']
## Formula: propDonate ~ (indiv_1 + charity_1) * money.c + (indiv_1 + charity_1 +  
##     money.c | participant)
##    Data: d
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000))
## 
## REML criterion at convergence: -3360.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.7916 -0.3035 -0.0321  0.2403  5.1241 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev. Corr             
##  participant (Intercept) 0.046946 0.21667                   
##              indiv_1     0.032676 0.18076   0.15            
##              charity_1   0.034262 0.18510   0.10  0.82      
##              money.c     0.005801 0.07616   0.11 -0.15 -0.10
##  Residual                0.031937 0.17871                   
## Number of obs: 9828, groups:  participant, 378
## 
## Fixed effects:
##                    Estimate Std. Error t value
## (Intercept)        0.222461   0.011776  18.891
## indiv_1            0.103552   0.010459   9.901
## charity_1          0.093988   0.010658   8.819
## money.c           -0.003551   0.014941  -0.238
## indiv_1:money.c   -0.001497   0.017951  -0.083
## charity_1:money.c -0.001661   0.017951  -0.093
## 
## Correlation of Fixed Effects:
##             (Intr) indv_1 chrt_1 mony.c in_1:.
## indiv_1      0.008                            
## charity_1   -0.034  0.782                     
## money.c      0.080 -0.093 -0.080              
## indv_1:mny. -0.043  0.041  0.048 -0.775       
## chrty_1:mn. -0.043  0.049  0.040 -0.775  0.645
summary(m10 <- lmer(propDonate ~ (pract_1 + charity_1) * money.c + (pract_1 + charity_1 + money.c | participant), 
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000)), data = d))
## Linear mixed model fit by REML ['lmerMod']
## Formula: propDonate ~ (pract_1 + charity_1) * money.c + (pract_1 + charity_1 +  
##     money.c | participant)
##    Data: d
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000))
## 
## REML criterion at convergence: -3360.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.7916 -0.3035 -0.0321  0.2403  5.1241 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev. Corr             
##  participant (Intercept) 0.091341 0.30223                   
##              pract_1     0.032676 0.18076  -0.71            
##              charity_1   0.011988 0.10949  -0.22  0.26      
##              money.c     0.005801 0.07616  -0.01  0.15  0.08
##  Residual                0.031937 0.17871                   
## Number of obs: 9828, groups:  participant, 378
## 
## Fixed effects:
##                     Estimate Std. Error t value
## (Intercept)        0.3260133  0.0158149  20.614
## pract_1           -0.1035520  0.0104591  -9.901
## charity_1         -0.0095639  0.0069750  -1.371
## money.c           -0.0050480  0.0113887  -0.443
## pract_1:money.c    0.0014966  0.0179514   0.083
## charity_1:money.c -0.0001642  0.0151233  -0.011
## 
## Correlation of Fixed Effects:
##             (Intr) prct_1 chrt_1 mony.c pr_1:.
## pract_1     -0.668                            
## charity_1   -0.249  0.305                     
## money.c     -0.011  0.058  0.042              
## prct_1:mny.  0.005  0.041 -0.012 -0.559       
## chrty_1:mn.  0.006 -0.010 -0.029 -0.664  0.421
tab_model(m9, m10,
          show.ci = .95,
          show.se = T,
          show.stat = T,
          string.stat = "t",
          string.se="SE",
          string.est = "B",
          digits = 2)
  propDonate propDonate
Predictors B SE CI t p B SE CI t p
(Intercept) 0.22 0.01 0.20 – 0.25 18.89 <0.001 0.33 0.02 0.30 – 0.36 20.61 <0.001
indiv_1 0.10 0.01 0.08 – 0.12 9.90 <0.001
charity_1 0.09 0.01 0.07 – 0.11 8.82 <0.001 -0.01 0.01 -0.02 – 0.00 -1.37 0.170
money.c -0.00 0.01 -0.03 – 0.03 -0.24 0.812 -0.01 0.01 -0.03 – 0.02 -0.44 0.658
indiv_1 * money.c -0.00 0.02 -0.04 – 0.03 -0.08 0.934
charity_1 * money.c -0.00 0.02 -0.04 – 0.03 -0.09 0.926 -0.00 0.02 -0.03 – 0.03 -0.01 0.991
pract_1 -0.10 0.01 -0.12 – -0.08 -9.90 <0.001
pract_1 * money.c 0.00 0.02 -0.03 – 0.04 0.08 0.934
Random Effects
σ2 0.03 0.03
τ00 0.05 participant 0.09 participant
τ11 0.03 participant.indiv_1 0.03 participant.pract_1
0.03 participant.charity_1 0.01 participant.charity_1
0.01 participant.money.c 0.01 participant.money.c
ρ01 0.15 -0.71
0.10 -0.22
0.11 -0.01
ICC 0.72 0.72
N 378 participant 378 participant
Observations 9828 9828
Marginal R2 / Conditional R2 0.015 / 0.720 0.015 / 0.720

5. do people donate more when stimluli are in greater need?

a. raw donated

singular with need.c random slopes

summary(m11 <- lmer(donate ~ (indiv_1 + charity_1) * need.c + (indiv_1 + charity_1  | participant) + (1 | stimulus), 
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000)), data = d))
## Linear mixed model fit by REML ['lmerMod']
## Formula: donate ~ (indiv_1 + charity_1) * need.c + (indiv_1 + charity_1 |  
##     participant) + (1 | stimulus)
##    Data: d
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000))
## 
## REML criterion at convergence: -7471.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3465 -0.5027 -0.0947  0.3439  5.4512 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. Corr     
##  participant (Intercept) 6.659e-03 0.081604          
##              indiv_1     4.804e-03 0.069311 0.90     
##              charity_1   5.192e-03 0.072059 0.89 0.93
##  stimulus    (Intercept) 6.345e-05 0.007965          
##  Residual                2.401e-02 0.154961          
## Number of obs: 9827, groups:  participant, 378; stimulus, 21
## 
## Fixed effects:
##                  Estimate Std. Error t value
## (Intercept)      0.147272   0.009843  14.963
## indiv_1          0.031420   0.010244   3.067
## charity_1        0.017850   0.010320   1.730
## need.c           0.030606   0.002204  13.889
## indiv_1:need.c   0.012175   0.002647   4.600
## charity_1:need.c 0.010775   0.002679   4.022
## 
## Correlation of Fixed Effects:
##             (Intr) indv_1 chrt_1 need.c in_1:.
## indiv_1     -0.653                            
## charity_1   -0.645  0.868                     
## need.c       0.232 -0.226 -0.228              
## indv_1:nd.c -0.180  0.154  0.168 -0.775       
## chrty_1:nd. -0.178  0.169  0.130 -0.765  0.673
summary(m12 <- lmer(donate ~ (pract_1 + charity_1) * need.c + (pract_1 + charity_1 | participant) + (1 | stimulus), 
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000)), data = d))
## Linear mixed model fit by REML ['lmerMod']
## Formula: donate ~ (pract_1 + charity_1) * need.c + (pract_1 + charity_1 |  
##     participant) + (1 | stimulus)
##    Data: d
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000))
## 
## REML criterion at convergence: -7471.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3465 -0.5027 -0.0947  0.3439  5.4512 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. Corr       
##  participant (Intercept) 2.163e-02 0.147087            
##              pract_1     4.804e-03 0.069311 -0.97      
##              charity_1   7.476e-04 0.027343  0.00  0.09
##  stimulus    (Intercept) 6.345e-05 0.007965            
##  Residual                2.401e-02 0.154961            
## Number of obs: 9827, groups:  participant, 378; stimulus, 21
## 
## Fixed effects:
##                   Estimate Std. Error t value
## (Intercept)       0.178692   0.008370  21.349
## pract_1          -0.031420   0.010244  -3.067
## charity_1        -0.013570   0.005283  -2.569
## need.c            0.042780   0.001680  25.459
## pract_1:need.c   -0.012175   0.002647  -4.600
## charity_1:need.c -0.001400   0.002155  -0.650
## 
## Correlation of Fixed Effects:
##             (Intr) prct_1 chrt_1 need.c pr_1:.
## pract_1     -0.456                            
## charity_1   -0.289  0.243                     
## need.c      -0.042  0.055  0.040              
## prct_1:nd.c  0.024  0.154 -0.030 -0.559       
## chrty_1:nd.  0.026 -0.021 -0.129 -0.617  0.392
tab_model(m11, m12,
          show.ci = .95,
          show.se = T,
          show.stat = T,
          string.stat = "t",
          string.se="SE",
          string.est = "B",
          digits = 2)
  donate donate
Predictors B SE CI t p B SE CI t p
(Intercept) 0.15 0.01 0.13 – 0.17 14.96 <0.001 0.18 0.01 0.16 – 0.20 21.35 <0.001
indiv_1 0.03 0.01 0.01 – 0.05 3.07 0.002
charity_1 0.02 0.01 -0.00 – 0.04 1.73 0.084 -0.01 0.01 -0.02 – -0.00 -2.57 0.010
need.c 0.03 0.00 0.03 – 0.03 13.89 <0.001 0.04 0.00 0.04 – 0.05 25.46 <0.001
indiv_1 * need.c 0.01 0.00 0.01 – 0.02 4.60 <0.001
charity_1 * need.c 0.01 0.00 0.01 – 0.02 4.02 <0.001 -0.00 0.00 -0.01 – 0.00 -0.65 0.516
pract_1 -0.03 0.01 -0.05 – -0.01 -3.07 0.002
pract_1 * need.c -0.01 0.00 -0.02 – -0.01 -4.60 <0.001
Random Effects
σ2 0.02 0.02
τ00 0.01 participant 0.02 participant
0.00 stimulus 0.00 stimulus
τ11 0.00 participant.indiv_1 0.00 participant.pract_1
0.01 participant.charity_1 0.00 participant.charity_1
ρ01 0.90 participant.indiv_1 -0.97 participant.pract_1
0.89 participant.charity_1 -0.00 participant.charity_1
ICC 0.44 0.44
N 378 participant 378 participant
21 stimulus 21 stimulus
Observations 9827 9827
Marginal R2 / Conditional R2 0.118 / 0.502 0.118 / 0.502
mplot <- lmer(donate ~ condition * need.c + (condition | participant) + (1 | stimulus), 
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000)), data = d)

(p <- plot_model(mplot, type = "pred", 
                terms = c("need.c", "condition")) +
  ggtitle("") + 
  ylab("proportion donated") +
  xlab("mean-centered need rating") +
  theme_minimal() +
  theme(panel.grid.major = element_blank(), 
        panel.grid.minor = element_blank(),
        panel.background = element_blank(), 
        axis.line = element_line(colour = "black"),
        legend.position = c(.5, .8), 
        legend.direction = "horizontal", 
        legend.box = "horizontal",
        legend.background = element_rect(fill = "white", color = "white"),
        legend.title = element_blank()) +
  scale_color_manual(
    labels = c("charity","individual", "practice"),
    values = c("blue", "red", "purple")) +
  scale_fill_manual(values = c("blue", "red", "purple")) +
  scale_x_continuous(breaks = c(-2.5, -2, -1.5, -1, -.5, 0, .5, 1, 1.5, 2, 2.5), 
                     limits = c(-2.5, 3)) +
  scale_y_continuous(breaks = c(0, .10, .20, .30, .40), 
                     limits = c(0, .4)))
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
## Scale for 'y' is already present. Adding another scale for 'y', which will
## replace the existing scale.
## Warning: Removed 3 row(s) containing missing values (geom_path).

b. proportion donated

summary(m13 <- lmer(propDonate ~ (indiv_1 + charity_1) * need.c + (indiv_1 + charity_1 + need.c | participant)+ (1 | stimulus), 
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000)), data = d))
## Linear mixed model fit by REML ['lmerMod']
## Formula: propDonate ~ (indiv_1 + charity_1) * need.c + (indiv_1 + charity_1 +  
##     need.c | participant) + (1 | stimulus)
##    Data: d
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000))
## 
## REML criterion at convergence: -7240.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.0573 -0.3088 -0.0311  0.2570  6.3962 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. Corr             
##  participant (Intercept) 5.290e-02 0.229991                  
##              indiv_1     1.510e-02 0.122883 -0.09            
##              charity_1   1.912e-02 0.138289 -0.16  0.75      
##              need.c      3.388e-03 0.058205  0.62  0.06 -0.11
##  stimulus    (Intercept) 2.158e-05 0.004645                  
##  Residual                2.031e-02 0.142513                  
## Number of obs: 9827, groups:  participant, 378; stimulus, 21
## 
## Fixed effects:
##                  Estimate Std. Error t value
## (Intercept)      0.266624   0.013647  19.537
## indiv_1          0.034138   0.009694   3.522
## charity_1        0.010896   0.010265   1.061
## need.c           0.050044   0.004611  10.854
## indiv_1:need.c   0.021589   0.003778   5.714
## charity_1:need.c 0.024938   0.003871   6.443
## 
## Correlation of Fixed Effects:
##             (Intr) indv_1 chrt_1 need.c in_1:.
## indiv_1     -0.387                            
## charity_1   -0.412  0.800                     
## need.c       0.545 -0.260 -0.322              
## indv_1:nd.c -0.232  0.310  0.306 -0.660       
## chrty_1:nd. -0.234  0.320  0.266 -0.649  0.800
summary(m14 <- lmer(propDonate ~ (pract_1 + charity_1) * need.c + (pract_1 + charity_1 + need.c | participant)+ (1 | stimulus), 
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000)), data = d))
## Linear mixed model fit by REML ['lmerMod']
## Formula: propDonate ~ (pract_1 + charity_1) * need.c + (pract_1 + charity_1 +  
##     need.c | participant) + (1 | stimulus)
##    Data: d
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000))
## 
## REML criterion at convergence: -7240.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.0573 -0.3088 -0.0311  0.2570  6.3962 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. Corr             
##  participant (Intercept) 6.314e-02 0.251280                  
##              pract_1     1.510e-02 0.122883 -0.41            
##              charity_1   8.773e-03 0.093663 -0.21  0.21      
##              need.c      3.388e-03 0.058205  0.60 -0.06 -0.25
##  stimulus    (Intercept) 2.158e-05 0.004645                  
##  Residual                2.031e-02 0.142513                  
## Number of obs: 9827, groups:  participant, 378; stimulus, 21
## 
## Fixed effects:
##                   Estimate Std. Error t value
## (Intercept)       0.300762   0.013339  22.548
## pract_1          -0.034138   0.009694  -3.522
## charity_1        -0.023242   0.006338  -3.667
## need.c            0.071632   0.003540  20.233
## pract_1:need.c   -0.021589   0.003778  -5.714
## charity_1:need.c  0.003349   0.002419   1.385
## 
## Correlation of Fixed Effects:
##             (Intr) prct_1 chrt_1 need.c pr_1:.
## pract_1     -0.331                            
## charity_1   -0.248  0.234                     
## need.c       0.467  0.008 -0.137              
## prct_1:nd.c  0.012  0.310 -0.022 -0.208       
## chrty_1:nd.  0.008 -0.027 -0.127 -0.311  0.281
tab_model(m13, m14,
          show.ci = .95,
          show.se = T,
          show.stat = T,
          string.stat = "t",
          string.se="SE",
          string.est = "B",
          digits = 2)
  propDonate propDonate
Predictors B SE CI t p B SE CI t p
(Intercept) 0.27 0.01 0.24 – 0.29 19.54 <0.001 0.30 0.01 0.27 – 0.33 22.55 <0.001
indiv_1 0.03 0.01 0.02 – 0.05 3.52 <0.001
charity_1 0.01 0.01 -0.01 – 0.03 1.06 0.288 -0.02 0.01 -0.04 – -0.01 -3.67 <0.001
need.c 0.05 0.00 0.04 – 0.06 10.85 <0.001 0.07 0.00 0.06 – 0.08 20.23 <0.001
indiv_1 * need.c 0.02 0.00 0.01 – 0.03 5.71 <0.001
charity_1 * need.c 0.02 0.00 0.02 – 0.03 6.44 <0.001 0.00 0.00 -0.00 – 0.01 1.38 0.166
pract_1 -0.03 0.01 -0.05 – -0.02 -3.52 <0.001
pract_1 * need.c -0.02 0.00 -0.03 – -0.01 -5.71 <0.001
Random Effects
σ2 0.02 0.02
τ00 0.05 participant 0.06 participant
0.00 stimulus 0.00 stimulus
τ11 0.02 participant.indiv_1 0.02 participant.pract_1
0.02 participant.charity_1 0.01 participant.charity_1
0.00 participant.need.c 0.00 participant.need.c
ρ01 -0.09 participant.indiv_1 -0.41 participant.pract_1
-0.16 participant.charity_1 -0.21 participant.charity_1
0.62 participant.need.c 0.60 participant.need.c
ICC 0.78 0.78
N 378 participant 378 participant
21 stimulus 21 stimulus
Observations 9827 9827
Marginal R2 / Conditional R2 0.149 / 0.812 0.149 / 0.812
mplot <- lmer(propDonate ~ condition * need.c + (condition + need.c | participant)+ (1 | stimulus), 
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000)), data = d)


(p <- plot_model(mplot, type = "pred", 
                terms = c("need.c", "condition")) +
  ggtitle("") + 
  ylab("proportion donated") +
  xlab("mean-centered need rating") +
  theme_minimal() +
  theme(panel.grid.major = element_blank(), 
        panel.grid.minor = element_blank(),
        panel.background = element_blank(), 
        axis.line = element_line(colour = "black"),
        legend.position = c(.5, .2), 
        legend.direction = "horizontal", 
        legend.box = "horizontal",
        legend.background = element_rect(fill = "white", color = "white"),
        legend.title = element_blank()) +
  scale_color_manual(
    labels = c("charity","individual", "practice"),
    values = c("blue", "red", "purple")) +
  scale_fill_manual(values = c("blue", "red", "purple")) +
  scale_x_continuous(breaks = c(-2.5, -2, -1.5, -1, -.5, 0, .5, 1, 1.5, 2, 2.5), 
                     limits = c(-2.5, 3)) +
  scale_y_continuous(breaks = c(0, .10, .20, .30, .40, .50, .6), 
                     limits = c(0, .6)))
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
## Scale for 'y' is already present. Adding another scale for 'y', which will
## replace the existing scale.
## Warning: Removed 3 row(s) containing missing values (geom_path).

6. do people donate more when givig makes a greater difference?

a. raw donated

summary(m15 <- lmer(donate ~ (indiv_1 + charity_1) * diff.c + (indiv_1 + charity_1 + diff.c | participant)+ (1 | stimulus), 
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000)), data = d))
## Linear mixed model fit by REML ['lmerMod']
## Formula: donate ~ (indiv_1 + charity_1) * diff.c + (indiv_1 + charity_1 +  
##     diff.c | participant) + (1 | stimulus)
##    Data: d
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000))
## 
## REML criterion at convergence: -7527.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4423 -0.4053 -0.0706  0.2046  6.2076 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. Corr          
##  participant (Intercept) 8.882e-03 0.094246               
##              indiv_1     5.815e-03 0.076259 0.75          
##              charity_1   5.567e-03 0.074611 0.69 0.95     
##              diff.c      1.510e-03 0.038864 0.58 0.04 0.03
##  stimulus    (Intercept) 4.913e-05 0.007009               
##  Residual                2.296e-02 0.151521               
## Number of obs: 9827, groups:  participant, 378; stimulus, 21
## 
## Fixed effects:
##                  Estimate Std. Error t value
## (Intercept)      0.145034   0.009469  15.316
## indiv_1          0.046275   0.009444   4.900
## charity_1        0.034665   0.009427   3.677
## diff.c           0.044844   0.003243  13.828
## indiv_1:diff.c   0.002311   0.002797   0.826
## charity_1:diff.c 0.001500   0.002791   0.537
## 
## Correlation of Fixed Effects:
##             (Intr) indv_1 chrt_1 diff.c in_1:.
## indiv_1     -0.537                            
## charity_1   -0.557  0.864                     
## diff.c       0.356 -0.104 -0.109              
## indv_1:dff. -0.123  0.107  0.108 -0.509       
## chrty_1:df. -0.127  0.116  0.098 -0.529  0.738
summary(m16 <- lmer(donate ~ (pract_1 + charity_1) * diff.c + (pract_1 + charity_1 + diff.c | participant)+ (1 | stimulus), 
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000)), data = d))
## Linear mixed model fit by REML ['lmerMod']
## Formula: donate ~ (pract_1 + charity_1) * diff.c + (pract_1 + charity_1 +  
##     diff.c | participant) + (1 | stimulus)
##    Data: d
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000))
## 
## REML criterion at convergence: -7527.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4423 -0.4053 -0.0706  0.2046  6.2076 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. Corr             
##  participant (Intercept) 2.553e-02 0.159778                  
##              pract_1     5.815e-03 0.076259 -0.92            
##              charity_1   6.003e-04 0.024500 -0.26  0.23      
##              diff.c      1.510e-03 0.038864  0.36 -0.04 -0.04
##  stimulus    (Intercept) 4.913e-05 0.007009                  
##  Residual                2.296e-02 0.151521                  
## Number of obs: 9827, groups:  participant, 378; stimulus, 21
## 
## Fixed effects:
##                    Estimate Std. Error t value
## (Intercept)       0.1913096  0.0090967  21.031
## pract_1          -0.0462754  0.0094444  -4.900
## charity_1        -0.0116101  0.0049291  -2.355
## diff.c            0.0471555  0.0030183  15.623
## pract_1:diff.c   -0.0023111  0.0027970  -0.826
## charity_1:diff.c -0.0008115  0.0020229  -0.401
## 
## Correlation of Fixed Effects:
##             (Intr) prct_1 chrt_1 diff.c pr_1:.
## pract_1     -0.479                            
## charity_1   -0.311  0.265                     
## diff.c       0.267  0.012 -0.010              
## prct_1:dff.  0.017  0.107 -0.001 -0.380       
## chrty_1:df.  0.007 -0.013 -0.050 -0.366  0.364
tab_model(m15, m16,
          show.ci = .95,
          show.se = T,
          show.stat = T,
          string.stat = "t",
          string.se="SE",
          string.est = "B",
          digits = 2)
  donate donate
Predictors B SE CI t p B SE CI t p
(Intercept) 0.15 0.01 0.13 – 0.16 15.32 <0.001 0.19 0.01 0.17 – 0.21 21.03 <0.001
indiv_1 0.05 0.01 0.03 – 0.06 4.90 <0.001
charity_1 0.03 0.01 0.02 – 0.05 3.68 <0.001 -0.01 0.00 -0.02 – -0.00 -2.36 0.019
diff.c 0.04 0.00 0.04 – 0.05 13.83 <0.001 0.05 0.00 0.04 – 0.05 15.62 <0.001
indiv_1 * diff.c 0.00 0.00 -0.00 – 0.01 0.83 0.409
charity_1 * diff.c 0.00 0.00 -0.00 – 0.01 0.54 0.591 -0.00 0.00 -0.00 – 0.00 -0.40 0.688
pract_1 -0.05 0.01 -0.06 – -0.03 -4.90 <0.001
pract_1 * diff.c -0.00 0.00 -0.01 – 0.00 -0.83 0.409
Random Effects
σ2 0.02 0.02
τ00 0.01 participant 0.03 participant
0.00 stimulus 0.00 stimulus
τ11 0.01 participant.indiv_1 0.01 participant.pract_1
0.01 participant.charity_1 0.00 participant.charity_1
0.00 participant.diff.c 0.00 participant.diff.c
ρ01 0.75 participant.indiv_1 -0.92 participant.pract_1
0.69 participant.charity_1 -0.26 participant.charity_1
0.58 participant.diff.c 0.36 participant.diff.c
ICC 0.53 0.53
N 378 participant 378 participant
21 stimulus 21 stimulus
Observations 9827 9827
Marginal R2 / Conditional R2 0.139 / 0.598 0.139 / 0.598
mplot <- lmer(donate ~ condition * diff.c + (condition + diff.c | participant)+ (1 | stimulus), 
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000)), data = d)


(p <- plot_model(mplot, type = "pred", 
                terms = c("condition")) +
  ggtitle("") + 
  ylab("donated") +
  xlab("condition") +
  theme_minimal() +
  theme(panel.grid.major = element_blank(), 
        panel.grid.minor = element_blank(),
        panel.background = element_blank(), 
        axis.line = element_line(colour = "black"),
        legend.position = c(.5, .2), 
        legend.direction = "horizontal", 
        legend.box = "horizontal",
        legend.background = element_rect(fill = "white", color = "white"),
        legend.title = element_blank()) +
  scale_fill_manual(values = c("blue", "red", "purple")) +
  scale_y_continuous(breaks = c(0, .10, .20, .30, .40, .5), 
                     limits = c(0, .5)))
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
## Scale for 'y' is already present. Adding another scale for 'y', which will
## replace the existing scale.

  1. proportion donated random int for stimulus was singular
summary(m17 <- lmer(propDonate ~ (indiv_1 + charity_1) * diff.c + (indiv_1 + charity_1 + diff.c | participant), 
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000)), data = d))
## Linear mixed model fit by REML ['lmerMod']
## Formula: propDonate ~ (indiv_1 + charity_1) * diff.c + (indiv_1 + charity_1 +  
##     diff.c | participant)
##    Data: d
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000))
## 
## REML criterion at convergence: -6224.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.4664 -0.3022 -0.0244  0.2402  6.2612 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev. Corr          
##  participant (Intercept) 0.051698 0.22737                
##              indiv_1     0.028345 0.16836  0.11          
##              charity_1   0.028681 0.16936  0.06 0.84     
##              diff.c      0.007507 0.08664  0.50 0.07 0.06
##  Residual                0.022087 0.14862                
## Number of obs: 9827, groups:  participant, 378
## 
## Fixed effects:
##                  Estimate Std. Error t value
## (Intercept)      0.273383   0.012806  21.349
## indiv_1          0.068203   0.009917   6.877
## charity_1        0.047568   0.009989   4.762
## diff.c           0.063897   0.005980  10.684
## indiv_1:diff.c   0.026399   0.004132   6.389
## charity_1:diff.c 0.024129   0.004162   5.797
## 
## Correlation of Fixed Effects:
##             (Intr) indv_1 chrt_1 diff.c in_1:.
## indiv_1     -0.040                            
## charity_1   -0.079  0.811                     
## diff.c       0.508 -0.090 -0.094              
## indv_1:dff. -0.144  0.175  0.178 -0.484       
## chrty_1:df. -0.149  0.186  0.168 -0.495  0.790
summary(m18 <- lmer(propDonate ~ (pract_1 + charity_1) * diff.c + (pract_1 + charity_1 + diff.c | participant), 
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000)), data = d))
## Linear mixed model fit by REML ['lmerMod']
## Formula: propDonate ~ (pract_1 + charity_1) * diff.c + (pract_1 + charity_1 +  
##     diff.c | participant)
##    Data: d
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000))
## 
## REML criterion at convergence: -6224.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.4664 -0.3022 -0.0244  0.2402  6.2612 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev. Corr             
##  participant (Intercept) 0.088465 0.29743                   
##              pract_1     0.028345 0.16836  -0.65            
##              charity_1   0.009191 0.09587  -0.22  0.27      
##              diff.c      0.007507 0.08664   0.42 -0.07 -0.01
##  Residual                0.022087 0.14862                   
## Number of obs: 9827, groups:  participant, 378
## 
## Fixed effects:
##                   Estimate Std. Error t value
## (Intercept)       0.341586   0.015878  21.514
## pract_1          -0.068203   0.009917  -6.877
## charity_1        -0.020635   0.006114  -3.375
## diff.c            0.090296   0.005379  16.786
## pract_1:diff.c   -0.026399   0.004132  -6.389
## charity_1:diff.c -0.002270   0.002688  -0.844
## 
## Correlation of Fixed Effects:
##             (Intr) prct_1 chrt_1 diff.c pr_1:.
## pract_1     -0.592                            
## charity_1   -0.237  0.296                     
## diff.c       0.388 -0.035 -0.005              
## prct_1:dff.  0.007  0.175 -0.007 -0.230       
## chrty_1:df.  0.004 -0.019 -0.053 -0.266  0.314
tab_model(m17, m18,
          show.ci = .95,
          show.se = T,
          show.stat = T,
          string.stat = "t",
          string.se="SE",
          string.est = "B",
          digits = 2)
  propDonate propDonate
Predictors B SE CI t p B SE CI t p
(Intercept) 0.27 0.01 0.25 – 0.30 21.35 <0.001 0.34 0.02 0.31 – 0.37 21.51 <0.001
indiv_1 0.07 0.01 0.05 – 0.09 6.88 <0.001
charity_1 0.05 0.01 0.03 – 0.07 4.76 <0.001 -0.02 0.01 -0.03 – -0.01 -3.38 0.001
diff.c 0.06 0.01 0.05 – 0.08 10.68 <0.001 0.09 0.01 0.08 – 0.10 16.79 <0.001
indiv_1 * diff.c 0.03 0.00 0.02 – 0.03 6.39 <0.001
charity_1 * diff.c 0.02 0.00 0.02 – 0.03 5.80 <0.001 -0.00 0.00 -0.01 – 0.00 -0.84 0.398
pract_1 -0.07 0.01 -0.09 – -0.05 -6.88 <0.001
pract_1 * diff.c -0.03 0.00 -0.03 – -0.02 -6.39 <0.001
Random Effects
σ2 0.02 0.02
τ00 0.05 participant 0.09 participant
τ11 0.03 participant.indiv_1 0.03 participant.pract_1
0.03 participant.charity_1 0.01 participant.charity_1
0.01 participant.diff.c 0.01 participant.diff.c
ρ01 0.11 -0.65
0.06 -0.22
0.50 0.42
ICC 0.82 0.82
N 378 participant 378 participant
Observations 9827 9827
Marginal R2 / Conditional R2 0.169 / 0.855 0.169 / 0.855
mplot <- lmer(propDonate ~ condition * diff.c + (condition + diff.c | participant), 
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000)), data = d)

(p <- plot_model(mplot, type = "pred", 
                terms = c("diff.c", "condition")) +
  ggtitle("") + 
  ylab("proportion donated") +
  xlab("mean-centered difference rating") +
  theme_minimal() +
  theme(panel.grid.major = element_blank(), 
        panel.grid.minor = element_blank(),
        panel.background = element_blank(), 
        axis.line = element_line(colour = "black"),
        legend.position = c(.5, .2), 
        legend.direction = "horizontal", 
        legend.box = "horizontal",
        legend.background = element_rect(fill = "white", color = "white"),
        legend.title = element_blank()) +
  scale_color_manual(
    labels = c("charity","individual", "practice"),
    values = c("blue", "red", "purple")) +
  scale_fill_manual(values = c("blue", "red", "purple")) +
  scale_x_continuous(breaks = c(-2.5, -2, -1.5, -1, -.5, 0, .5, 1, 1.5, 2), 
                     limits = c(-2, 2)) +
  scale_y_continuous(breaks = c(0, .10, .20, .30, .40, .50, .6), 
                     limits = c(0, .6)))
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
## Scale for 'y' is already present. Adding another scale for 'y', which will
## replace the existing scale.
## Warning: Removed 9 row(s) containing missing values (geom_path).

  1. is there an interaction with condition and money allocated while controlling need and difference made
  1. raw donated
summary(m15 <- lmer(donate ~ (indiv_1 + charity_1) * money.c + need.c + diff.c + 
                      (indiv_1 + charity_1 + diff.c + money.c + need.c | participant)+ (1 | stimulus), 
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000)), data = d))
## Linear mixed model fit by REML ['lmerMod']
## Formula: donate ~ (indiv_1 + charity_1) * money.c + need.c + diff.c +  
##     (indiv_1 + charity_1 + diff.c + money.c + need.c | participant) +  
##     (1 | stimulus)
##    Data: d
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000))
## 
## REML criterion at convergence: -15834.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -7.6959 -0.3385 -0.0266  0.2692  7.7978 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. Corr                         
##  participant (Intercept) 1.509e-02 0.122824                              
##              indiv_1     4.554e-03 0.067484  0.04                        
##              charity_1   5.370e-03 0.073281 -0.05  0.74                  
##              diff.c      7.525e-04 0.027432  0.15 -0.15 -0.14            
##              money.c     7.548e-02 0.274741  0.83  0.42  0.33 -0.16      
##              need.c      7.201e-04 0.026835  0.71  0.13 -0.10 -0.11  0.62
##  stimulus    (Intercept) 1.051e-05 0.003241                              
##  Residual                8.245e-03 0.090802                              
## Number of obs: 9827, groups:  participant, 378; stimulus, 21
## 
## Fixed effects:
##                    Estimate Std. Error t value
## (Intercept)        0.167435   0.007567  22.126
## indiv_1            0.010396   0.005629   1.847
## charity_1         -0.002888   0.005856  -0.493
## money.c            0.201364   0.015975  12.605
## need.c             0.028738   0.001708  16.829
## diff.c             0.019376   0.001950   9.935
## indiv_1:money.c    0.119052   0.009293  12.811
## charity_1:money.c  0.120054   0.009289  12.924
## 
## Correlation of Fixed Effects:
##             (Intr) indv_1 chrt_1 mony.c need.c diff.c in_1:.
## indiv_1     -0.347                                          
## charity_1   -0.384  0.790                                   
## money.c      0.631  0.207  0.167                            
## need.c       0.523 -0.017 -0.143  0.451                     
## diff.c       0.149 -0.074 -0.074 -0.130 -0.262              
## indv_1:mny. -0.029  0.034  0.040 -0.374 -0.009  0.049       
## chrty_1:mn. -0.028  0.040  0.030 -0.375 -0.007  0.051  0.645
summary(m16 <- lmer(donate ~ (pract_1 + charity_1) * money.c + need.c + diff.c + 
                      (pract_1 + charity_1 + diff.c + money.c + need.c | participant)+ (1 | stimulus), 
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000)), data = d))
## Linear mixed model fit by REML ['lmerMod']
## Formula: donate ~ (pract_1 + charity_1) * money.c + need.c + diff.c +  
##     (pract_1 + charity_1 + diff.c + money.c + need.c | participant) +  
##     (1 | stimulus)
##    Data: d
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000))
## 
## REML criterion at convergence: -15834.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -7.6959 -0.3385 -0.0266  0.2692  7.7978 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. Corr                         
##  participant (Intercept) 2.030e-02 0.142473                              
##              pract_1     4.554e-03 0.067484 -0.51                        
##              charity_1   2.565e-03 0.050645 -0.23  0.26                  
##              diff.c      7.525e-04 0.027432  0.06  0.15  0.00            
##              money.c     7.548e-02 0.274742  0.92 -0.42 -0.08 -0.16      
##              need.c      7.201e-04 0.026835  0.67 -0.13 -0.32 -0.11  0.62
##  stimulus    (Intercept) 1.051e-05 0.003241                              
##  Residual                8.245e-03 0.090801                              
## Number of obs: 9827, groups:  participant, 378; stimulus, 21
## 
## Fixed effects:
##                    Estimate Std. Error t value
## (Intercept)        0.177831   0.007708  23.070
## pract_1           -0.010396   0.005629  -1.847
## charity_1         -0.013284   0.003726  -3.566
## money.c            0.320415   0.015181  21.107
## need.c             0.028738   0.001708  16.829
## diff.c             0.019376   0.001950   9.935
## pract_1:money.c   -0.119052   0.009293 -12.811
## charity_1:money.c  0.001002   0.007827   0.128
## 
## Correlation of Fixed Effects:
##             (Intr) prct_1 chrt_1 mony.c need.c diff.c pr_1:.
## pract_1     -0.390                                          
## charity_1   -0.274  0.269                                   
## money.c      0.808 -0.238 -0.045                            
## need.c       0.501  0.017 -0.198  0.470                     
## diff.c       0.092  0.074 -0.004 -0.107 -0.262              
## prct_1:mny.  0.004  0.034 -0.011 -0.218  0.009 -0.049       
## chrty_1:mn.  0.007 -0.008 -0.029 -0.258  0.002  0.003  0.422
tab_model(m15, m16,
          show.ci = .95,
          show.se = T,
          show.stat = T,
          string.stat = "t",
          string.se="SE",
          string.est = "B",
          digits = 2)
  donate donate
Predictors B SE CI t p B SE CI t p
(Intercept) 0.17 0.01 0.15 – 0.18 22.13 <0.001 0.18 0.01 0.16 – 0.19 23.07 <0.001
indiv_1 0.01 0.01 -0.00 – 0.02 1.85 0.065
charity_1 -0.00 0.01 -0.01 – 0.01 -0.49 0.622 -0.01 0.00 -0.02 – -0.01 -3.57 <0.001
money.c 0.20 0.02 0.17 – 0.23 12.60 <0.001 0.32 0.02 0.29 – 0.35 21.11 <0.001
need.c 0.03 0.00 0.03 – 0.03 16.83 <0.001 0.03 0.00 0.03 – 0.03 16.83 <0.001
diff.c 0.02 0.00 0.02 – 0.02 9.93 <0.001 0.02 0.00 0.02 – 0.02 9.93 <0.001
indiv_1 * money.c 0.12 0.01 0.10 – 0.14 12.81 <0.001
charity_1 * money.c 0.12 0.01 0.10 – 0.14 12.92 <0.001 0.00 0.01 -0.01 – 0.02 0.13 0.898
pract_1 -0.01 0.01 -0.02 – 0.00 -1.85 0.065
pract_1 * money.c -0.12 0.01 -0.14 – -0.10 -12.81 <0.001
Random Effects
σ2 0.01 0.01
τ00 0.02 participant 0.02 participant
0.00 stimulus 0.00 stimulus
τ11 0.00 participant.indiv_1 0.00 participant.pract_1
0.01 participant.charity_1 0.00 participant.charity_1
0.00 participant.diff.c 0.00 participant.diff.c
0.08 participant.money.c 0.08 participant.money.c
0.00 participant.need.c 0.00 participant.need.c
ρ01 0.04 participant.indiv_1 -0.51 participant.pract_1
-0.05 participant.charity_1 -0.23 participant.charity_1
0.15 participant.diff.c 0.06 participant.diff.c
0.83 participant.money.c 0.92 participant.money.c
0.71 participant.need.c 0.67 participant.need.c
ICC 0.78 0.78
N 378 participant 378 participant
21 stimulus 21 stimulus
Observations 9827 9827
Marginal R2 / Conditional R2 0.256 / 0.836 0.256 / 0.836

b. proportion donated

summary(m17 <- lmer(propDonate ~ (indiv_1 + charity_1) * money.c + need.c + diff.c + 
                      (indiv_1 + charity_1 + money.c + need.c + diff.c | participant)+ (1 | stimulus), 
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000)), data = d))
## Linear mixed model fit by REML ['lmerMod']
## Formula: propDonate ~ (indiv_1 + charity_1) * money.c + need.c + diff.c +  
##     (indiv_1 + charity_1 + money.c + need.c + diff.c | participant) +  
##     (1 | stimulus)
##    Data: d
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000))
## 
## REML criterion at convergence: -8073.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.4180 -0.3159 -0.0232  0.2506  6.1317 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. Corr                         
##  participant (Intercept) 5.087e-02 0.225543                              
##              indiv_1     1.635e-02 0.127878 -0.09                        
##              charity_1   2.015e-02 0.141950 -0.18  0.80                  
##              money.c     3.835e-03 0.061926 -0.25  0.09  0.10            
##              need.c      2.671e-03 0.051678  0.63  0.11 -0.07 -0.20      
##              diff.c      3.300e-03 0.057441  0.24 -0.12 -0.11 -0.48  0.02
##  stimulus    (Intercept) 1.897e-05 0.004356                              
##  Residual                1.761e-02 0.132691                              
## Number of obs: 9827, groups:  participant, 378; stimulus, 21
## 
## Fixed effects:
##                    Estimate Std. Error t value
## (Intercept)        0.300419   0.013119  22.900
## indiv_1            0.012683   0.009127   1.390
## charity_1         -0.011947   0.009717  -1.230
## money.c           -0.045109   0.011415  -3.952
## need.c             0.051274   0.003156  16.246
## diff.c             0.044544   0.003816  11.674
## indiv_1:money.c    0.038442   0.013679   2.810
## charity_1:money.c  0.053644   0.013665   3.926
## 
## Correlation of Fixed Effects:
##             (Intr) indv_1 chrt_1 mony.c need.c diff.c in_1:.
## indiv_1     -0.314                                          
## charity_1   -0.363  0.808                                   
## money.c     -0.032 -0.026 -0.020                            
## need.c       0.511 -0.002 -0.116 -0.034                     
## diff.c       0.215 -0.076 -0.073 -0.158 -0.154              
## indv_1:mny. -0.024  0.029  0.034 -0.770 -0.010  0.047       
## chrty_1:mn. -0.023  0.035  0.026 -0.771 -0.009  0.050  0.645
summary(m18 <- lmer(propDonate ~ (pract_1 + charity_1) * money.c + need.c + diff.c + 
                      (pract_1 + charity_1 + money.c + need.c + diff.c | participant)+ (1 | stimulus), 
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000)), data = d))
## Linear mixed model fit by REML ['lmerMod']
## Formula: propDonate ~ (pract_1 + charity_1) * money.c + need.c + diff.c +  
##     (pract_1 + charity_1 + money.c + need.c + diff.c | participant) +  
##     (1 | stimulus)
##    Data: d
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000))
## 
## REML criterion at convergence: -8073.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.4180 -0.3159 -0.0232  0.2506  6.1317 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. Corr                         
##  participant (Intercept) 6.208e-02 0.249165                              
##              pract_1     1.635e-02 0.127878 -0.43                        
##              charity_1   7.311e-03 0.085504 -0.23  0.16                  
##              money.c     3.835e-03 0.061926 -0.18 -0.09  0.04            
##              need.c      2.671e-03 0.051678  0.63 -0.11 -0.28 -0.20      
##              diff.c      3.300e-03 0.057441  0.16  0.12  0.00 -0.48  0.02
##  stimulus    (Intercept) 1.897e-05 0.004356                              
##  Residual                1.761e-02 0.132691                              
## Number of obs: 9827, groups:  participant, 378; stimulus, 21
## 
## Fixed effects:
##                    Estimate Std. Error t value
## (Intercept)        0.313102   0.013424  23.324
## pract_1           -0.012683   0.009127  -1.390
## charity_1         -0.024630   0.005859  -4.204
## money.c           -0.006667   0.008764  -0.761
## need.c             0.051274   0.003156  16.246
## diff.c             0.044544   0.003816  11.674
## pract_1:money.c   -0.038442   0.013679  -2.810
## charity_1:money.c  0.015202   0.011513   1.320
## 
## Correlation of Fixed Effects:
##             (Intr) prct_1 chrt_1 mony.c need.c diff.c pr_1:.
## pract_1     -0.373                                          
## charity_1   -0.257  0.217                                   
## money.c     -0.069 -0.013  0.026                            
## need.c       0.498  0.002 -0.189 -0.060                     
## diff.c       0.158  0.076 -0.003 -0.133 -0.154              
## prct_1:mny.  0.004  0.029 -0.010 -0.557  0.010 -0.047       
## chrty_1:mn.  0.007 -0.007 -0.027 -0.659  0.001  0.004  0.422
tab_model(m17, m18,
          show.ci = .95,
          show.se = T,
          show.stat = T,
          string.stat = "t",
          string.se="SE",
          string.est = "B",
          digits = 2)
  propDonate propDonate
Predictors B SE CI t p B SE CI t p
(Intercept) 0.30 0.01 0.27 – 0.33 22.90 <0.001 0.31 0.01 0.29 – 0.34 23.32 <0.001
indiv_1 0.01 0.01 -0.01 – 0.03 1.39 0.165
charity_1 -0.01 0.01 -0.03 – 0.01 -1.23 0.219 -0.02 0.01 -0.04 – -0.01 -4.20 <0.001
money.c -0.05 0.01 -0.07 – -0.02 -3.95 <0.001 -0.01 0.01 -0.02 – 0.01 -0.76 0.447
need.c 0.05 0.00 0.05 – 0.06 16.25 <0.001 0.05 0.00 0.05 – 0.06 16.25 <0.001
diff.c 0.04 0.00 0.04 – 0.05 11.67 <0.001 0.04 0.00 0.04 – 0.05 11.67 <0.001
indiv_1 * money.c 0.04 0.01 0.01 – 0.07 2.81 0.005
charity_1 * money.c 0.05 0.01 0.03 – 0.08 3.93 <0.001 0.02 0.01 -0.01 – 0.04 1.32 0.187
pract_1 -0.01 0.01 -0.03 – 0.01 -1.39 0.165
pract_1 * money.c -0.04 0.01 -0.07 – -0.01 -2.81 0.005
Random Effects
σ2 0.02 0.02
τ00 0.05 participant 0.06 participant
0.00 stimulus 0.00 stimulus
τ11 0.02 participant.indiv_1 0.02 participant.pract_1
0.02 participant.charity_1 0.01 participant.charity_1
0.00 participant.money.c 0.00 participant.money.c
0.00 participant.need.c 0.00 participant.need.c
0.00 participant.diff.c 0.00 participant.diff.c
ρ01 -0.09 participant.indiv_1 -0.43 participant.pract_1
-0.18 participant.charity_1 -0.23 participant.charity_1
-0.25 participant.money.c -0.18 participant.money.c
0.63 participant.need.c 0.63 participant.need.c
0.24 participant.diff.c 0.16 participant.diff.c
ICC 0.82 0.82
N 378 participant 378 participant
21 stimulus 21 stimulus
Observations 9827 9827
Marginal R2 / Conditional R2 0.196 / 0.853 0.196 / 0.853

8. is there an interaction with condition and need while controlling money allocted and difference made

a. raw donated

summary(m15 <- lmer(donate ~ (indiv_1 + charity_1) * need.c + diff.c + money.c + 
                      (indiv_1 + charity_1 + diff.c + money.c + need.c | participant) + (1 | stimulus),  
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000)), data = d))
## Linear mixed model fit by REML ['lmerMod']
## Formula: donate ~ (indiv_1 + charity_1) * need.c + diff.c + money.c +  
##     (indiv_1 + charity_1 + diff.c + money.c + need.c | participant) +  
##     (1 | stimulus)
##    Data: d
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000))
## 
## REML criterion at convergence: -15690.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -7.5314 -0.3313 -0.0259  0.2600  7.8652 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. Corr                         
##  participant (Intercept) 1.606e-02 0.126725                              
##              indiv_1     4.128e-03 0.064249 -0.02                        
##              charity_1   5.064e-03 0.071164 -0.11  0.73                  
##              diff.c      7.480e-04 0.027350  0.09 -0.08 -0.06            
##              money.c     7.543e-02 0.274649  0.88  0.28  0.20 -0.17      
##              need.c      7.144e-04 0.026729  0.72  0.09 -0.14 -0.15  0.65
##  stimulus    (Intercept) 1.291e-05 0.003592                              
##  Residual                8.419e-03 0.091753                              
## Number of obs: 9827, groups:  participant, 378; stimulus, 21
## 
## Fixed effects:
##                  Estimate Std. Error t value
## (Intercept)      0.154307   0.008113  19.019
## indiv_1          0.022433   0.006036   3.717
## charity_1        0.008832   0.006260   1.411
## need.c           0.014251   0.002419   5.890
## diff.c           0.017786   0.001942   9.161
## money.c          0.296126   0.014555  20.345
## indiv_1:need.c   0.017658   0.002164   8.160
## charity_1:need.c 0.017138   0.002215   7.737
## 
## Correlation of Fixed Effects:
##             (Intr) indv_1 chrt_1 need.c diff.c mony.c in_1:.
## indiv_1     -0.446                                          
## charity_1   -0.471  0.808                                   
## need.c       0.524 -0.234 -0.297                            
## diff.c       0.107 -0.034 -0.030 -0.209                     
## money.c      0.686  0.143  0.109  0.353 -0.124              
## indv_1:nd.c -0.218  0.273  0.275 -0.675  0.015  0.008       
## chrty_1:nd. -0.221  0.281  0.232 -0.656  0.002  0.011  0.760
summary(m16 <- lmer(donate ~ (pract_1 + charity_1) * need.c + diff.c + money.c +
                      (pract_1 + charity_1 + diff.c + money.c + need.c | participant) + (1 | stimulus), 
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000)), data = d))
## Linear mixed model fit by REML ['lmerMod']
## Formula: donate ~ (pract_1 + charity_1) * need.c + diff.c + money.c +  
##     (pract_1 + charity_1 + diff.c + money.c + need.c | participant) +  
##     (1 | stimulus)
##    Data: d
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000))
## 
## REML criterion at convergence: -15690.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -7.5314 -0.3313 -0.0259  0.2600  7.8652 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. Corr                         
##  participant (Intercept) 1.988e-02 0.140988                              
##              pract_1     4.128e-03 0.064249 -0.44                        
##              charity_1   2.520e-03 0.050204 -0.23  0.25                  
##              diff.c      7.480e-04 0.027350  0.05  0.08  0.02            
##              money.c     7.543e-02 0.274649  0.91 -0.28 -0.07 -0.17      
##              need.c      7.144e-04 0.026729  0.69 -0.09 -0.31 -0.15  0.65
##  stimulus    (Intercept) 1.291e-05 0.003592                              
##  Residual                8.419e-03 0.091753                              
## Number of obs: 9827, groups:  participant, 378; stimulus, 21
## 
## Fixed effects:
##                    Estimate Std. Error t value
## (Intercept)       0.1767399  0.0076528  23.095
## pract_1          -0.0224332  0.0060357  -3.717
## charity_1        -0.0136014  0.0038123  -3.568
## need.c            0.0319091  0.0018613  17.143
## diff.c            0.0177860  0.0019415   9.161
## money.c           0.2961265  0.0145551  20.345
## pract_1:need.c   -0.0176584  0.0021640  -8.160
## charity_1:need.c -0.0005205  0.0015189  -0.343
## 
## Correlation of Fixed Effects:
##             (Intr) prct_1 chrt_1 need.c diff.c mony.c pr_1:.
## pract_1     -0.316                                          
## charity_1   -0.274  0.256                                   
## need.c       0.464 -0.013 -0.131                            
## diff.c       0.087  0.034  0.005 -0.255                     
## money.c      0.840 -0.143 -0.047  0.468 -0.124              
## prct_1:nd.c  0.016  0.273 -0.020 -0.285 -0.015 -0.008       
## chrty_1:nd.  0.005 -0.021 -0.121 -0.361 -0.018  0.004  0.317
tab_model(m15, m16,
          show.ci = .95,
          show.se = T,
          show.stat = T,
          string.stat = "t",
          string.se="SE",
          string.est = "B",
          digits = 2)
  donate donate
Predictors B SE CI t p B SE CI t p
(Intercept) 0.15 0.01 0.14 – 0.17 19.02 <0.001 0.18 0.01 0.16 – 0.19 23.09 <0.001
indiv_1 0.02 0.01 0.01 – 0.03 3.72 <0.001
charity_1 0.01 0.01 -0.00 – 0.02 1.41 0.158 -0.01 0.00 -0.02 – -0.01 -3.57 <0.001
need.c 0.01 0.00 0.01 – 0.02 5.89 <0.001 0.03 0.00 0.03 – 0.04 17.14 <0.001
diff.c 0.02 0.00 0.01 – 0.02 9.16 <0.001 0.02 0.00 0.01 – 0.02 9.16 <0.001
money.c 0.30 0.01 0.27 – 0.32 20.35 <0.001 0.30 0.01 0.27 – 0.32 20.35 <0.001
indiv_1 * need.c 0.02 0.00 0.01 – 0.02 8.16 <0.001
charity_1 * need.c 0.02 0.00 0.01 – 0.02 7.74 <0.001 -0.00 0.00 -0.00 – 0.00 -0.34 0.732
pract_1 -0.02 0.01 -0.03 – -0.01 -3.72 <0.001
pract_1 * need.c -0.02 0.00 -0.02 – -0.01 -8.16 <0.001
Random Effects
σ2 0.01 0.01
τ00 0.02 participant 0.02 participant
0.00 stimulus 0.00 stimulus
τ11 0.00 participant.indiv_1 0.00 participant.pract_1
0.01 participant.charity_1 0.00 participant.charity_1
0.00 participant.diff.c 0.00 participant.diff.c
0.08 participant.money.c 0.08 participant.money.c
0.00 participant.need.c 0.00 participant.need.c
ρ01 -0.02 participant.indiv_1 -0.44 participant.pract_1
-0.11 participant.charity_1 -0.23 participant.charity_1
0.09 participant.diff.c 0.05 participant.diff.c
0.88 participant.money.c 0.91 participant.money.c
0.72 participant.need.c 0.69 participant.need.c
ICC 0.77 0.77
N 378 participant 378 participant
21 stimulus 21 stimulus
Observations 9827 9827
Marginal R2 / Conditional R2 0.251 / 0.831 0.251 / 0.831

b. proportion donated

summary(m17 <- lmer(propDonate ~ (indiv_1 + charity_1) * need.c + diff.c + money.c +
                      (indiv_1 + charity_1 + money.c + need.c + diff.c | participant) + (1 | stimulus), 
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000)), data = d))
## Linear mixed model fit by REML ['lmerMod']
## Formula: propDonate ~ (indiv_1 + charity_1) * need.c + diff.c + money.c +  
##     (indiv_1 + charity_1 + money.c + need.c + diff.c | participant) +  
##     (1 | stimulus)
##    Data: d
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000))
## 
## REML criterion at convergence: -8088.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.4111 -0.3135 -0.0269  0.2482  6.1444 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. Corr                         
##  participant (Intercept) 5.235e-02 0.228799                              
##              indiv_1     1.507e-02 0.122749 -0.11                        
##              charity_1   1.908e-02 0.138114 -0.20  0.79                  
##              money.c     3.849e-03 0.062040 -0.24  0.08  0.09            
##              need.c      2.657e-03 0.051548  0.65  0.10 -0.08 -0.20      
##              diff.c      3.287e-03 0.057333  0.21 -0.08 -0.06 -0.48  0.01
##  stimulus    (Intercept) 2.053e-05 0.004531                              
##  Residual                1.759e-02 0.132633                              
## Number of obs: 9827, groups:  participant, 378; stimulus, 21
## 
## Fixed effects:
##                   Estimate Std. Error t value
## (Intercept)       0.280417   0.013742  20.406
## indiv_1           0.031409   0.009591   3.275
## charity_1         0.006479   0.010159   0.638
## need.c            0.032006   0.004440   7.208
## diff.c            0.043992   0.003805  11.562
## money.c          -0.007605   0.006020  -1.263
## indiv_1:need.c    0.021935   0.003685   5.953
## charity_1:need.c  0.022254   0.003789   5.873
## 
## Correlation of Fixed Effects:
##             (Intr) indv_1 chrt_1 need.c diff.c mony.c in_1:.
## indiv_1     -0.389                                          
## charity_1   -0.428  0.821                                   
## need.c       0.530 -0.248 -0.304                            
## diff.c       0.184 -0.046 -0.041 -0.119                     
## money.c     -0.104  0.017  0.021 -0.085 -0.213              
## indv_1:nd.c -0.234  0.319  0.311 -0.678  0.012  0.035       
## chrty_1:nd. -0.236  0.327  0.277 -0.664  0.001  0.042  0.813
summary(m18 <- lmer(propDonate ~ (pract_1 + charity_1) * need.c + diff.c + money.c +
                      (pract_1 + charity_1 + money.c + need.c + diff.c | participant) + (1 | stimulus), 
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000)), data = d))
## Linear mixed model fit by REML ['lmerMod']
## Formula: propDonate ~ (pract_1 + charity_1) * need.c + diff.c + money.c +  
##     (pract_1 + charity_1 + money.c + need.c + diff.c | participant) +  
##     (1 | stimulus)
##    Data: d
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000))
## 
## REML criterion at convergence: -8088.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.4111 -0.3135 -0.0269  0.2482  6.1444 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. Corr                         
##  participant (Intercept) 6.132e-02 0.247625                              
##              pract_1     1.507e-02 0.122749 -0.40                        
##              charity_1   7.347e-03 0.085712 -0.23  0.16                  
##              money.c     3.849e-03 0.062040 -0.18 -0.08  0.04            
##              need.c      2.657e-03 0.051548  0.65 -0.10 -0.27 -0.20      
##              diff.c      3.287e-03 0.057333  0.15  0.08  0.01 -0.48  0.01
##  stimulus    (Intercept) 2.053e-05 0.004531                              
##  Residual                1.759e-02 0.132633                              
## Number of obs: 9827, groups:  participant, 378; stimulus, 21
## 
## Fixed effects:
##                   Estimate Std. Error t value
## (Intercept)       0.311826   0.013352  23.355
## pract_1          -0.031409   0.009591  -3.275
## charity_1        -0.024931   0.005929  -4.205
## need.c            0.053941   0.003331  16.194
## diff.c            0.043992   0.003805  11.562
## money.c          -0.007605   0.006020  -1.263
## pract_1:need.c   -0.021935   0.003685  -5.953
## charity_1:need.c  0.000319   0.002287   0.139
## 
## Correlation of Fixed Effects:
##             (Intr) prct_1 chrt_1 need.c diff.c mony.c pr_1:.
## pract_1     -0.318                                          
## charity_1   -0.258  0.210                                   
## need.c       0.478 -0.022 -0.142                            
## diff.c       0.156  0.046  0.005 -0.145                     
## money.c     -0.095 -0.017  0.010 -0.076 -0.213              
## prct_1:nd.c  0.011  0.319 -0.016 -0.202 -0.012 -0.035       
## chrty_1:nd.  0.005 -0.027 -0.115 -0.301 -0.017  0.014  0.264
tab_model(m17, m18,
          show.ci = .95,
          show.se = T,
          show.stat = T,
          string.stat = "t",
          string.se="SE",
          string.est = "B",
          digits = 2)
  propDonate propDonate
Predictors B SE CI t p B SE CI t p
(Intercept) 0.28 0.01 0.25 – 0.31 20.41 <0.001 0.31 0.01 0.29 – 0.34 23.35 <0.001
indiv_1 0.03 0.01 0.01 – 0.05 3.28 0.001
charity_1 0.01 0.01 -0.01 – 0.03 0.64 0.524 -0.02 0.01 -0.04 – -0.01 -4.20 <0.001
need.c 0.03 0.00 0.02 – 0.04 7.21 <0.001 0.05 0.00 0.05 – 0.06 16.19 <0.001
diff.c 0.04 0.00 0.04 – 0.05 11.56 <0.001 0.04 0.00 0.04 – 0.05 11.56 <0.001
money.c -0.01 0.01 -0.02 – 0.00 -1.26 0.206 -0.01 0.01 -0.02 – 0.00 -1.26 0.206
indiv_1 * need.c 0.02 0.00 0.01 – 0.03 5.95 <0.001
charity_1 * need.c 0.02 0.00 0.01 – 0.03 5.87 <0.001 0.00 0.00 -0.00 – 0.00 0.14 0.889
pract_1 -0.03 0.01 -0.05 – -0.01 -3.28 0.001
pract_1 * need.c -0.02 0.00 -0.03 – -0.01 -5.95 <0.001
Random Effects
σ2 0.02 0.02
τ00 0.05 participant 0.06 participant
0.00 stimulus 0.00 stimulus
τ11 0.02 participant.indiv_1 0.02 participant.pract_1
0.02 participant.charity_1 0.01 participant.charity_1
0.00 participant.money.c 0.00 participant.money.c
0.00 participant.need.c 0.00 participant.need.c
0.00 participant.diff.c 0.00 participant.diff.c
ρ01 -0.11 participant.indiv_1 -0.40 participant.pract_1
-0.20 participant.charity_1 -0.23 participant.charity_1
-0.24 participant.money.c -0.18 participant.money.c
0.65 participant.need.c 0.65 participant.need.c
0.21 participant.diff.c 0.15 participant.diff.c
ICC 0.82 0.82
N 378 participant 378 participant
21 stimulus 21 stimulus
Observations 9827 9827
Marginal R2 / Conditional R2 0.193 / 0.852 0.193 / 0.852

9. is there an interaction with condition and difference made while controlling money allocted and need

a. raw donated

summary(m15 <- lmer(donate ~ (indiv_1 + charity_1) * diff.c + money.c + need.c + 
                      (indiv_1 + charity_1 + diff.c + money.c + need.c | participant) + (1 | stimulus), 
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000)), data = d))
## Linear mixed model fit by REML ['lmerMod']
## Formula: donate ~ (indiv_1 + charity_1) * diff.c + money.c + need.c +  
##     (indiv_1 + charity_1 + diff.c + money.c + need.c | participant) +  
##     (1 | stimulus)
##    Data: d
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000))
## 
## REML criterion at convergence: -15669.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -7.5320 -0.3290 -0.0278  0.2537  7.8585 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. Corr                         
##  participant (Intercept) 1.599e-02 0.126464                              
##              indiv_1     4.673e-03 0.068358 -0.03                        
##              charity_1   5.284e-03 0.072690 -0.11  0.75                  
##              diff.c      7.318e-04 0.027051  0.11 -0.08 -0.07            
##              money.c     7.569e-02 0.275120  0.86  0.30  0.21 -0.16      
##              need.c      7.191e-04 0.026816  0.72  0.08 -0.14 -0.13  0.63
##  stimulus    (Intercept) 1.224e-05 0.003499                              
##  Residual                8.402e-03 0.091662                              
## Number of obs: 9827, groups:  participant, 378; stimulus, 21
## 
## Fixed effects:
##                   Estimate Std. Error t value
## (Intercept)      0.1633766  0.0079026  20.674
## indiv_1          0.0139507  0.0059077   2.361
## charity_1        0.0002977  0.0060750   0.049
## diff.c           0.0059418  0.0025638   2.318
## money.c          0.2970217  0.0145802  20.372
## need.c           0.0289219  0.0017109  16.904
## indiv_1:diff.c   0.0142994  0.0022600   6.327
## charity_1:diff.c 0.0152599  0.0022566   6.762
## 
## Correlation of Fixed Effects:
##             (Intr) indv_1 chrt_1 diff.c mony.c need.c in_1:.
## indiv_1     -0.409                                          
## charity_1   -0.441  0.801                                   
## diff.c       0.175 -0.136 -0.127                            
## money.c      0.693  0.166  0.123 -0.102                     
## need.c       0.516 -0.040 -0.157 -0.213  0.497              
## indv_1:dff. -0.119  0.148  0.150 -0.608  0.019 -0.008       
## chrty_1:df. -0.124  0.155  0.129 -0.622  0.020  0.011  0.758
summary(m16 <- lmer(donate ~ (pract_1 + charity_1) * diff.c + money.c + need.c + 
                      (pract_1 + charity_1 + diff.c + money.c + need.c | participant) + (1 | stimulus), 
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000)), data = d))
## Linear mixed model fit by REML ['lmerMod']
## Formula: donate ~ (pract_1 + charity_1) * diff.c + money.c + need.c +  
##     (pract_1 + charity_1 + diff.c + money.c + need.c | participant) +  
##     (1 | stimulus)
##    Data: d
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000))
## 
## REML criterion at convergence: -15669.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -7.5320 -0.3290 -0.0278  0.2537  7.8585 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. Corr                         
##  participant (Intercept) 2.012e-02 0.141852                              
##              pract_1     4.673e-03 0.068358 -0.45                        
##              charity_1   2.538e-03 0.050382 -0.24  0.28                  
##              diff.c      7.318e-04 0.027051  0.06  0.08  0.01            
##              money.c     7.569e-02 0.275120  0.91 -0.30 -0.09 -0.16      
##              need.c      7.191e-04 0.026816  0.68 -0.08 -0.31 -0.13  0.63
##  stimulus    (Intercept) 1.224e-05 0.003499                              
##  Residual                8.402e-03 0.091662                              
## Number of obs: 9827, groups:  participant, 378; stimulus, 21
## 
## Fixed effects:
##                    Estimate Std. Error t value
## (Intercept)       0.1773272  0.0076904  23.058
## pract_1          -0.0139507  0.0059077  -2.361
## charity_1        -0.0136530  0.0037800  -3.612
## diff.c            0.0202412  0.0021526   9.403
## money.c           0.2970217  0.0145802  20.372
## need.c            0.0289219  0.0017109  16.904
## pract_1:diff.c   -0.0142995  0.0022600  -6.327
## charity_1:diff.c  0.0009605  0.0015708   0.611
## 
## Correlation of Fixed Effects:
##             (Intr) prct_1 chrt_1 diff.c mony.c need.c pr_1:.
## pract_1     -0.348                                          
## charity_1   -0.282  0.275                                   
## diff.c       0.081  0.006  0.020                            
## money.c      0.840 -0.166 -0.063 -0.102                     
## need.c       0.499  0.040 -0.190 -0.262  0.497              
## prct_1:dff.  0.009  0.148 -0.010 -0.326 -0.019  0.008       
## chrty_1:df.  0.001 -0.009 -0.063 -0.389  0.002  0.027  0.350
tab_model(m15, m16,
          show.ci = .95,
          show.se = T,
          show.stat = T,
          string.stat = "t",
          string.se="SE",
          string.est = "B",
          digits = 2)
  donate donate
Predictors B SE CI t p B SE CI t p
(Intercept) 0.16 0.01 0.15 – 0.18 20.67 <0.001 0.18 0.01 0.16 – 0.19 23.06 <0.001
indiv_1 0.01 0.01 0.00 – 0.03 2.36 0.018
charity_1 0.00 0.01 -0.01 – 0.01 0.05 0.961 -0.01 0.00 -0.02 – -0.01 -3.61 <0.001
diff.c 0.01 0.00 0.00 – 0.01 2.32 0.020 0.02 0.00 0.02 – 0.02 9.40 <0.001
money.c 0.30 0.01 0.27 – 0.33 20.37 <0.001 0.30 0.01 0.27 – 0.33 20.37 <0.001
need.c 0.03 0.00 0.03 – 0.03 16.90 <0.001 0.03 0.00 0.03 – 0.03 16.90 <0.001
indiv_1 * diff.c 0.01 0.00 0.01 – 0.02 6.33 <0.001
charity_1 * diff.c 0.02 0.00 0.01 – 0.02 6.76 <0.001 0.00 0.00 -0.00 – 0.00 0.61 0.541
pract_1 -0.01 0.01 -0.03 – -0.00 -2.36 0.018
pract_1 * diff.c -0.01 0.00 -0.02 – -0.01 -6.33 <0.001
Random Effects
σ2 0.01 0.01
τ00 0.02 participant 0.02 participant
0.00 stimulus 0.00 stimulus
τ11 0.00 participant.indiv_1 0.00 participant.pract_1
0.01 participant.charity_1 0.00 participant.charity_1
0.00 participant.diff.c 0.00 participant.diff.c
0.08 participant.money.c 0.08 participant.money.c
0.00 participant.need.c 0.00 participant.need.c
ρ01 -0.03 participant.indiv_1 -0.45 participant.pract_1
-0.11 participant.charity_1 -0.24 participant.charity_1
0.11 participant.diff.c 0.06 participant.diff.c
0.86 participant.money.c 0.91 participant.money.c
0.72 participant.need.c 0.68 participant.need.c
ICC 0.78 0.78
N 378 participant 378 participant
21 stimulus 21 stimulus
Observations 9827 9827
Marginal R2 / Conditional R2 0.252 / 0.832 0.252 / 0.832

b. proportion donated

summary(m17 <- lmer(propDonate ~ (indiv_1 + charity_1) * diff.c + money.c + need.c + 
                      (indiv_1 + charity_1 + money.c + need.c + diff.c | participant) + (1 | stimulus), 
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000)), data = d))
## Linear mixed model fit by REML ['lmerMod']
## Formula: propDonate ~ (indiv_1 + charity_1) * diff.c + money.c + need.c +  
##     (indiv_1 + charity_1 + money.c + need.c + diff.c | participant) +  
##     (1 | stimulus)
##    Data: d
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000))
## 
## REML criterion at convergence: -8085.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.4167 -0.3141 -0.0255  0.2495  6.1221 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. Corr                         
##  participant (Intercept) 5.200e-02 0.228036                              
##              indiv_1     1.630e-02 0.127668 -0.11                        
##              charity_1   1.956e-02 0.139846 -0.19  0.80                  
##              money.c     3.894e-03 0.062406 -0.22  0.04  0.06            
##              need.c      2.656e-03 0.051535  0.64  0.09 -0.08 -0.19      
##              diff.c      3.243e-03 0.056951  0.22 -0.08 -0.07 -0.48  0.02
##  stimulus    (Intercept) 1.956e-05 0.004423                              
##  Residual                1.756e-02 0.132529                              
## Number of obs: 9827, groups:  participant, 378; stimulus, 21
## 
## Fixed effects:
##                   Estimate Std. Error t value
## (Intercept)       0.291368   0.013359  21.810
## indiv_1           0.020994   0.009293   2.259
## charity_1        -0.003732   0.009792  -0.381
## diff.c            0.027050   0.004737   5.711
## money.c          -0.006208   0.006042  -1.028
## need.c            0.051206   0.003150  16.256
## indiv_1:diff.c    0.020554   0.003715   5.533
## charity_1:diff.c  0.021124   0.003780   5.588
## 
## Correlation of Fixed Effects:
##             (Intr) indv_1 chrt_1 diff.c mony.c need.c in_1:.
## indiv_1     -0.343                                          
## charity_1   -0.386  0.811                                   
## diff.c       0.237 -0.148 -0.137                            
## money.c     -0.100  0.006  0.012 -0.221                     
## need.c       0.512 -0.017 -0.126 -0.118 -0.079              
## indv_1:dff. -0.121  0.163  0.161 -0.560  0.075 -0.019       
## chrty_1:df. -0.125  0.172  0.145 -0.575  0.078 -0.005  0.792
summary(m18 <- lmer(propDonate ~ (pract_1 + charity_1) * diff.c + money.c + need.c + 
                      (pract_1 + charity_1 + money.c + need.c + diff.c | participant)+ (1 | stimulus), 
                   control = lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000)), data = d))
## Linear mixed model fit by REML ['lmerMod']
## Formula: propDonate ~ (pract_1 + charity_1) * diff.c + money.c + need.c +  
##     (pract_1 + charity_1 + money.c + need.c + diff.c | participant) +  
##     (1 | stimulus)
##    Data: d
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 10000))
## 
## REML criterion at convergence: -8085.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.4167 -0.3141 -0.0255  0.2495  6.1221 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. Corr                         
##  participant (Intercept) 6.188e-02 0.248767                              
##              pract_1     1.630e-02 0.127668 -0.41                        
##              charity_1   7.379e-03 0.085899 -0.24  0.19                  
##              money.c     3.894e-03 0.062406 -0.18 -0.04  0.03            
##              need.c      2.656e-03 0.051535  0.63 -0.09 -0.27 -0.19      
##              diff.c      3.243e-03 0.056951  0.16  0.08  0.00 -0.48  0.02
##  stimulus    (Intercept) 1.956e-05 0.004423                              
##  Residual                1.756e-02 0.132529                              
## Number of obs: 9827, groups:  participant, 378; stimulus, 21
## 
## Fixed effects:
##                    Estimate Std. Error t value
## (Intercept)       0.3123616  0.0134034  23.305
## pract_1          -0.0209936  0.0092925  -2.259
## charity_1        -0.0247260  0.0058913  -4.197
## diff.c            0.0476040  0.0040637  11.714
## money.c          -0.0062084  0.0060416  -1.028
## need.c            0.0512057  0.0031499  16.256
## pract_1:diff.c   -0.0205538  0.0037148  -5.533
## charity_1:diff.c  0.0005697  0.0024193   0.235
## 
## Correlation of Fixed Effects:
##             (Intr) prct_1 chrt_1 diff.c mony.c need.c pr_1:.
## pract_1     -0.351                                          
## charity_1   -0.260  0.230                                   
## diff.c       0.149  0.023  0.017                            
## money.c     -0.095 -0.006  0.009 -0.189                     
## need.c       0.498  0.017 -0.182 -0.155 -0.079              
## prct_1:dff.  0.007  0.163 -0.011 -0.261 -0.075  0.019       
## chrty_1:df.  0.003 -0.018 -0.063 -0.317  0.008  0.021  0.298
tab_model(m17, m18,
          show.ci = .95,
          show.se = T,
          show.stat = T,
          string.stat = "t",
          string.se="SE",
          string.est = "B",
          digits = 2)
  propDonate propDonate
Predictors B SE CI t p B SE CI t p
(Intercept) 0.29 0.01 0.27 – 0.32 21.81 <0.001 0.31 0.01 0.29 – 0.34 23.30 <0.001
indiv_1 0.02 0.01 0.00 – 0.04 2.26 0.024
charity_1 -0.00 0.01 -0.02 – 0.02 -0.38 0.703 -0.02 0.01 -0.04 – -0.01 -4.20 <0.001
diff.c 0.03 0.00 0.02 – 0.04 5.71 <0.001 0.05 0.00 0.04 – 0.06 11.71 <0.001
money.c -0.01 0.01 -0.02 – 0.01 -1.03 0.304 -0.01 0.01 -0.02 – 0.01 -1.03 0.304
need.c 0.05 0.00 0.05 – 0.06 16.26 <0.001 0.05 0.00 0.05 – 0.06 16.26 <0.001
indiv_1 * diff.c 0.02 0.00 0.01 – 0.03 5.53 <0.001
charity_1 * diff.c 0.02 0.00 0.01 – 0.03 5.59 <0.001 0.00 0.00 -0.00 – 0.01 0.24 0.814
pract_1 -0.02 0.01 -0.04 – -0.00 -2.26 0.024
pract_1 * diff.c -0.02 0.00 -0.03 – -0.01 -5.53 <0.001
Random Effects
σ2 0.02 0.02
τ00 0.05 participant 0.06 participant
0.00 stimulus 0.00 stimulus
τ11 0.02 participant.indiv_1 0.02 participant.pract_1
0.02 participant.charity_1 0.01 participant.charity_1
0.00 participant.money.c 0.00 participant.money.c
0.00 participant.need.c 0.00 participant.need.c
0.00 participant.diff.c 0.00 participant.diff.c
ρ01 -0.11 participant.indiv_1 -0.41 participant.pract_1
-0.19 participant.charity_1 -0.24 participant.charity_1
-0.22 participant.money.c -0.18 participant.money.c
0.64 participant.need.c 0.63 participant.need.c
0.22 participant.diff.c 0.16 participant.diff.c
ICC 0.82 0.82
N 378 participant 378 participant
21 stimulus 21 stimulus
Observations 9827 9827
Marginal R2 / Conditional R2 0.197 / 0.853 0.197 / 0.853