Markdown Document for the purposes of Analysing ICAD 2.0 data using GAMLSS to explore the relative distribution of physical activity between genders.
This document was last edited on 2023-04-12 using R version 4.2.3
Working directory shall be on the university server throughout - both for access and data security.
rm(list = ls())
x <- c("quantreg","gamlss","tidyr",
"gtsummary","broom","broom.mixed",
"ggplot2","dplyr","forcats",
"foreign","tableone","kableExtra","psych",
"trackdown","sjPlot","broom.mixed",
"geomtextpath","ggpp", "gmodels",
"cowplot","knitr")
#lapply(x, install.packages, character.only = TRUE)
lapply(x, require, character.only = TRUE)
rm(x)
Throughout there seems to be 83 NAs in the sample - with
this present across all demographic data. As such, I am expecting 83
NAs in each demographic variable.
Check study $icad_study is set
as.factor
class(icad$icad_study)
icad$icad_study <- as.integer(icad$icad_study)
Check $icad_country is set as.factor and/or
rename to country name
class(icad$icad_country)
icad$icad_country <- as.integer(icad$icad_country)
summary(icad$icad_country)#TO check spread and ensure that there are no NAs
#Recoding to country names for ease of comprehension
icad$country <- as.factor(ifelse(icad$icad_country==1,"uk",
ifelse(icad$icad_country=="2","switzerland",
ifelse(icad$icad_country=="4","usa",
ifelse(icad$icad_country=="5","australia",
ifelse(icad$icad_country=="6","denmark",
ifelse(icad$icad_country=="7","estonia",
ifelse(icad$icad_country=="8","norway",
ifelse(icad$icad_country=="9","portugal",
ifelse(icad$icad_country=="10","brazil",NA))))))))))
This leaves a sample of 20076 from 9 countries
| # of Individuals | |
|---|---|
| australia | 2655 |
| brazil | 457 |
| denmark | 1814 |
| estonia | 662 |
| norway | 398 |
| portugal | 1256 |
| switzerland | 532 |
| uk | 6935 |
| usa | 5284 |
| NA’s | 83 |
Though it won’t be used in any analysis, I’m recoding the study design so that it is easier to interpret. Additionally, I can check that in longitudinal and interventional studies that I have only the 1st wave.
icad$icad_studydesign <- as.factor(ifelse(icad$icad_studydesign==0,"cross-sectional",
ifelse(icad$icad_studydesign==1,"longitudinal",
ifelse(icad$icad_studydesign==2,"interventional",NA))))
summary(icad$icad_studydesign)
| # of Individuals | |
|---|---|
| cross-sectional | 5946 |
| interventional | 532 |
| longitudinal | 13515 |
| NA’s | 83 |
Recode $icad_sex so missing = NA, and that
it is read as.factor
summary(icad$icad_sex)
icad$icad_sex <- as.factor(ifelse(icad$icad_sex==0,"male",
ifelse(icad$icad_sex==1,"female",
ifelse(icad$icad_sex==999,NA,NA))))
| # of Individuals | |
|---|---|
| female | 10293 |
| male | 9689 |
| NA’s | 94 |
Recode $icad_age so that missing = NA,
ensure all other values are within the suitable range for a child
(0-18)
summary(icad$icad_age) # NA coding for $icad_age is `999`
icad$icad_age <- ifelse(icad$icad_age==999,NA,icad$icad_age)
Create an age category variable to make sense of GAMLSS
icad$age_cat <- ifelse(icad$icad_age<5,"pre-school",
ifelse(icad$icad_age>=5&icad$icad_age<12,"child",
ifelse(icad$icad_age>=12,"teenage",NA)))
Recode $icad_ethnicity# to a consistent binary, ensure
that coding is read as.factor
table(icad$icad_ethnicity1)
table(icad$icad_ethnicity2)
table(icad$icad_ethnicity3)
table(icad$icad_ethnicity4)
icad$ethnicity <- as.factor(ifelse(icad$icad_ethnicity1==0,"white",
ifelse(icad$icad_ethnicity1==1,"other",
ifelse(icad$icad_ethnicity2==0,"white",
ifelse(icad$icad_ethnicity2>=1 & icad$icad_ethnicity2 <= 6,"other",
ifelse(icad$icad_ethnicity3==0,"white",
ifelse(icad$icad_ethnicity3>=1 & icad$icad_ethnicity2 <= 6,"other",
ifelse(icad$icad_ethnicity4==1,"other",
ifelse(icad$icad_ethnicity4==0,"white",NA)))))))))
summary(icad$ethnicity)
| # of Individuals | |
|---|---|
| other | 4417 |
| white | 9838 |
| NA’s | 5821 |
Recode $icad_mothereducation# to consistent
minimum/Binary, recode missing to NA, ensure it is read as
an ordered factor (as.factor(,levels=c()))
table(icad$icad_mothereducation1)
table(icad$icad_mothereducation2)
icad$mothereducation <- as.factor(ifelse(icad$icad_mothereducation1==0,0,
ifelse(icad$icad_mothereducation1==1,1,
ifelse(icad$icad_mothereducation2==0,0,
ifelse(icad$icad_mothereducation1==1,1,
ifelse(icad$icad_mothereducation1==2,1,
ifelse(icad$icad_mothereducation1==999,NA,
ifelse(icad$icad_mothereducation2==999,NA,NA))))))))
summary(icad$mothereducation)
| # of Individuals | |
|---|---|
| 0 | 6736 |
| 1 | 9388 |
| NA’s | 3952 |
Recode $icad_fathereducation# to consistent
minimum/Binary, recode missing to NA, ensure it is read as
an ordered factor (as.factor(,levels=c()))
table(icad$icad_fathereducation1)
table(icad$icad_fathereducation2)
icad$fathereducation <- as.factor(ifelse(icad$icad_fathereducation1==0,0,
ifelse(icad$icad_fathereducation1==1,1,
ifelse(icad$icad_fathereducation2==0,0,
ifelse(icad$icad_fathereducation1==1,1,
ifelse(icad$icad_fathereducation1==2,1,
ifelse(icad$icad_fathereducation1==999,NA,
ifelse(icad$icad_fathereducation2==999,NA,NA))))))))
summary(icad$fathereducation)
| # of Individuals | |
|---|---|
| 0 | 5152 |
| 1 | 8007 |
| NA’s | 6917 |
Creating a measure of whether a parent had education beyond school leaving age (1= At least one parent had beyond school leaving age education, 0 = Neither parent)
icad$parenteducation <- ifelse(icad$mothereducation==1|icad$fathereducation==1,1,0)
icad$parenteducation <- ifelse(icad$mothereducation==0 & is.na(icad$fathereducation),0,icad$parenteducation)
d <- summary(icad$parenteducation)
#kbl(d,col.names=c("# of Individuals"),caption = "Table of Parental Education, 0 = Up to and inclusive of #Compulsory Education, 1 = Beyond Compulsory School leaving Age") %>%
# kable_styling(bootstrap_options = c("hover", "condensed", "responsive", "striped"))
rm(d)
Recode $icad_height so that it is read as numeric and
and missing is read as NA
class(icad$icad_height) #No need to change class as it is already being read as numeric
## [1] "numeric"
summary(icad$icad_height) #Max height is realistic (204cm) so no need to recode
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 99.6 140.4 150.0 149.6 159.9 204.4 285
d<- summary(tibble(icad$icad_height))
kbl(d,col.names=c("Height Summary"),caption = "Table of Fsummary statistics for particpant heights") %>%
kable_styling(bootstrap_options = c("hover", "condensed", "responsive", "striped"),full_width = FALSE)
| Height Summary | |
|---|---|
| Min. : 99.6 | |
| 1st Qu.:140.4 | |
| Median :150.0 | |
| Mean :149.6 | |
| 3rd Qu.:159.9 | |
| Max. :204.4 | |
| NA’s :285 |
Recode $icad_weight so that it is read as numeric and
and missing is read as NA
class(icad$icad_weight) #No need to change class as it is already being read as numeric
## [1] "numeric"
summary(icad$icad_weight)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 13.40 33.60 42.60 45.56 54.80 215.30 282
d<- summary(tibble(icad$icad_weight))
kbl(d,col.names=c("Weight Summary"),caption = "Table of summary statistics for particpant weights") %>%
kable_styling(bootstrap_options = c("hover", "condensed", "responsive", "striped"),full_width = FALSE)
| Weight Summary | |
|---|---|
| Min. : 13.40 | |
| 1st Qu.: 33.60 | |
| Median : 42.60 | |
| Mean : 45.56 | |
| 3rd Qu.: 54.80 | |
| Max. :215.30 | |
| NA’s :282 |
From $height and $weight I’m creating a
measure of body mass index ($bmi) using the formula of BMI
= Weight(kg) / Height (m) 2
icad$bmi <- ifelse(is.na(icad$icad_height)|is.na(icad$icad_weight),NA,(icad$icad_weight/(icad$icad_height/100)^2))
d <- summary(tibble(icad$bmi))
kbl(d,col.names=c("BMI Summary"),caption = "Table of summary statistics for particpant BMIs") %>%
kable_styling(bootstrap_options = c("hover", "condensed", "responsive", "striped"),full_width = FALSE)
| BMI Summary | |
|---|---|
| Min. : 9.614 | |
| 1st Qu.:16.638 | |
| Median :18.695 | |
| Mean :19.731 | |
| 3rd Qu.:21.629 | |
| Max. :62.734 | |
| NA’s :296 |
As the distribution of BMI changes with age I’m creating a z score of BMI grouped by age and gender. I’m using this instead of an unstandardised measure of BMI as ‘healthy’ BMI changes with age - i.e. and individual with a BMI of 20 at age 7 should not be interpreted in a similar way to an individual with a BMI of 20 at age 17
icad$age_rounded <- ceiling(icad$icad_age)
icad <- icad %>%
group_by(icad_sex, age_rounded) %>%
mutate(bmi_z = scale(bmi))
Create a measure of the season in which recording happened - factoring in north/south hemisphere divide
icad$headerstartmonth <- as.factor(icad$headerstartmonth)
icad$season <- as.factor(ifelse(icad$country=="australia"|icad$country=="brazil",ifelse(icad$headerstartmonth=="December"|icad$headerstartmonth=="January"|icad$headerstartmonth=="February","summer",ifelse(icad$headerstartmonth=="March"|icad$headerstartmonth=="April"|icad$headerstartmonth=="May","autumn",ifelse(icad$headerstartmonth=="June"|icad$headerstartmonth=="July"|icad$headerstartmonth=="August","winter",ifelse(icad$headerstartmonth=="September"|icad$headerstartmonth=="October"|icad$headerstartmonth=="November","spring",NA)))),ifelse(icad$country!="australia"|icad$country!="brazil",ifelse(icad$headerstartmonth=="December"|icad$headerstartmonth=="January"|icad$headerstartmonth=="February","winter",ifelse(icad$headerstartmonth=="March"|icad$headerstartmonth=="April"|icad$headerstartmonth=="May","spring",ifelse(icad$headerstartmonth=="June"|icad$headerstartmonth=="July"|icad$headerstartmonth=="August","summer",ifelse(icad$headerstartmonth=="September"|icad$headerstartmonth=="October"|icad$headerstartmonth=="November","autumn",NA)))))))
icad$season <- ordered(icad$season, levels = c("spring", "summer", "autumn","winter"))
d<- summary(icad$season)
kbl(d,caption = "Summary Table of Seasonality") %>%
kable_styling(bootstrap_options = c("hover", "condensed", "responsive", "striped"),full_width = FALSE)
| x | |
|---|---|
| spring | 5083 |
| summer | 2862 |
| autumn | 3014 |
| winter | 9034 |
| NA’s | 83 |
x <- CrossTable(icad$country, icad$season, digits = 2,expected = FALSE, prop.r = T, prop.c=F,prop.t=F,prop.chisq = F)
##
##
## Cell Contents
## |-------------------------|
## | N |
## | N / Row Total |
## |-------------------------|
##
##
## Total Observations in Table: 19993
##
##
## | icad$season
## icad$country | spring | summer | autumn | winter | Row Total |
## -------------|-----------|-----------|-----------|-----------|-----------|
## australia | 1129 | 264 | 296 | 966 | 2655 |
## | 0.43 | 0.10 | 0.11 | 0.36 | 0.13 |
## -------------|-----------|-----------|-----------|-----------|-----------|
## brazil | 264 | 149 | 0 | 44 | 457 |
## | 0.58 | 0.33 | 0.00 | 0.10 | 0.02 |
## -------------|-----------|-----------|-----------|-----------|-----------|
## denmark | 648 | 18 | 534 | 614 | 1814 |
## | 0.36 | 0.01 | 0.29 | 0.34 | 0.09 |
## -------------|-----------|-----------|-----------|-----------|-----------|
## estonia | 251 | 5 | 251 | 155 | 662 |
## | 0.38 | 0.01 | 0.38 | 0.23 | 0.03 |
## -------------|-----------|-----------|-----------|-----------|-----------|
## norway | 201 | 32 | 67 | 98 | 398 |
## | 0.51 | 0.08 | 0.17 | 0.25 | 0.02 |
## -------------|-----------|-----------|-----------|-----------|-----------|
## portugal | 617 | 206 | 0 | 433 | 1256 |
## | 0.49 | 0.16 | 0.00 | 0.34 | 0.06 |
## -------------|-----------|-----------|-----------|-----------|-----------|
## switzerland | 40 | 267 | 225 | 0 | 532 |
## | 0.08 | 0.50 | 0.42 | 0.00 | 0.03 |
## -------------|-----------|-----------|-----------|-----------|-----------|
## uk | 1933 | 1921 | 1641 | 1440 | 6935 |
## | 0.28 | 0.28 | 0.24 | 0.21 | 0.35 |
## -------------|-----------|-----------|-----------|-----------|-----------|
## usa | 0 | 0 | 0 | 5284 | 5284 |
## | 0.00 | 0.00 | 0.00 | 1.00 | 0.26 |
## -------------|-----------|-----------|-----------|-----------|-----------|
## Column Total | 5083 | 2862 | 3014 | 9034 | 19993 |
## -------------|-----------|-----------|-----------|-----------|-----------|
##
##
kbl(x,caption = "Cross Table of Seasonality") %>%
kable_styling(bootstrap_options = c("hover", "condensed", "responsive", "striped"),full_width = FALSE)
|
|
|
|
icad_na_map <- subset(icad,select=c("icad_studydesign","country","ethnicity","mothereducation",
"fathereducation","icad_height","icad_weight","icad_sex"))
d<- icad_na_map %>%
summarise_all(~sum(is.na(.)))
kable(d,caption = "Summary of missingness by demographic variable",col.names=c("Study Design","Country","Ethnicity", "Mother's Education","Father's Education","Height","Weight","Sex"))%>%
kable_styling(bootstrap_options = c("hover", "condensed", "responsive", "striped"))
| Study Design | Country | Ethnicity | Mother’s Education | Father’s Education | Height | Weight | Sex |
|---|---|---|---|---|---|---|---|
| female | 0 | 0 | 3013 | 1955 | 3512 | 104 | 104 |
| male | 0 | 0 | 2714 | 1906 | 3314 | 92 | 89 |
| NA | 83 | 83 | 94 | 91 | 91 | 89 | 89 |
rm(d)
rm(icad_na_map)
Theres a large array of variables that constitute the activity measures, which could prove confusing - as such, select variables are going to be recoded and renamed to aid analysis later. No variable will be deleted.
icad$cpm_wear <- icad$wearctsvaldystotperminute
d <- summary(tibble(icad$cpm_wear))
kable(d,col.names=c("CPM Summary"),caption = "Counts Per Minute (cpm) summary") %>%
kable_styling(bootstrap_options = c("hover", "condensed", "responsive", "striped"))
icad$weartime <- icad$wearminvaldystotperday
Evenson cut-offs in counts per minute are
| Sedentary | Light | Moderate | Vigorous | MVPA |
|---|---|---|---|---|
| <101 | 101 - <2296 | 2296 - <4012 | 4012<= | 2296<= |
icad$sedentary_evenson <- icad$evenson_sedminvaldystotperday #Sedentary
icad$light_evenson <- icad$evenson_lpaminvaldystotperday #Light
icad$moderate_evenson <- icad$evenson_mpaminvaldystotperday #Moderate
icad$vigorous_evenson <- icad$evenson_vpaminvaldystotperday #Vigorous
icad$mvpa_evenson <- icad$evenson_mvpaminvaldystotperday #MVPA
| Sedentary | Light | Moderate | Vigorous | MVPA |
|---|---|---|---|---|
| <800 | 800 - <1680 | 1680 - <3368 | 3368<= | 1680<= |
icad$sedentary_pate <- icad$pate_sedminvaldystotperday #Sedentary
icad$light_pate <- icad$pate_lpaminvaldystotperday #Light
icad$moderate_pate <- icad$pate_mpaminvaldystotperday #Moderate
icad$vigorous_pate <- icad$pate_vpaminvaldystotperday #Vigorous
icad$mvpa_pate <- icad$pate_mvpaminvaldystotperday #MVPA
Create Back-up containing all individuals for whom there is physical activity data (For use in sensitivity analyses)
write.csv(icad,"icad_cleaned_full.csv")
icad_na_map <- subset(icad,select=c("cpm_wear","sedentary_evenson","light_evenson","moderate_evenson","vigorous_evenson",
"sedentary_pate","light_pate","moderate_pate","vigorous_pate"))
d<- icad_na_map %>%
summarise_all(~sum(is.na(.)))
kable(d,caption = "Summary of missingness by Physical Activity variable") %>%
kable_styling(bootstrap_options = c("hover", "condensed", "responsive", "striped"))
rm(d)
rm(icad_na_map)
A total of 657 individuals do not have physical activity data. The following lines briefly explore who make up this group.
icad_pa_na = icad[is.na(icad$cpm_wear),]
icad_pa_na_map <- subset(icad_pa_na,select = c("icad_sex","icad_age","ethnicity","icad_height","icad_weight","icad_study","country"))
| Sex | Freq |
|---|---|
| female | 300 |
| male | 333 |
There is a relatively even spread in missingness between the sexes with ~300 cases for each sex
| Summary of Age | |
|---|---|
| Min. : 5.153 | |
| 1st Qu.:11.190 | |
| Median :13.804 | |
| Mean :12.992 | |
| 3rd Qu.:15.583 | |
| Max. :18.417 | |
| NA’s :27 |
Individuals across the available age span have missing data, with the mean sitting near to the middle - median is slightly positively shifted in this group
| Country | Freq |
|---|---|
| australia | 53 |
| brazil | 1 |
| denmark | 73 |
| estonia | 2 |
| norway | 6 |
| portugal | 26 |
| switzerland | 16 |
| uk | 200 |
| usa | 258 |
Individuals are missing from all available countries, though not in equal proportions to the initial sample size, the two largest studies are contributing the largest amount to this missing group.
missing_pa <- subset(icad,is.na(icad$cpm_wear))
icad <- subset(icad[!is.na(icad$cpm_wear),])
This leaves a sample of 19419
| Counts Per Minute | |
|---|---|
| Min. : 1.07 | |
| 1st Qu.: 413.95 | |
| Median : 546.43 | |
| Mean : 726.27 | |
| 3rd Qu.: 706.40 | |
| Max. :304474.97 |
hist(icad$cpm_wear,bins=seq(0,305000,5000))#Most individuals have values under 5000
length(icad$cpm_wear[icad$cpm_wear>5000])#111 are above 5000 cpm. Testing 5000 as 4000 is approximately lower limit for vigorous
icad_high_cpm <- subset(icad,icad$cpm_wear>5000)
Of the individuals who had very high cpm’s - all had a
reliability flag ==1, indicating that the data is viewed as
‘spurious’. We have therefore subset the sample to individuals
who do no have $reliability ==1 . Those that do are grouped
into a new dataframe for use later in exploring missingness.
Additionally, those who have been marked as spurious
$reliability == 3 have been excluded, due to issues seen in
later visual analysis, as have those that have been excluded from
analysis by the EYHS study (Those in Norway, Portugal, Estonia and
Denmark) $marked_invalid_bystudyt==1
reliability_flag <- subset(icad,icad$reliability==1)
icad <- subset(icad,!icad$reliability==1)
icad <- subset(icad,!icad$reliability==3)
icad <- subset(icad,!icad$marked_invalid_bystudyt==1)
icad_reliability <- subset(icad,icad$reliability>=1|icad$marked_invalid_bystudyt==1)
| Study Design | Country | Ethnicity | Mother’s Education | Father’s Education | Height | Weight | Sex |
|---|---|---|---|---|---|---|---|
| female | 0 | 0 | 2847 | 1839 | 3314 | 93 | 93 |
| male | 0 | 0 | 2559 | 1745 | 3091 | 87 | 83 |
| NA | 55 | 55 | 63 | 60 | 60 | 58 | 58 |
The minimum model will need sex and country, so the sample is being
restricted to individuals with both sex and country specified. As
before, those that are being removed for having NA in
either $icad_sex or $country are placed in a
new dataframe for use later.
country_missing <- subset(icad,is.na(icad$country))
icad <- subset(icad[!is.na(icad$country),])
sex_missing <- subset(icad,is.na(icad$icad_sex))
icad <- subset(icad[!is.na(icad$icad_sex),])
From the remaining individuals, long form datasets are made where each row is an intensity threshold for each person. This is done twice with both evenson and pate cut-points. The later is then subset and joined back to the original so that at each row of intensity and individual has a volume of time as measured by Evenson and Pate thresholds
# This is done twice over, once for Evenson, Once for Pate
columns_to_gather <- c("sedentary","light","moderate","vigorous")
icad_long_evenson <- icad_evenson_rename %>% gather(intensity,evenson_time,columns_to_gather)
icad_long_pate <- gather(icad_pate_rename,intensity,pate_time,columns_to_gather)
remove(columns_to_gather)
icad_long_pate <- subset(icad_long_pate,select=c("icad_id","intensity","pate_time"))
icad_long <- merge(icad_long_evenson,icad_long_pate,by = c("icad_id","intensity"))
Returning to those excluded from the final data frame, each group is
given a $reason for exclusion, then bound to the other
excluded dataframes to create one large set
missing_pa$reason <- "missing pa"
reliability_flag$reason <- "reliability score"
sex_missing$reason <- "no sex"
country_missing$reason <- "no country"
bind1 <- rbind(missing_pa,reliability_flag)
bind2 <- rbind(country_missing,sex_missing)
excluded_in_cleaning <- rbind(bind1,bind2)
This dataframe includes a total of 885 individuals who will not form part of the final analysis.
#write.csv(icad,"icad_cleaned.csv")
#write.csv(icad_long,"icad_long.csv")
#write.csv(excluded_in_cleaning,"excluded_in_cleaning")
To finish, the excluded individuals are summarised in the below table
using the tableone package. This table is stratified
(strata) by sex, with categorical variables specified
(factorVars)
library(tableone)
vars <- c("icad_age",
"icad_height",
"icad_weight",
"ethnicity",
"country",
"mothereducation",
"fathereducation",
"reason",
"cpm_wear")
strata <- "icad_sex"
factorVars <- c("icad_sex",
"ethnicity",
"country",
"mothereducation",
"fathereducation",
"reason")
d <- CreateTableOne(vars = vars,strata = strata,factorVars = factorVars,data=excluded_in_cleaning,test = FALSE,addOverall = TRUE)
kableone(d,caption = "Summary Table of Exlcuded Individuals")%>%
kable_styling(bootstrap_options = c("hover", "condensed", "responsive", "striped")) %>%
add_indent(c(7,8,9,10,11,12,13,14,15,19,20,21))
| Overall | female | male | |
|---|---|---|---|
| n | 885 | 380 | 411 |
| icad_age (mean (SD)) | 12.77 (3.30) | 12.70 (3.33) | 12.83 (3.29) |
| icad_height (mean (SD)) | 154.03 (18.25) | 150.96 (16.36) | 156.78 (19.48) |
| icad_weight (mean (SD)) | 50.83 (19.93) | 49.38 (19.58) | 52.17 (20.29) |
| ethnicity = white (%) | 287 (57.7) | 130 (56.0) | 157 (59.2) |
| country (%) | |||
| australia | 93 (11.6) | 53 (13.9) | 40 ( 9.7) |
| brazil | 1 ( 0.1) | 1 ( 0.3) | 0 ( 0.0) |
| denmark | 85 (10.6) | 43 (11.3) | 42 (10.2) |
| estonia | 2 ( 0.2) | 1 ( 0.3) | 1 ( 0.2) |
| norway | 11 ( 1.4) | 2 ( 0.5) | 3 ( 0.7) |
| portugal | 32 ( 4.0) | 15 ( 3.9) | 17 ( 4.1) |
| switzerland | 32 ( 4.0) | 17 ( 4.5) | 15 ( 3.6) |
| uk | 236 (29.4) | 99 (26.1) | 132 (32.1) |
| usa | 310 (38.7) | 149 (39.2) | 161 (39.2) |
| mothereducation = 1 (%) | 280 (52.4) | 146 (54.1) | 131 (50.2) |
| fathereducation = 1 (%) | 231 (57.3) | 125 (62.8) | 103 (51.2) |
| reason (%) | |||
| missing pa | 657 (74.2) | 300 (78.9) | 333 (81.0) |
| no country | 55 ( 6.2) | 0 ( 0.0) | 0 ( 0.0) |
| no sex | 8 ( 0.9) | 0 ( 0.0) | 0 ( 0.0) |
| reliability score | 165 (18.6) | 80 (21.1) | 78 (19.0) |
| cpm_wear (mean (SD)) | 13513.98 (24193.73) | 21453.10 (15574.56) | 16913.01 (35328.10) |
icad <- read.csv("icad_cleaned.csv")
#icad_long <- read.csv("icad_long.csv")
icad <- subset(icad,select=c("icad_id",...))
As most of the NAs from the key variables should have be
cleaned out by now, this table should just show missingness from other
key variables.
Following cleaning, missingness should be restricted to ethnicity,
parents education, height and weight as those with incomplete sex or
country were removed during the cleaning process.
| Study Design | Country | Ethnicity | Mother’s Education | Father’s Education | Height | Weight | Gender |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 5406 | 3584 | 6405 | 180 | 176 | 0 |
Previous cleaning restricted the sample to complete activity data - as such no entries should be expected in this table.
| cpm_wear | sedentary_evenson | light_evenson | moderate_evenson | vigorous_evenson |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
As before with the excluded individual, this table is constructed
using tableone package passed through kable.
This table is stratified (strata) by sex, with categorical
variables specified (factorVars). In this table all
physical activity measures are dropped, as such, the table only
summarises demographic and anthropometric variables.
| Overall | female | male | |
|---|---|---|---|
| n | 18980 | 9804 | 9176 |
| icad_age (mean (SD)) | 11.80 (2.71) | 11.78 (2.70) | 11.82 (2.72) |
| icad_height (mean (SD)) | 149.43 (15.35) | 148.46 (13.95) | 150.46 (16.66) |
| icad_weight (mean (SD)) | 45.33 (16.79) | 44.87 (15.58) | 45.82 (17.98) |
| ethnicity = white (%) | 9408 (69.3) | 4882 (70.2) | 4526 (68.4) |
| mothereducation = 1 (%) | 9004 (58.5) | 4708 (59.1) | 4296 (57.8) |
| fathereducation = 1 (%) | 7677 (61.0) | 3982 (61.4) | 3695 (60.7) |
| country (%) | |||
| australia | 2542 (13.4) | 1332 (13.6) | 1210 (13.2) |
| brazil | 456 ( 2.4) | 218 ( 2.2) | 238 ( 2.6) |
| denmark | 1636 ( 8.6) | 902 ( 9.2) | 734 ( 8.0) |
| estonia | 659 ( 3.5) | 366 ( 3.7) | 293 ( 3.2) |
| norway | 387 ( 2.0) | 190 ( 1.9) | 197 ( 2.1) |
| portugal | 1184 ( 6.2) | 595 ( 6.1) | 589 ( 6.4) |
| switzerland | 500 ( 2.6) | 258 ( 2.6) | 242 ( 2.6) |
| uk | 6696 (35.3) | 3492 (35.6) | 3204 (34.9) |
| usa | 4920 (25.9) | 2451 (25.0) | 2469 (26.9) |
Ages between the two sexes are relatively balanced with a difference
of 0.04. This tracks into height and weight with narrow
differences (+2cm & +1kg) in favour of boys.
girls were slightly more likely to report being of
white ethnicity, but this should be caveated against a good amount of
missingness in this variable. Similar levels of mothers and fathers
education are seen between the sexes.
Descriptive analysis Process will be basic visual –> basic numeric –> Detailed visual –> detailed numeric
Evenson cut-offs in counts per minute are
| Sedentary | Light | Moderate | Vigorous | MVPA |
|---|---|---|---|---|
| <101 | 101 - <2296 | 2296 - <4012 | 4012<= | 2296<= |
Pate cut-offs in counts per minute are
| Sedentary | Light | Moderate | Vigorous | MVPA |
|---|---|---|---|---|
| <800 | 800 - <1680 | 1680 - <3368 | 3368<= | 1680<= |
Evenson cut-offs for sedentary are lower, limits on light are wider, and moderate to vigorous starts at a higher threshold. As such, it should be expected that compared to Pate cut-offs, Evenson should return lower volumes of sedentary activity, greater volumes of light activity, and reduced volumes of moderate to vigorous activity.
In line with other studies (See article for details), individuals who
recorded in excess of 16hrs/day of activity were removed from analyses
exploring eith mean activity (cpm) or sedentary activity. In particular,
this restriction notable constrains the sample collected in Brazil and
Switzerland
Further, in later analysis using GAMLSS complete cases
are required. As such, at this point the datasets are subsetted to
individuals who have complete data for physical activity, gender, study,
bmi (z-score) and parental education.
Repeating this plot but doing so with $sex as the
grouping variable.
| Overall | female:5 | male:5 | female:6 | male:6 | female:7 | male:7 | female:8 | male:8 | female:9 | male:9 | female:10 | male:10 | female:11 | male:11 | female:12 | male:12 | female:13 | male:13 | female:14 | male:14 | female:15 | male:15 | female:16 | male:16 | female:17 | male:17 | female:18 | male:18 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| n | 15437 | 53 | 45 | 400 | 387 | 239 | 230 | 161 | 144 | 483 | 410 | 923 | 871 | 708 | 623 | 2918 | 2723 | 414 | 428 | 324 | 306 | 459 | 404 | 561 | 513 | 173 | 189 | 173 | 175 |
| icad_height (mean (SD)) | 148.95 (15.45) | 112.25 (5.05) | 113.21 (5.57) | 116.50 (5.53) | 117.97 (5.52) | 122.46 (6.21) | 123.00 (5.97) | 129.53 (6.43) | 129.89 (6.10) | 136.17 (6.26) | 136.30 (6.36) | 140.19 (7.03) | 140.00 (6.65) | 146.50 (7.37) | 145.85 (6.52) | 151.40 (7.12) | 150.36 (7.26) | 156.77 (6.90) | 158.56 (9.34) | 159.52 (6.82) | 164.57 (8.72) | 163.09 (6.74) | 172.08 (8.18) | 163.33 (6.47) | 174.57 (7.44) | 161.41 (6.86) | 175.45 (7.68) | 161.88 (6.38) | 175.28 (7.80) |
| icad_weight (mean (SD)) | 44.98 (16.87) | 20.90 (3.15) | 21.25 (4.12) | 22.42 (4.10) | 23.16 (4.51) | 25.44 (5.88) | 25.52 (5.86) | 30.44 (8.82) | 30.18 (8.41) | 32.59 (7.32) | 33.11 (7.66) | 36.11 (8.96) | 35.34 (7.86) | 42.35 (10.94) | 41.01 (10.05) | 45.03 (10.68) | 43.43 (10.54) | 53.45 (13.54) | 52.88 (15.41) | 58.97 (15.85) | 58.73 (15.52) | 57.64 (11.96) | 65.15 (15.71) | 59.83 (12.57) | 68.88 (16.65) | 66.19 (19.45) | 76.56 (22.17) | 66.17 (18.08) | 77.79 (20.96) |
| cpm_wear (mean (SD)) | 576.93 (234.91) | 757.29 (192.49) | 883.98 (292.12) | 737.32 (186.74) | 854.19 (221.14) | 639.83 (196.56) | 760.38 (236.24) | 641.89 (243.23) | 731.22 (205.30) | 596.45 (197.57) | 738.14 (299.12) | 593.34 (213.36) | 708.79 (269.98) | 563.57 (182.93) | 685.63 (227.55) | 538.63 (186.45) | 646.53 (198.37) | 388.51 (163.02) | 491.97 (208.97) | 367.14 (172.62) | 487.53 (196.86) | 384.27 (148.05) | 484.83 (191.93) | 378.82 (154.52) | 494.64 (210.11) | 334.02 (126.91) | 449.36 (204.98) | 308.68 (110.31) | 433.62 (189.05) |
| mvpa_evenson (mean (SD)) | 52.46 (29.84) | 57.68 (21.23) | 75.62 (30.87) | 56.07 (20.60) | 75.29 (27.44) | 52.02 (22.06) | 74.47 (31.61) | 49.12 (30.23) | 65.86 (28.96) | 47.26 (25.34) | 70.29 (36.53) | 48.80 (27.20) | 69.61 (37.37) | 48.53 (21.47) | 70.60 (29.97) | 45.51 (21.01) | 65.95 (29.03) | 33.40 (21.25) | 51.16 (28.27) | 29.41 (21.15) | 47.93 (27.39) | 31.71 (21.89) | 46.05 (27.68) | 31.25 (21.96) | 48.68 (30.40) | 22.39 (18.50) | 40.18 (28.26) | 18.26 (13.75) | 37.42 (25.04) |
| sedentary_evenson (mean (SD)) | 383.04 (133.92) | 239.84 (77.16) | 232.56 (72.70) | 256.46 (93.55) | 246.63 (89.17) | 361.44 (164.81) | 345.49 (172.05) | 319.29 (90.38) | 312.53 (105.31) | 326.83 (91.61) | 317.42 (98.70) | 343.47 (106.01) | 330.32 (108.96) | 392.66 (149.07) | 374.89 (138.72) | 367.38 (82.33) | 355.12 (88.78) | 529.68 (177.93) | 523.50 (199.53) | 513.98 (157.26) | 492.46 (175.84) | 468.80 (108.80) | 441.76 (110.88) | 478.18 (113.38) | 445.03 (116.10) | 474.34 (121.18) | 465.05 (139.94) | 480.90 (121.79) | 470.45 (142.49) |
| light_evenson (mean (SD)) | 363.35 (78.69) | 388.34 (58.67) | 401.01 (67.89) | 407.42 (60.57) | 403.56 (60.86) | 433.40 (73.32) | 426.69 (79.82) | 408.40 (68.92) | 407.18 (69.31) | 407.11 (75.22) | 404.05 (75.42) | 396.57 (75.93) | 393.26 (78.17) | 380.02 (62.32) | 371.50 (70.14) | 360.68 (61.34) | 363.30 (63.18) | 337.95 (75.39) | 354.85 (82.75) | 318.38 (72.14) | 343.62 (84.63) | 308.80 (78.50) | 313.59 (83.48) | 296.05 (75.45) | 310.56 (89.82) | 302.47 (73.71) | 314.19 (88.50) | 295.26 (82.46) | 316.37 (95.28) |
Plot is muted at 1500 cpm to show more detail of centre of distribution Both genders appear to have positively skewed cpm values. Boys appear to have a slightly higher peak at ~600cpm, with girls peak at ~500cpm and boys seem to have a wider distribution.
| Gender | Count | Mean | Std Dev | Median | Skew |
|---|---|---|---|---|---|
| female | 7368 | 532.75 | 200.37 | 508.59 | 0.76 |
| male | 6749 | 649.85 | 236.11 | 628.38 | 0.48 |
Supporting the visual inspection, boys are recording ~100cpm more on average. The measure of skew is marginally higher in boys (4.5 vs 4.3), combined with a higher standard deviation. Both genders seem to have some outliers, but the aforementioned individual with a cpm value is a girl, thus likely underlying the high kurtosis and skew score seen for girls.
Further - The difference between the genders seems to be stable across ages - highest values are observed for the youngest individuals in the study, with a near continuous decline throughout the sample until exit at age 18
## ******************************************************************
## Family: c("NO", "Normal")
##
## Call: gamlss(formula = cpm_wear ~ icad_sex, sigma.formula = ~icad_sex,
## family = NO(mu.link = log), data = gamlss_cpm_adjusted, trace = FALSE)
##
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.278044 0.004381 1432.88 <2e-16 ***
## icad_sexmale 0.198700 0.006225 31.92 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.300110 0.008238 643.39 <2e-16 ***
## icad_sexmale 0.164107 0.011914 13.77 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 14117
## Degrees of Freedom for the fit: 4
## Residual Deg. of Freedom: 14113
## at cycle: 2
##
## Global Deviance: 191920.7
## AIC: 191928.7
## SBC: 191958.9
## ******************************************************************
The Mu coefficient presents the percentage difference between the two
genders. Here boys cpm is 19% greater than girls, which supports the
difference observed in the glm run previously
Male Estimate = 111.00, Intercept = 530.40. These values
can also be obtained by exponentiating the estimate from the model
exp(6.273633) = 530.400828 with a male value of
631.1881238. The standard deviations predicted from this model are
198.0425685 for girls and 231.5745421.
Then a model that allows the skew to vary
“Second, a more complex distribution which enables skewness to be investigated: the Box-Cox Cole and Green (BCCG). Here location is the median, scale is the generalised coefficient of variation (CoV), which is calculated in the normal case as SD/mean, and shape is skewness as defined by the Box-Cox power required to transform the outcome distribution to normality. The transformation requires the outcome to be on the positive line, so zero or negative values are excluded. BCCG is effectively NO with added skewness, though parameterised differently. A Box-Cox power of 1 indicates that the distribution is normal, 0 is log-normal and –1 inverse normal, so a smaller (i.e. more negative) power corresponds to more right skewness.” Bann, Wright and Cole, 2022
## ******************************************************************
## Family: c("BCCGo", "Box-Cox-Cole-Green-orig.")
##
## Call: gamlss(formula = cpm_wear ~ icad_sex, sigma.formula = ~icad_sex,
## nu.formula = ~icad_sex, family = BCCGo, data = gamlss_cpm_adjusted,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.240465 0.004734 1318.18 <2e-16 ***
## icad_sexmale 0.213240 0.006741 31.63 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.958422 0.008648 -110.820 <2e-16 ***
## icad_sexmale -0.028929 0.012763 -2.267 0.0234 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Nu link function: identity
## Nu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.47886 0.02088 22.938 < 2e-16 ***
## icad_sexmale 0.19021 0.03038 6.262 3.91e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 14117
## Degrees of Freedom for the fit: 6
## Residual Deg. of Freedom: 14111
## at cycle: 6
##
## Global Deviance: 191150.5
## AIC: 191162.5
## SBC: 191207.8
## ******************************************************************
Including skewness, boys appear to have a significantly greater
median volume of activity (Mu) that is 20.1%
greater, a non-significantly reduced standard deviation
(sigma) that is 1.5% lower with a skewness
(nu) that is significantly lower than that of girls. The Nu
being higher for boys indicates that the sample was less skewed than
girls. Exponentiating these values gives an estimated median of
511.3861602 for girls and 614.2233601 for boys. And a coefficient of
variance of 0.38092 for girls and 0.3751197 for boys
Based on the created DAG - the minimal adjustment for Gender involves SES (parental education),county and BMI. As GAMLSS requires complete cases, only those with complete data for these variables can be included. This reduced subset shall be re-run in an unadjusted model later as a sensitivity analysis to ensure that the composition of the sample is changing the associations between demographics and activity profiles.
## ******************************************************************
## Family: c("NO", "Normal")
##
## Call: gamlss(formula = cpm_wear ~ icad_sex + country + bmi_z +
## parenteducation, sigma.formula = ~icad_sex, family = NO(mu.link = log),
## data = gamlss_cpm_adjusted, trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.498478 0.008053 806.930 < 2e-16 ***
## icad_sexmale 0.197836 0.005823 33.978 < 2e-16 ***
## countrydenmark -0.281159 0.011749 -23.931 < 2e-16 ***
## countryestonia -0.140625 0.014886 -9.447 < 2e-16 ***
## countrynorway -0.028139 0.016589 -1.696 0.0899 .
## countryportugal -0.232977 0.015968 -14.591 < 2e-16 ***
## countryswitzerland 0.014505 0.026869 0.540 0.5893
## countryuk -0.194465 0.007982 -24.364 < 2e-16 ***
## countryusa -0.329512 0.008798 -37.453 < 2e-16 ***
## bmi_z -0.032700 0.003148 -10.389 < 2e-16 ***
## parenteducation -0.033727 0.007025 -4.801 1.6e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.23611 0.00825 634.71 <2e-16 ***
## icad_sexmale 0.17190 0.01195 14.38 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 14117
## Degrees of Freedom for the fit: 13
## Residual Deg. of Freedom: 14104
## at cycle: 3
##
## Global Deviance: 190219.1
## AIC: 190245.1
## SBC: 190343.3
## ******************************************************************
## ******************************************************************
## Family: c("BCCGo", "Box-Cox-Cole-Green-orig.")
##
## Call: gamlss(formula = cpm_wear ~ icad_sex + country + bmi_z +
## parenteducation, sigma.formula = ~icad_sex, nu.formula = ~icad_sex,
## family = BCCGo, data = gamlss_cpm_adjusted, trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.447650 0.009232 698.386 < 2e-16 ***
## icad_sexmale 0.211822 0.006377 33.219 < 2e-16 ***
## countrydenmark -0.240026 0.012011 -19.984 < 2e-16 ***
## countryestonia -0.120071 0.016154 -7.433 1.12e-13 ***
## countrynorway 0.008349 0.019983 0.418 0.676
## countryportugal -0.209686 0.016348 -12.826 < 2e-16 ***
## countryswitzerland 0.009379 0.032621 0.288 0.774
## countryuk -0.193477 0.008897 -21.746 < 2e-16 ***
## countryusa -0.302745 0.009291 -32.584 < 2e-16 ***
## bmi_z -0.035966 0.002918 -12.324 < 2e-16 ***
## parenteducation -0.031816 0.007119 -4.469 7.92e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.014385 0.008603 -117.912 <2e-16 ***
## icad_sexmale -0.016283 0.012685 -1.284 0.199
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Nu link function: identity
## Nu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.48069 0.02119 22.688 < 2e-16 ***
## icad_sexmale 0.17201 0.02979 5.773 7.94e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 14117
## Degrees of Freedom for the fit: 15
## Residual Deg. of Freedom: 14102
## at cycle: 6
##
## Global Deviance: 189654.2
## AIC: 189684.2
## SBC: 189797.5
## ******************************************************************
Plot is muted at 200 min/day to show more detail of centre of distribution
For both cut-offs, boys appear to have a higher average volume than girls. Both seem to have uni-modal distributions with a slight positive skew but there appears to be a greater variation amongst boys. By Evenson cut-offs girls seem to have an average volume of around 35 min/day while boys have an average volume around 50 min/day.
| Gender | Count | Mean | Std Dev | Median | Skew |
|---|---|---|---|---|---|
| female | 9804 | 43.52 | 24.18 | 40.27 | 0.90 |
| male | 9176 | 61.96 | 32.17 | 58.41 | 0.71 |
The numeric analysis largely supports the visual inspection. For both cut-offs boys recorded greater volumes than girls. With Evenson cut-offs girls recorded a mean of 43 min/day. Boys attained 61 min/day and 92 min/day respectively. By both thresholds, the mean boy was attaining health recommendations. The deviation and standard error was larger for boys but the skew and kurtosis lower.
GAMLSS cannot pass zero’s. As such, any zero entries were recoded to 0.001 before analysis to ensure the maximum possible sample size.
## ******************************************************************
## Family: c("NO", "Normal")
##
## Call: gamlss(formula = mvpa_evenson ~ icad_sex, sigma.formula = ~icad_sex,
## family = NO(mu.link = log), data = gamlss_mvpa_adjusted,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.760828 0.006219 604.73 <2e-16 ***
## icad_sexmale 0.376413 0.008596 43.79 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.174164 0.007907 401.45 <2e-16 ***
## icad_sexmale 0.294981 0.011380 25.92 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 15461
## Degrees of Freedom for the fit: 4
## Residual Deg. of Freedom: 15457
## at cycle: 2
##
## Global Deviance: 146430.8
## AIC: 146438.8
## SBC: 146469.4
## ******************************************************************
## ******************************************************************
## Family: c("BCCGo", "Box-Cox-Cole-Green-orig.")
##
## Call: gamlss(formula = mvpa_evenson ~ icad_sex, sigma.formula = ~icad_sex,
## nu.formula = ~icad_sex, family = BCCGo, data = gamlss_mvpa_adjusted,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.683213 0.007067 521.15 <2e-16 ***
## icad_sexmale 0.397669 0.009754 40.77 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.51797 0.00923 -56.118 < 2e-16 ***
## icad_sexmale -0.08151 0.01346 -6.057 1.42e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Nu link function: identity
## Nu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.55651 0.01498 37.15 < 2e-16 ***
## icad_sexmale 0.08483 0.02299 3.69 0.000225 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 15461
## Degrees of Freedom for the fit: 6
## Residual Deg. of Freedom: 15455
## at cycle: 7
##
## Global Deviance: 144507.2
## AIC: 144519.2
## SBC: 144565.1
## ******************************************************************
## ******************************************************************
## Family: c("NO", "Normal")
##
## Call: gamlss(formula = mvpa_evenson ~ icad_sex + country +
## bmi_z + parenteducation, sigma.formula = ~icad_sex,
## family = NO(mu.link = log), data = gamlss_mvpa_adjusted,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.970836 0.011377 349.015 < 2e-16 ***
## icad_sexmale 0.377056 0.007940 47.486 < 2e-16 ***
## countrybrazil -0.543652 0.034006 -15.987 < 2e-16 ***
## countrydenmark -0.278249 0.016876 -16.488 < 2e-16 ***
## countryestonia -0.022732 0.019499 -1.166 0.243702
## countrynorway 0.082151 0.021582 3.806 0.000142 ***
## countryportugal -0.194682 0.022027 -8.838 < 2e-16 ***
## countryswitzerland 0.160758 0.020226 7.948 2.03e-15 ***
## countryuk -0.112929 0.011175 -10.105 < 2e-16 ***
## countryusa -0.400654 0.012932 -30.980 < 2e-16 ***
## bmi_z -0.060719 0.004546 -13.358 < 2e-16 ***
## parenteducation -0.048520 0.009693 -5.006 5.63e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.107347 0.007921 392.28 <2e-16 ***
## icad_sexmale 0.302535 0.011424 26.48 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 15461
## Degrees of Freedom for the fit: 14
## Residual Deg. of Freedom: 15447
## at cycle: 3
##
## Global Deviance: 144477.4
## AIC: 144505.4
## SBC: 144612.5
## ******************************************************************
## ******************************************************************
## Family: c("BCCGo", "Box-Cox-Cole-Green-orig.")
##
## Call: gamlss(formula = mvpa_evenson ~ icad_sex + country +
## bmi_z + parenteducation, sigma.formula = ~icad_sex,
## nu.formula = ~icad_sex, family = BCCGo, data = gamlss_mvpa_adjusted,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.855878 0.013101 294.310 < 2e-16 ***
## icad_sexmale 0.404855 0.009260 43.721 < 2e-16 ***
## countrybrazil -0.472598 0.026347 -17.937 < 2e-16 ***
## countrydenmark -0.193033 0.016952 -11.387 < 2e-16 ***
## countryestonia 0.032435 0.023145 1.401 0.161
## countrynorway 0.147903 0.028204 5.244 1.59e-07 ***
## countryportugal -0.134544 0.023226 -5.793 7.05e-09 ***
## countryswitzerland 0.154800 0.027008 5.732 1.01e-08 ***
## countryuk -0.098445 0.012510 -7.869 3.80e-15 ***
## countryusa -0.332993 0.012968 -25.678 < 2e-16 ***
## bmi_z -0.065924 0.004053 -16.266 < 2e-16 ***
## parenteducation -0.051777 0.009808 -5.279 1.31e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.566080 0.008995 -62.932 < 2e-16 ***
## icad_sexmale -0.077346 0.013114 -5.898 3.76e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Nu link function: identity
## Nu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.53742 0.01358 39.561 < 2e-16 ***
## icad_sexmale 0.08215 0.02046 4.014 5.99e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 15461
## Degrees of Freedom for the fit: 16
## Residual Deg. of Freedom: 15445
## at cycle: 7
##
## Global Deviance: 142912.9
## AIC: 142944.9
## SBC: 143067.3
## ******************************************************************
Both Genders seem to have relatively similar distributions peaking at ~350 min/day with Evenson. In both cases, girls seem to score marginally higher than boys, with a roughly normal distribution that has a slight positive skew.
| Gender | Count | Mean | Std Dev | Median | Skew |
|---|---|---|---|---|---|
| female | 7368 | 365.96 | 99.38 | 359.85 | 0.40 |
| male | 6749 | 347.87 | 98.10 | 342.20 | 0.41 |
## ******************************************************************
## Family: c("NO", "Normal")
##
## Call:
## gamlss(formula = sedentary_evenson ~ icad_sex, sigma.formula = ~icad_sex,
## family = NO(mu.link = log), data = gamlss_cpm_adjusted, trace = FALSE)
##
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.902535 0.003163 1865.84 <2e-16 ***
## icad_sexmale -0.050716 0.004668 -10.87 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.598903 0.008238 558.270 <2e-16 ***
## icad_sexmale -0.012961 0.011914 -1.088 0.277
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 14117
## Degrees of Freedom for the fit: 4
## Residual Deg. of Freedom: 14113
## at cycle: 2
##
## Global Deviance: 169732.8
## AIC: 169740.8
## SBC: 169771
## ******************************************************************
## ******************************************************************
## Family: c("BCCGo", "Box-Cox-Cole-Green-orig.")
##
## Call:
## gamlss(formula = sedentary_evenson ~ icad_sex, sigma.formula = ~icad_sex,
## nu.formula = ~icad_sex, family = BCCGo, data = gamlss_cpm_adjusted,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.885431 0.003445 1708.57 <2e-16 ***
## icad_sexmale -0.051712 0.005087 -10.17 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.289477 0.008535 -151.085 < 2e-16 ***
## icad_sexmale 0.039069 0.012370 3.158 0.00159 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Nu link function: identity
## Nu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.545539 0.032651 16.708 <2e-16 ***
## icad_sexmale 0.009641 0.046277 0.208 0.835
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 14117
## Degrees of Freedom for the fit: 6
## Residual Deg. of Freedom: 14111
## at cycle: 6
##
## Global Deviance: 169367.5
## AIC: 169379.5
## SBC: 169424.8
## ******************************************************************
## ******************************************************************
## Family: c("NO", "Normal")
##
## Call: gamlss(formula = sedentary_evenson ~ icad_sex + country +
## bmi_z + parenteducation, sigma.formula = ~icad_sex,
## family = NO(mu.link = log), data = gamlss_cpm_adjusted, trace = FALSE)
##
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.703042 0.007811 730.092 < 2e-16 ***
## icad_sexmale -0.050725 0.004427 -11.457 < 2e-16 ***
## countrydenmark 0.252459 0.009220 27.381 < 2e-16 ***
## countryestonia 0.134324 0.013132 10.229 < 2e-16 ***
## countrynorway 0.092957 0.016582 5.606 2.11e-08 ***
## countryportugal 0.204719 0.012875 15.901 < 2e-16 ***
## countryswitzerland 0.069962 0.027871 2.510 0.0121 *
## countryuk 0.167309 0.007670 21.814 < 2e-16 ***
## countryusa 0.255200 0.007661 33.313 < 2e-16 ***
## bmi_z 0.004810 0.002179 2.207 0.0273 *
## parenteducation 0.034849 0.005462 6.380 1.83e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.550548 0.008247 551.769 <2e-16 ***
## icad_sexmale -0.015924 0.011943 -1.333 0.182
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 14117
## Degrees of Freedom for the fit: 13
## Residual Deg. of Freedom: 14104
## at cycle: 3
##
## Global Deviance: 168327.5
## AIC: 168353.5
## SBC: 168451.8
## ******************************************************************
## ******************************************************************
## Family: c("BCCGo", "Box-Cox-Cole-Green-orig.")
##
## Call: gamlss(formula = sedentary_evenson ~ icad_sex + country +
## bmi_z + parenteducation, sigma.formula = ~icad_sex,
## nu.formula = ~icad_sex, family = BCCGo, data = gamlss_cpm_adjusted,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.697820 0.006902 825.585 < 2e-16 ***
## icad_sexmale -0.052179 0.004788 -10.898 < 2e-16 ***
## countrydenmark 0.264840 0.008747 30.277 < 2e-16 ***
## countryestonia 0.145698 0.011981 12.161 < 2e-16 ***
## countrynorway 0.099970 0.014681 6.809 1.02e-11 ***
## countryportugal 0.206639 0.012045 17.155 < 2e-16 ***
## countryswitzerland 0.077223 0.024527 3.148 0.00164 **
## countryuk 0.150295 0.006673 22.522 < 2e-16 ***
## countryusa 0.257439 0.006766 38.049 < 2e-16 ***
## bmi_z 0.005057 0.002182 2.318 0.02045 *
## parenteducation 0.032901 0.005264 6.250 4.22e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.349447 0.008699 -155.121 <2e-16 ***
## icad_sexmale 0.036710 0.012608 2.912 0.0036 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Nu link function: identity
## Nu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.699742 0.035697 19.602 <2e-16 ***
## icad_sexmale 0.007186 0.049064 0.146 0.884
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 14117
## Degrees of Freedom for the fit: 15
## Residual Deg. of Freedom: 14102
## at cycle: 6
##
## Global Deviance: 167808.2
## AIC: 167838.2
## SBC: 167951.5
## ******************************************************************
| Gender | Count | Mean | Std Dev | Median | Skew |
|---|---|---|---|---|---|
| female | 7998 | 361.93 | 77.74 | 363.83 | -0.21 |
| male | 7463 | 364.90 | 79.60 | 367.33 | -0.25 |
## ******************************************************************
## Family: c("NO", "Normal")
##
## Call: gamlss(formula = light_evenson ~ icad_sex, sigma.formula = ~icad_sex,
## family = NO(mu.link = log), data = gamlss_comp_adjusted,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.891452 0.002402 2453.071 <2e-16 ***
## icad_sexmale 0.008176 0.003485 2.346 0.019 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.353333 0.007907 550.589 <2e-16 ***
## icad_sexmale 0.023645 0.011380 2.078 0.0378 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 15461
## Degrees of Freedom for the fit: 4
## Residual Deg. of Freedom: 15457
## at cycle: 2
##
## Global Deviance: 178843.1
## AIC: 178851.1
## SBC: 178881.7
## ******************************************************************
## ******************************************************************
## Family: c("BCCGo", "Box-Cox-Cole-Green-orig.")
##
## Call: gamlss(formula = light_evenson ~ icad_sex, sigma.formula = ~icad_sex,
## nu.formula = ~icad_sex, family = BCCGo, data = gamlss_comp_adjusted,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.898334 0.002514 2346.03 <2e-16 ***
## icad_sexmale 0.009022 0.003624 2.49 0.0128 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.557878 0.008793 -177.177 <2e-16 ***
## icad_sexmale 0.011396 0.012678 0.899 0.369
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Nu link function: identity
## Nu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.29554 0.03950 32.796 <2e-16 ***
## icad_sexmale 0.02646 0.05459 0.485 0.628
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 15461
## Degrees of Freedom for the fit: 6
## Residual Deg. of Freedom: 15455
## at cycle: 7
##
## Global Deviance: 178695.3
## AIC: 178707.3
## SBC: 178753.2
## ******************************************************************
## ******************************************************************
## Family: c("NO", "Normal")
##
## Call: gamlss(formula = light_evenson ~ icad_sex + country +
## bmi_z + parenteducation, sigma.formula = ~icad_sex,
## family = NO(mu.link = log), data = gamlss_comp_adjusted,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.937936 0.005189 1144.308 < 2e-16 ***
## icad_sexmale 0.008840 0.003384 2.612 0.009008 **
## countrybrazil -0.057188 0.010974 -5.211 1.90e-07 ***
## countrydenmark -0.063513 0.007039 -9.023 < 2e-16 ***
## countryestonia 0.058741 0.008924 6.583 4.77e-11 ***
## countrynorway 0.027801 0.011097 2.505 0.012247 *
## countryportugal -0.027994 0.009504 -2.946 0.003229 **
## countryswitzerland 0.167727 0.009754 17.196 < 2e-16 ***
## countryuk -0.041383 0.005225 -7.921 2.52e-15 ***
## countryusa -0.082493 0.005352 -15.413 < 2e-16 ***
## bmi_z -0.003279 0.001746 -1.878 0.060431 .
## parenteducation -0.014754 0.004110 -3.590 0.000332 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.31992 0.00792 545.473 < 2e-16 ***
## icad_sexmale 0.03260 0.01142 2.855 0.00431 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 15461
## Degrees of Freedom for the fit: 14
## Residual Deg. of Freedom: 15447
## at cycle: 3
##
## Global Deviance: 177943.7
## AIC: 177971.7
## SBC: 178078.8
## ******************************************************************
## ******************************************************************
## Family: c("BCCGo", "Box-Cox-Cole-Green-orig.")
##
## Call: gamlss(formula = light_evenson ~ icad_sex + country +
## bmi_z + parenteducation, sigma.formula = ~icad_sex,
## nu.formula = ~icad_sex, family = BCCGo, data = gamlss_comp_adjusted,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.921807 0.004936 1199.805 < 2e-16 ***
## icad_sexmale 0.008670 0.003527 2.458 0.0140 *
## countrybrazil -0.019160 0.010075 -1.902 0.0572 .
## countrydenmark -0.002740 0.006486 -0.422 0.6727
## countryestonia 0.082196 0.008783 9.358 < 2e-16 ***
## countrynorway 0.051185 0.010698 4.785 1.73e-06 ***
## countryportugal 0.008848 0.008868 0.998 0.3184
## countryswitzerland 0.164635 0.010387 15.851 < 2e-16 ***
## countryuk -0.036300 0.004795 -7.570 3.94e-14 ***
## countryusa -0.032016 0.004978 -6.432 1.30e-10 ***
## bmi_z -0.002867 0.001574 -1.822 0.0685 .
## parenteducation -0.015503 0.003760 -4.123 3.77e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.589966 0.008883 -178.99 <2e-16 ***
## icad_sexmale 0.020321 0.012783 1.59 0.112
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Nu link function: identity
## Nu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.39636 0.04244 32.902 <2e-16 ***
## icad_sexmale -0.02359 0.05678 -0.415 0.678
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 15461
## Degrees of Freedom for the fit: 16
## Residual Deg. of Freedom: 15445
## at cycle: 8
##
## Global Deviance: 177921.1
## AIC: 177953.1
## SBC: 178075.4
## ******************************************************************
| Gender | Count | Mean | Std Dev | Median | Skew |
|---|---|---|---|---|---|
| female | 7998 | 31.19 | 15.73 | 29.83 | 0.71 |
| male | 7463 | 43.07 | 20.35 | 41.80 | 0.55 |
## ******************************************************************
## Family: c("NO", "Normal")
##
## Call:
## gamlss(formula = moderate_evenson ~ icad_sex, sigma.formula = ~icad_sex,
## family = NO(mu.link = log), data = gamlss_comp_adjusted,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.440222 0.005637 610.31 <2e-16 ***
## icad_sexmale 0.322690 0.007853 41.09 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.755265 0.007907 348.47 <2e-16 ***
## icad_sexmale 0.257663 0.011380 22.64 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 15461
## Degrees of Freedom for the fit: 4
## Residual Deg. of Freedom: 15457
## at cycle: 2
##
## Global Deviance: 132920.6
## AIC: 132928.6
## SBC: 132959.2
## ******************************************************************
## ******************************************************************
## Family: c("BCCGo", "Box-Cox-Cole-Green-orig.")
##
## Call:
## gamlss(formula = moderate_evenson ~ icad_sex, sigma.formula = ~icad_sex,
## nu.formula = ~icad_sex, family = BCCGo, data = gamlss_comp_adjusted,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.386285 0.006352 533.08 <2e-16 ***
## icad_sexmale 0.335909 0.008812 38.12 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.622962 0.009325 -66.803 < 2e-16 ***
## icad_sexmale -0.069383 0.013503 -5.138 2.8e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Nu link function: identity
## Nu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.63555 0.01687 37.670 <2e-16 ***
## icad_sexmale 0.06274 0.02476 2.534 0.0113 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 15461
## Degrees of Freedom for the fit: 6
## Residual Deg. of Freedom: 15455
## at cycle: 6
##
## Global Deviance: 131680.7
## AIC: 131692.7
## SBC: 131738.6
## ******************************************************************
## ******************************************************************
## Family: c("NO", "Normal")
##
## Call: gamlss(formula = moderate_evenson ~ icad_sex + country +
## bmi_z + parenteducation, sigma.formula = ~icad_sex,
## family = NO(mu.link = log), data = gamlss_comp_adjusted,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.630140 0.010478 346.441 < 2e-16 ***
## icad_sexmale 0.323779 0.007256 44.623 < 2e-16 ***
## countrybrazil -0.378481 0.027363 -13.832 < 2e-16 ***
## countrydenmark -0.265633 0.015632 -16.993 < 2e-16 ***
## countryestonia 0.007721 0.017846 0.433 0.665272
## countrynorway 0.068751 0.020453 3.361 0.000777 ***
## countryportugal -0.118672 0.019346 -6.134 8.77e-10 ***
## countryswitzerland 0.192935 0.018455 10.454 < 2e-16 ***
## countryuk -0.088250 0.010319 -8.552 < 2e-16 ***
## countryusa -0.386845 0.011914 -32.469 < 2e-16 ***
## bmi_z -0.037951 0.004046 -9.381 < 2e-16 ***
## parenteducation -0.049061 0.008878 -5.526 3.33e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.686218 0.007915 339.38 <2e-16 ***
## icad_sexmale 0.265410 0.011405 23.27 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 15461
## Degrees of Freedom for the fit: 14
## Residual Deg. of Freedom: 15447
## at cycle: 3
##
## Global Deviance: 130901.2
## AIC: 130929.2
## SBC: 131036.2
## ******************************************************************
## ******************************************************************
## Family: c("BCCGo", "Box-Cox-Cole-Green-orig.")
##
## Call: gamlss(formula = moderate_evenson ~ icad_sex + country +
## bmi_z + parenteducation, sigma.formula = ~icad_sex,
## nu.formula = ~icad_sex, family = BCCGo, data = gamlss_comp_adjusted,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.530689 0.011809 298.972 < 2e-16 ***
## icad_sexmale 0.343220 0.008371 41.000 < 2e-16 ***
## countrybrazil -0.279036 0.023968 -11.642 < 2e-16 ***
## countrydenmark -0.168872 0.015298 -11.039 < 2e-16 ***
## countryestonia 0.092759 0.021073 4.402 1.08e-05 ***
## countrynorway 0.140057 0.025444 5.504 3.76e-08 ***
## countryportugal -0.048776 0.020979 -2.325 0.0201 *
## countryswitzerland 0.187525 0.024325 7.709 1.34e-14 ***
## countryuk -0.069905 0.011261 -6.208 5.51e-10 ***
## countryusa -0.308011 0.011680 -26.370 < 2e-16 ***
## bmi_z -0.040617 0.003659 -11.101 < 2e-16 ***
## parenteducation -0.051710 0.008865 -5.833 5.56e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.670646 0.009079 -73.868 < 2e-16 ***
## icad_sexmale -0.067479 0.013188 -5.117 3.15e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Nu link function: identity
## Nu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.61606 0.01535 40.122 < 2e-16 ***
## icad_sexmale 0.07302 0.02259 3.232 0.00123 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 15461
## Degrees of Freedom for the fit: 16
## Residual Deg. of Freedom: 15445
## at cycle: 7
##
## Global Deviance: 130099.9
## AIC: 130131.9
## SBC: 130254.2
## ******************************************************************
## ******************************************************************
## Family: c("NO", "Normal")
##
## Call:
## gamlss(formula = vigorous_evenson ~ icad_sex, sigma.formula = ~icad_sex,
## family = NO(mu.link = log), data = gamlss_vig_adjusted, trace = FALSE)
##
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.460752 0.009826 250.44 <2e-16 ***
## icad_sexmale 0.499302 0.013100 38.12 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.33102 0.00791 294.69 <2e-16 ***
## icad_sexmale 0.33757 0.01139 29.63 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 15429
## Degrees of Freedom for the fit: 4
## Residual Deg. of Freedom: 15425
## at cycle: 2
##
## Global Deviance: 120738
## AIC: 120746
## SBC: 120776.6
## ******************************************************************
## ******************************************************************
## Family: c("NO", "Normal")
##
## Call: gamlss(formula = vigorous_evenson ~ icad_sex + country +
## bmi_z + parenteducation, sigma.formula = ~icad_sex,
## family = NO(mu.link = log), data = gamlss_vig_adjusted, trace = FALSE)
##
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.722086 0.017243 157.871 < 2e-16 ***
## icad_sexmale 0.498145 0.012233 40.721 < 2e-16 ***
## countrybrazil -1.042826 0.078648 -13.259 < 2e-16 ***
## countrydenmark -0.323085 0.025261 -12.790 < 2e-16 ***
## countryestonia -0.126540 0.030598 -4.136 3.56e-05 ***
## countrynorway 0.085983 0.030985 2.775 0.00553 **
## countryportugal -0.381271 0.037299 -10.222 < 2e-16 ***
## countryswitzerland 0.077505 0.031188 2.485 0.01296 *
## countryuk -0.177192 0.016680 -10.623 < 2e-16 ***
## countryusa -0.437227 0.019355 -22.590 < 2e-16 ***
## bmi_z -0.116344 0.007362 -15.803 < 2e-16 ***
## parenteducation -0.045486 0.014754 -3.083 0.00205 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.288776 0.007931 288.57 <2e-16 ***
## icad_sexmale 0.336602 0.011456 29.38 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 15429
## Degrees of Freedom for the fit: 14
## Residual Deg. of Freedom: 15415
## at cycle: 3
##
## Global Deviance: 119420
## AIC: 119448
## SBC: 119555
## ******************************************************************
Models are repeated using 1) an unrestricted dataset on the unadjusted model. 2) On the adjusted and restricted model, with the additional inclusions and restriction based on season being present, and finally 3) the process for season repeated for ethnicity.
## ******************************************************************
## Family: c("NO", "Normal")
##
## Call: gamlss(formula = cpm_wear ~ icad_sex, sigma.formula = ~icad_sex,
## family = NO(mu.link = log), data = sensitivity_unrestricted_cpm,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.273633 0.003910 1604 <2e-16 ***
## icad_sexmale 0.190021 0.005589 34 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.288482 0.007406 714.12 <2e-16 ***
## icad_sexmale 0.169317 0.010699 15.83 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 17504
## Degrees of Freedom for the fit: 4
## Residual Deg. of Freedom: 17500
## at cycle: 2
##
## Global Deviance: 237653.5
## AIC: 237661.5
## SBC: 237692.6
## ******************************************************************
## ******************************************************************
## Family: c("BCCGo", "Box-Cox-Cole-Green-orig.")
##
## Call: gamlss(formula = cpm_wear ~ icad_sex, sigma.formula = ~icad_sex,
## nu.formula = ~icad_sex, family = BCCGo, data = sensitivity_unrestricted_cpm,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.237125 0.004229 1475.0 <2e-16 ***
## icad_sexmale 0.201095 0.006058 33.2 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.965166 0.007783 -124.004 <2e-16 ***
## icad_sexmale -0.015227 0.011428 -1.332 0.183
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Nu link function: identity
## Nu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.48724 0.01894 25.724 < 2e-16 ***
## icad_sexmale 0.15043 0.02735 5.501 3.83e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 17504
## Degrees of Freedom for the fit: 6
## Residual Deg. of Freedom: 17498
## at cycle: 6
##
## Global Deviance: 236685.8
## AIC: 236697.8
## SBC: 236744.4
## ******************************************************************
## ******************************************************************
## Family: c("NO", "Normal")
##
## Call: gamlss(formula = mvpa_evenson ~ icad_sex, sigma.formula = ~icad_sex,
## family = NO(mu.link = log), data = sensitivity_unrestricted_mvpa,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.773192 0.005611 672.52 <2e-16 ***
## icad_sexmale 0.353293 0.007801 45.29 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.185351 0.007141 446.04 <2e-16 ***
## icad_sexmale 0.285736 0.010271 27.82 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 18980
## Degrees of Freedom for the fit: 4
## Residual Deg. of Freedom: 18976
## at cycle: 2
##
## Global Deviance: 180022.7
## AIC: 180030.7
## SBC: 180062.1
## ******************************************************************
## ******************************************************************
## Family: c("BCCGo", "Box-Cox-Cole-Green-orig.")
##
## Call: gamlss(formula = mvpa_evenson ~ icad_sex, sigma.formula = ~icad_sex,
## nu.formula = ~icad_sex, family = BCCGo, data = sensitivity_unrestricted_mvpa,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.695626 0.006382 579.11 <2e-16 ***
## icad_sexmale 0.370456 0.008847 41.88 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.519239 0.008327 -62.359 < 2e-16 ***
## icad_sexmale -0.069919 0.012051 -5.802 6.67e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Nu link function: identity
## Nu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.55526 0.01364 40.702 <2e-16 ***
## icad_sexmale 0.05955 0.02026 2.939 0.0033 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 18980
## Degrees of Freedom for the fit: 6
## Residual Deg. of Freedom: 18974
## at cycle: 7
##
## Global Deviance: 177579.5
## AIC: 177591.5
## SBC: 177638.6
## ******************************************************************
## ******************************************************************
## Family: c("NO", "Normal")
##
## Call:
## gamlss(formula = sedentary_evenson ~ icad_sex, sigma.formula = ~icad_sex,
## family = NO(mu.link = log), data = sensitivity_unrestricted_cpm,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.910484 0.002802 2109.40 <2e-16 ***
## icad_sexmale -0.051109 0.004137 -12.35 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.592002 0.007406 620.074 <2e-16 ***
## icad_sexmale -0.010045 0.010699 -0.939 0.348
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 17504
## Degrees of Freedom for the fit: 4
## Residual Deg. of Freedom: 17500
## at cycle: 2
##
## Global Deviance: 210262.5
## AIC: 210270.5
## SBC: 210301.6
## ******************************************************************
## ******************************************************************
## Family: c("BCCGo", "Box-Cox-Cole-Green-orig.")
##
## Call:
## gamlss(formula = sedentary_evenson ~ icad_sex, sigma.formula = ~icad_sex,
## nu.formula = ~icad_sex, family = BCCGo, data = sensitivity_unrestricted_cpm,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.894741 0.003052 1931.26 <2e-16 ***
## icad_sexmale -0.052884 0.004510 -11.73 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.304365 0.007689 -169.646 < 2e-16 ***
## icad_sexmale 0.042197 0.011118 3.795 0.000148 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Nu link function: identity
## Nu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.56967 0.02987 19.070 <2e-16 ***
## icad_sexmale -0.01025 0.04225 -0.243 0.808
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 17504
## Degrees of Freedom for the fit: 6
## Residual Deg. of Freedom: 17498
## at cycle: 6
##
## Global Deviance: 209851.1
## AIC: 209863.1
## SBC: 209909.7
## ******************************************************************
## ******************************************************************
## Family: c("NO", "Normal")
##
## Call: gamlss(formula = light_evenson ~ icad_sex, sigma.formula = ~icad_sex,
## family = NO(mu.link = log), data = sensitivity_unrestricted,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.882154 0.002205 2667.962 < 2e-16 ***
## icad_sexmale 0.010648 0.003187 3.342 0.000835 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.360281 0.007141 610.564 <2e-16 ***
## icad_sexmale 0.020199 0.010271 1.967 0.0492 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 18980
## Degrees of Freedom for the fit: 4
## Residual Deg. of Freedom: 18976
## at cycle: 2
##
## Global Deviance: 219749.9
## AIC: 219757.9
## SBC: 219789.3
## ******************************************************************
## ******************************************************************
## Family: c("BCCGo", "Box-Cox-Cole-Green-orig.")
##
## Call: gamlss(formula = light_evenson ~ icad_sex, sigma.formula = ~icad_sex,
## nu.formula = ~icad_sex, family = BCCGo, data = sensitivity_unrestricted,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.889209 0.002308 2551.799 < 2e-16 ***
## icad_sexmale 0.011168 0.003317 3.366 0.000763 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.541969 0.007965 -193.588 <2e-16 ***
## icad_sexmale 0.006883 0.011462 0.601 0.548
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Nu link function: identity
## Nu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.29391 0.03536 36.588 <2e-16 ***
## icad_sexmale 0.01555 0.04905 0.317 0.751
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 18980
## Degrees of Freedom for the fit: 6
## Residual Deg. of Freedom: 18974
## at cycle: 7
##
## Global Deviance: 219575.9
## AIC: 219587.9
## SBC: 219635
## ******************************************************************
## ******************************************************************
## Family: c("NO", "Normal")
##
## Call:
## gamlss(formula = moderate_evenson ~ icad_sex, sigma.formula = ~icad_sex,
## family = NO(mu.link = log), data = sensitivity_unrestricted,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.453885 0.005132 672.99 <2e-16 ***
## icad_sexmale 0.299492 0.007155 41.86 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.776922 0.007141 388.85 <2e-16 ***
## icad_sexmale 0.237515 0.010271 23.12 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 18980
## Degrees of Freedom for the fit: 4
## Residual Deg. of Freedom: 18976
## at cycle: 2
##
## Global Deviance: 163633.8
## AIC: 163641.8
## SBC: 163673.2
## ******************************************************************
## ******************************************************************
## Family: c("BCCGo", "Box-Cox-Cole-Green-orig.")
##
## Call:
## gamlss(formula = moderate_evenson ~ icad_sex, sigma.formula = ~icad_sex,
## nu.formula = ~icad_sex, family = BCCGo, data = sensitivity_unrestricted,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.397386 0.005777 588.07 <2e-16 ***
## icad_sexmale 0.312358 0.008024 38.93 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.615813 0.008364 -73.63 < 2e-16 ***
## icad_sexmale -0.065996 0.012087 -5.46 4.82e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Nu link function: identity
## Nu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.61930 0.01474 42.003 < 2e-16 ***
## icad_sexmale 0.05723 0.02166 2.642 0.00825 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 18980
## Degrees of Freedom for the fit: 6
## Residual Deg. of Freedom: 18974
## at cycle: 7
##
## Global Deviance: 161985.1
## AIC: 161997.1
## SBC: 162044.2
## ******************************************************************
## ******************************************************************
## Family: c("NO", "Normal")
##
## Call:
## gamlss(formula = vigorous_evenson ~ icad_sex, sigma.formula = ~icad_sex,
## family = NO(mu.link = log), data = sensitivity_unrestricted_vig,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.470928 0.008834 279.72 <2e-16 ***
## icad_sexmale 0.472493 0.011851 39.87 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.336651 0.007144 327.08 <2e-16 ***
## icad_sexmale 0.326124 0.010283 31.71 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 18936
## Degrees of Freedom for the fit: 4
## Residual Deg. of Freedom: 18932
## at cycle: 2
##
## Global Deviance: 148192.6
## AIC: 148200.6
## SBC: 148232
## ******************************************************************
## ******************************************************************
## Family: c("NO", "Normal")
##
## Call: gamlss(formula = cpm_wear ~ icad_sex + country + bmi_z +
## parenteducation + season, sigma.formula = ~icad_sex,
## family = NO(mu.link = log), data = sensitivity_season_cpm,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.489962 0.011386 569.975 < 2e-16 ***
## icad_sexmale 0.187012 0.006380 29.311 < 2e-16 ***
## countrydenmark -0.263721 0.011647 -22.643 < 2e-16 ***
## countryestonia -0.132477 0.014714 -9.003 < 2e-16 ***
## countrynorway -0.029012 0.016158 -1.795 0.0726 .
## countryportugal -0.230397 0.015820 -14.564 < 2e-16 ***
## countryswitzerland -0.015128 0.026870 -0.563 0.5734
## countryuk -0.205224 0.008091 -25.365 < 2e-16 ***
## bmi_z -0.028633 0.003736 -7.664 1.96e-14 ***
## parenteducation -0.033664 0.008175 -4.118 3.85e-05 ***
## seasonspring 0.055515 0.009165 6.057 1.43e-09 ***
## seasonsummer 0.080648 0.010686 7.547 4.84e-14 ***
## seasonwinter -0.062601 0.009968 -6.280 3.52e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.21222 0.00967 538.99 <2e-16 ***
## icad_sexmale 0.17104 0.01406 12.16 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 10191
## Degrees of Freedom for the fit: 15
## Residual Deg. of Freedom: 10176
## at cycle: 3
##
## Global Deviance: 136809.3
## AIC: 136839.3
## SBC: 136947.7
## ******************************************************************
## ******************************************************************
## Family: c("BCCGo", "Box-Cox-Cole-Green-orig.")
##
## Call: gamlss(formula = cpm_wear ~ icad_sex + country + bmi_z +
## parenteducation + season, sigma.formula = ~icad_sex,
## nu.formula = ~icad_sex, family = BCCGo, data = sensitivity_season_cpm,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.452963 0.011509 560.681 < 2e-16 ***
## icad_sexmale 0.196195 0.006866 28.573 < 2e-16 ***
## countrydenmark -0.213402 0.011078 -19.264 < 2e-16 ***
## countryestonia -0.111358 0.014792 -7.528 5.57e-14 ***
## countrynorway 0.004735 0.018174 0.261 0.794
## countryportugal -0.200813 0.015310 -13.117 < 2e-16 ***
## countryswitzerland -0.014958 0.030095 -0.497 0.619
## countryuk -0.211920 0.008377 -25.299 < 2e-16 ***
## bmi_z -0.031635 0.003602 -8.783 < 2e-16 ***
## parenteducation -0.035238 0.008421 -4.185 2.88e-05 ***
## seasonspring 0.069981 0.008751 7.997 1.41e-15 ***
## seasonsummer 0.098281 0.010372 9.476 < 2e-16 ***
## seasonwinter -0.060633 0.009219 -6.577 5.03e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.106345 0.010244 -108.001 <2e-16 ***
## icad_sexmale -0.008439 0.015152 -0.557 0.578
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Nu link function: identity
## Nu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.61869 0.02649 23.352 < 2e-16 ***
## icad_sexmale 0.16390 0.03760 4.359 1.32e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 10191
## Degrees of Freedom for the fit: 17
## Residual Deg. of Freedom: 10174
## at cycle: 6
##
## Global Deviance: 136423.8
## AIC: 136457.8
## SBC: 136580.7
## ******************************************************************
## ******************************************************************
## Family: c("NO", "Normal")
##
## Call: gamlss(formula = mvpa_evenson ~ icad_sex + country +
## bmi_z + parenteducation + season, sigma.formula = ~icad_sex,
## family = NO(mu.link = log), data = sensitivity_season_mvpa,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.964435 0.016015 247.541 < 2e-16 ***
## icad_sexmale 0.355839 0.008718 40.817 < 2e-16 ***
## countrybrazil -0.569588 0.034188 -16.661 < 2e-16 ***
## countrydenmark -0.260919 0.017128 -15.234 < 2e-16 ***
## countryestonia -0.014630 0.019741 -0.741 0.458656
## countrynorway 0.083411 0.021517 3.877 0.000107 ***
## countryportugal -0.184991 0.022329 -8.285 < 2e-16 ***
## countryswitzerland 0.156976 0.021768 7.211 5.91e-13 ***
## countryuk -0.112876 0.011612 -9.721 < 2e-16 ***
## bmi_z -0.049083 0.005264 -9.324 < 2e-16 ***
## parenteducation -0.043721 0.011243 -3.889 0.000101 ***
## seasonspring 0.072845 0.012549 5.805 6.62e-09 ***
## seasonsummer 0.036885 0.014295 2.580 0.009885 **
## seasonwinter -0.074887 0.013876 -5.397 6.92e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.109140 0.009279 335.09 <2e-16 ***
## icad_sexmale 0.299779 0.013471 22.25 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 11109
## Degrees of Freedom for the fit: 16
## Residual Deg. of Freedom: 11093
## at cycle: 3
##
## Global Deviance: 103774.1
## AIC: 103806.1
## SBC: 103923.2
## ******************************************************************
## ******************************************************************
## Family: c("BCCGo", "Box-Cox-Cole-Green-orig.")
##
## Call: gamlss(formula = mvpa_evenson ~ icad_sex + country +
## bmi_z + parenteducation + season, sigma.formula = ~icad_sex,
## nu.formula = ~icad_sex, family = BCCGo, data = sensitivity_season_mvpa,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.884304 0.016268 238.769 < 2e-16 ***
## icad_sexmale 0.365385 0.009843 37.122 < 2e-16 ***
## countrybrazil -0.503856 0.024593 -20.488 < 2e-16 ***
## countrydenmark -0.171735 0.015625 -10.991 < 2e-16 ***
## countryestonia 0.034540 0.021151 1.633 0.102
## countrynorway 0.131917 0.025596 5.154 2.60e-07 ***
## countryportugal -0.120305 0.021691 -5.546 2.98e-08 ***
## countryswitzerland 0.146820 0.025530 5.751 9.12e-09 ***
## countryuk -0.107081 0.011797 -9.077 < 2e-16 ***
## bmi_z -0.051387 0.005016 -10.244 < 2e-16 ***
## parenteducation -0.053012 0.011578 -4.579 4.73e-06 ***
## seasonspring 0.093984 0.012301 7.641 2.34e-14 ***
## seasonsummer 0.060290 0.014020 4.300 1.72e-05 ***
## seasonwinter -0.069169 0.013032 -5.308 1.13e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.68164 0.01054 -64.666 < 2e-16 ***
## icad_sexmale -0.04964 0.01559 -3.185 0.00145 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Nu link function: identity
## Nu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.59960 0.01719 34.885 < 2e-16 ***
## icad_sexmale 0.10065 0.02640 3.813 0.000138 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 11109
## Degrees of Freedom for the fit: 18
## Residual Deg. of Freedom: 11091
## at cycle: 6
##
## Global Deviance: 102893.8
## AIC: 102929.8
## SBC: 103061.5
## ******************************************************************
## ******************************************************************
## Family: c("NO", "Normal")
##
## Call: gamlss(formula = sedentary_evenson ~ icad_sex + country +
## bmi_z + parenteducation + season, sigma.formula = ~icad_sex,
## family = NO(mu.link = log), data = sensitivity_season_cpm,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.711091 0.009693 589.190 < 2e-16 ***
## icad_sexmale -0.050285 0.004980 -10.098 < 2e-16 ***
## countrydenmark 0.243220 0.008647 28.128 < 2e-16 ***
## countryestonia 0.130687 0.012268 10.653 < 2e-16 ***
## countrynorway 0.098900 0.015354 6.441 1.24e-10 ***
## countryportugal 0.207806 0.012335 16.847 < 2e-16 ***
## countryswitzerland 0.104428 0.026225 3.982 6.88e-05 ***
## countryuk 0.183206 0.007300 25.096 < 2e-16 ***
## bmi_z 0.010464 0.002841 3.684 0.000231 ***
## parenteducation 0.039131 0.007062 5.541 3.09e-08 ***
## seasonspring -0.033266 0.006915 -4.811 1.52e-06 ***
## seasonsummer -0.095216 0.008535 -11.156 < 2e-16 ***
## seasonwinter 0.031516 0.007063 4.462 8.19e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.471290 0.009678 462.03 <2e-16 ***
## icad_sexmale -0.011407 0.014084 -0.81 0.418
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 10191
## Degrees of Freedom for the fit: 15
## Residual Deg. of Freedom: 10176
## at cycle: 3
##
## Global Deviance: 119944.4
## AIC: 119974.4
## SBC: 120082.8
## ******************************************************************
## ******************************************************************
## Family: c("BCCGo", "Box-Cox-Cole-Green-orig.")
##
## Call: gamlss(formula = sedentary_evenson ~ icad_sex + country +
## bmi_z + parenteducation + season, sigma.formula = ~icad_sex,
## nu.formula = ~icad_sex, family = BCCGo, data = sensitivity_season_cpm,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.701706 0.009368 608.648 < 2e-16 ***
## icad_sexmale -0.050197 0.005407 -9.283 < 2e-16 ***
## countrydenmark 0.251683 0.008682 28.989 < 2e-16 ***
## countryestonia 0.140667 0.011827 11.894 < 2e-16 ***
## countrynorway 0.100206 0.014256 7.029 2.21e-12 ***
## countryportugal 0.210151 0.011978 17.545 < 2e-16 ***
## countryswitzerland 0.115376 0.024214 4.765 1.92e-06 ***
## countryuk 0.168753 0.006799 24.819 < 2e-16 ***
## bmi_z 0.011130 0.002832 3.931 8.52e-05 ***
## parenteducation 0.036646 0.006642 5.517 3.53e-08 ***
## seasonspring -0.026212 0.006987 -3.752 0.000177 ***
## seasonsummer -0.087730 0.008276 -10.601 < 2e-16 ***
## seasonwinter 0.032107 0.007291 4.404 1.08e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.39255 0.01003 -138.85 < 2e-16 ***
## icad_sexmale 0.04437 0.01464 3.03 0.00245 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Nu link function: identity
## Nu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.59086 0.04421 13.366 <2e-16 ***
## icad_sexmale 0.05474 0.05900 0.928 0.354
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 10191
## Degrees of Freedom for the fit: 17
## Residual Deg. of Freedom: 10174
## at cycle: 6
##
## Global Deviance: 119640.7
## AIC: 119674.7
## SBC: 119797.6
## ******************************************************************
## ******************************************************************
## Family: c("NO", "Normal")
##
## Call: gamlss(formula = light_evenson ~ icad_sex + country +
## bmi_z + parenteducation + season, sigma.formula = ~icad_sex,
## family = NO(mu.link = log), data = sensitivity_season, trace = FALSE)
##
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.925017 0.006753 877.374 < 2e-16 ***
## icad_sexmale 0.004549 0.003635 1.251 0.21090
## countrybrazil -0.076248 0.010336 -7.377 1.73e-13 ***
## countrydenmark -0.054421 0.006620 -8.221 2.24e-16 ***
## countryestonia 0.064868 0.008372 7.748 1.02e-14 ***
## countrynorway 0.026710 0.010290 2.596 0.00945 **
## countryportugal -0.028417 0.008989 -3.161 0.00158 **
## countryswitzerland 0.153812 0.009609 16.007 < 2e-16 ***
## countryuk -0.047352 0.005024 -9.425 < 2e-16 ***
## bmi_z 0.000305 0.002102 0.145 0.88463
## parenteducation -0.014720 0.004816 -3.057 0.00224 **
## seasonspring 0.033421 0.005260 6.354 2.18e-10 ***
## seasonsummer 0.053632 0.005935 9.036 < 2e-16 ***
## seasonwinter -0.015100 0.005641 -2.677 0.00744 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.244576 0.009287 457.020 <2e-16 ***
## icad_sexmale 0.028626 0.013498 2.121 0.034 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 11109
## Degrees of Freedom for the fit: 16
## Residual Deg. of Freedom: 11093
## at cycle: 3
##
## Global Deviance: 126134.6
## AIC: 126166.6
## SBC: 126283.7
## ******************************************************************
## ******************************************************************
## Family: c("BCCGo", "Box-Cox-Cole-Green-orig.")
##
## Call: gamlss(formula = light_evenson ~ icad_sex + country +
## bmi_z + parenteducation + season, sigma.formula = ~icad_sex,
## nu.formula = ~icad_sex, family = BCCGo, data = sensitivity_season,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.9203488 0.0062808 942.618 < 2e-16 ***
## icad_sexmale 0.0045907 0.0037283 1.231 0.218239
## countrybrazil -0.0352517 0.0094266 -3.740 0.000185 ***
## countrydenmark 0.0093988 0.0060143 1.563 0.118141
## countryestonia 0.0896530 0.0080469 11.141 < 2e-16 ***
## countrynorway 0.0515132 0.0097011 5.310 1.12e-07 ***
## countryportugal 0.0111232 0.0082448 1.349 0.177327
## countryswitzerland 0.1538487 0.0098384 15.638 < 2e-16 ***
## countryuk -0.0418662 0.0045166 -9.269 < 2e-16 ***
## bmi_z 0.0007776 0.0018912 0.411 0.680971
## parenteducation -0.0162561 0.0044284 -3.671 0.000243 ***
## seasonspring 0.0286138 0.0047492 6.025 1.74e-09 ***
## seasonsummer 0.0530258 0.0053981 9.823 < 2e-16 ***
## seasonwinter -0.0135712 0.0049876 -2.721 0.006519 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.69747 0.01042 -162.98 <2e-16 ***
## icad_sexmale 0.02198 0.01505 1.46 0.144
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Nu link function: identity
## Nu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.55740 0.05471 28.467 <2e-16 ***
## icad_sexmale -0.07769 0.07180 -1.082 0.279
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 11109
## Degrees of Freedom for the fit: 18
## Residual Deg. of Freedom: 11091
## at cycle: 8
##
## Global Deviance: 125921.1
## AIC: 125957.1
## SBC: 126088.8
## ******************************************************************
## ******************************************************************
## Family: c("NO", "Normal")
##
## Call: gamlss(formula = moderate_evenson ~ icad_sex + country +
## bmi_z + parenteducation + season, sigma.formula = ~icad_sex,
## family = NO(mu.link = log), data = sensitivity_season, trace = FALSE)
##
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.612909 0.014807 244.006 < 2e-16 ***
## icad_sexmale 0.310392 0.007997 38.814 < 2e-16 ***
## countrybrazil -0.405945 0.027673 -14.669 < 2e-16 ***
## countrydenmark -0.248126 0.015913 -15.592 < 2e-16 ***
## countryestonia 0.016472 0.018142 0.908 0.363926
## countrynorway 0.068202 0.020489 3.329 0.000875 ***
## countryportugal -0.111227 0.019697 -5.647 1.67e-08 ***
## countryswitzerland 0.189989 0.019935 9.531 < 2e-16 ***
## countryuk -0.088751 0.010763 -8.246 < 2e-16 ***
## bmi_z -0.028484 0.004733 -6.018 1.82e-09 ***
## parenteducation -0.044339 0.010337 -4.289 1.81e-05 ***
## seasonspring 0.077942 0.011605 6.716 1.96e-11 ***
## seasonsummer 0.046843 0.013107 3.574 0.000353 ***
## seasonwinter -0.063423 0.012808 -4.952 7.46e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.689430 0.009278 289.88 <2e-16 ***
## icad_sexmale 0.266959 0.013468 19.82 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 11109
## Degrees of Freedom for the fit: 16
## Residual Deg. of Freedom: 11093
## at cycle: 3
##
## Global Deviance: 94102.02
## AIC: 94134.02
## SBC: 94251.07
## ******************************************************************
## ******************************************************************
## Family: c("BCCGo", "Box-Cox-Cole-Green-orig.")
##
## Call: gamlss(formula = moderate_evenson ~ icad_sex + country +
## bmi_z + parenteducation + season, sigma.formula = ~icad_sex,
## nu.formula = ~icad_sex, family = BCCGo, data = sensitivity_season,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.544774 0.014709 241.001 < 2e-16 ***
## icad_sexmale 0.318623 0.008905 35.781 < 2e-16 ***
## countrybrazil -0.308852 0.022464 -13.749 < 2e-16 ***
## countrydenmark -0.147498 0.014125 -10.442 < 2e-16 ***
## countryestonia 0.100367 0.019331 5.192 2.12e-07 ***
## countrynorway 0.125903 0.023110 5.448 5.20e-08 ***
## countryportugal -0.036505 0.019632 -1.859 0.063 .
## countryswitzerland 0.177563 0.023006 7.718 1.28e-14 ***
## countryuk -0.079012 0.010610 -7.447 1.03e-13 ***
## bmi_z -0.027631 0.004511 -6.126 9.34e-10 ***
## parenteducation -0.052211 0.010499 -4.973 6.69e-07 ***
## seasonspring 0.093457 0.011104 8.416 < 2e-16 ***
## seasonsummer 0.066601 0.012662 5.260 1.47e-07 ***
## seasonwinter -0.062090 0.011739 -5.289 1.25e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.78248 0.01064 -73.541 <2e-16 ***
## icad_sexmale -0.04671 0.01568 -2.979 0.0029 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Nu link function: identity
## Nu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.68394 0.01945 35.164 < 2e-16 ***
## icad_sexmale 0.09238 0.02902 3.183 0.00146 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 11109
## Degrees of Freedom for the fit: 18
## Residual Deg. of Freedom: 11091
## at cycle: 6
##
## Global Deviance: 93609.55
## AIC: 93645.55
## SBC: 93777.23
## ******************************************************************
## ******************************************************************
## Family: c("NO", "Normal")
##
## Call: gamlss(formula = vigorous_evenson ~ icad_sex + country +
## bmi_z + parenteducation + season, sigma.formula = ~icad_sex,
## family = NO(mu.link = log), data = sensitivity_season_vig,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.750722 0.024286 113.266 < 2e-16 ***
## icad_sexmale 0.457057 0.013470 33.932 < 2e-16 ***
## countrybrazil -1.065290 0.079193 -13.452 < 2e-16 ***
## countrydenmark -0.308700 0.025829 -11.952 < 2e-16 ***
## countryestonia -0.122986 0.031114 -3.953 7.77e-05 ***
## countrynorway 0.091753 0.030960 2.964 0.00305 **
## countryportugal -0.367990 0.037910 -9.707 < 2e-16 ***
## countryswitzerland 0.070956 0.033684 2.107 0.03518 *
## countryuk -0.176268 0.017414 -10.122 < 2e-16 ***
## bmi_z -0.100509 0.008471 -11.865 < 2e-16 ***
## parenteducation -0.043637 0.017183 -2.539 0.01112 *
## seasonspring 0.049991 0.019031 2.627 0.00863 **
## seasonsummer 0.008474 0.022028 0.385 0.70048
## seasonwinter -0.098574 0.021017 -4.690 2.76e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.302329 0.009283 248.01 <2e-16 ***
## icad_sexmale 0.321637 0.013488 23.85 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 11085
## Degrees of Freedom for the fit: 16
## Residual Deg. of Freedom: 11069
## at cycle: 3
##
## Global Deviance: 85888.62
## AIC: 85920.62
## SBC: 86037.63
## ******************************************************************
## ******************************************************************
## Family: c("NO", "Normal")
##
## Call: gamlss(formula = cpm_wear ~ icad_sex + country + bmi_z +
## parenteducation + ethnicity, sigma.formula = ~icad_sex,
## family = NO(mu.link = log), data = sensitivity_ethnicity_cpm,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.322144 0.016385 385.855 < 2e-16 ***
## icad_sexmale 0.205845 0.006812 30.217 < 2e-16 ***
## countryestonia 0.040328 0.016968 2.377 0.01748 *
## countrynorway 0.155414 0.018814 8.261 < 2e-16 ***
## countryportugal -0.046206 0.018953 -2.438 0.01479 *
## countryuk -0.013019 0.011512 -1.131 0.25812
## countryusa -0.156225 0.014525 -10.756 < 2e-16 ***
## bmi_z -0.036870 0.003688 -9.997 < 2e-16 ***
## parenteducation -0.024650 0.008715 -2.828 0.00469 **
## ethnicitywhite -0.018725 0.011679 -1.603 0.10888
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.215479 0.009342 558.27 <2e-16 ***
## icad_sexmale 0.202022 0.013516 14.95 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 11050
## Degrees of Freedom for the fit: 12
## Residual Deg. of Freedom: 11038
## at cycle: 3
##
## Global Deviance: 148762.1
## AIC: 148786.1
## SBC: 148873.8
## ******************************************************************
## ******************************************************************
## Family: c("BCCGo", "Box-Cox-Cole-Green-orig.")
##
## Call: gamlss(formula = cpm_wear ~ icad_sex + country + bmi_z +
## parenteducation + ethnicity, sigma.formula = ~icad_sex,
## nu.formula = ~icad_sex, family = BCCGo, data = sensitivity_ethnicity_cpm,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.299346 0.016276 387.036 < 2e-16 ***
## icad_sexmale 0.216855 0.007337 29.555 < 2e-16 ***
## countryestonia 0.032656 0.018079 1.806 0.070901 .
## countrynorway 0.164585 0.022114 7.443 1.06e-13 ***
## countryportugal -0.051448 0.019217 -2.677 0.007435 **
## countryuk -0.041888 0.011962 -3.502 0.000464 ***
## countryusa -0.157671 0.014218 -11.089 < 2e-16 ***
## bmi_z -0.038865 0.003277 -11.859 < 2e-16 ***
## parenteducation -0.022913 0.008517 -2.690 0.007151 **
## ethnicitywhite -0.017425 0.011073 -1.574 0.115590
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.0035483 0.0097743 -102.672 <2e-16 ***
## icad_sexmale -0.0005017 0.0144041 -0.035 0.972
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Nu link function: identity
## Nu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.49823 0.02305 21.619 < 2e-16 ***
## icad_sexmale 0.16590 0.03270 5.073 3.97e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 11050
## Degrees of Freedom for the fit: 14
## Residual Deg. of Freedom: 11036
## at cycle: 6
##
## Global Deviance: 148118.8
## AIC: 148146.8
## SBC: 148249.2
## ******************************************************************
## ******************************************************************
## Family: c("NO", "Normal")
##
## Call: gamlss(formula = mvpa_evenson ~ icad_sex + country +
## bmi_z + parenteducation + ethnicity, sigma.formula = ~icad_sex,
## family = NO(mu.link = log), data = sensitivity_ethnicity_mvpa,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.459927 0.035607 97.170 < 2e-16 ***
## icad_sexmale 0.393800 0.009637 40.862 < 2e-16 ***
## countrydenmark 0.377191 0.038091 9.902 < 2e-16 ***
## countryestonia 0.547874 0.039043 14.033 < 2e-16 ***
## countrynorway 0.646331 0.039848 16.220 < 2e-16 ***
## countryportugal 0.381999 0.039781 9.602 < 2e-16 ***
## countryuk 0.458029 0.035629 12.855 < 2e-16 ***
## countryusa 0.120104 0.035901 3.345 0.000824 ***
## bmi_z -0.070887 0.005550 -12.773 < 2e-16 ***
## parenteducation -0.041424 0.012311 -3.365 0.000768 ***
## ethnicitywhite -0.080001 0.016649 -4.805 1.57e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.121633 0.009023 345.98 <2e-16 ***
## icad_sexmale 0.313637 0.012975 24.17 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 11989
## Degrees of Freedom for the fit: 13
## Residual Deg. of Freedom: 11976
## at cycle: 3
##
## Global Deviance: 112525.8
## AIC: 112551.8
## SBC: 112647.9
## ******************************************************************
## ******************************************************************
## Family: c("BCCGo", "Box-Cox-Cole-Green-orig.")
##
## Call: gamlss(formula = mvpa_evenson ~ icad_sex + country +
## bmi_z + parenteducation + ethnicity, sigma.formula = ~icad_sex,
## nu.formula = ~icad_sex, family = BCCGo, data = sensitivity_ethnicity_mvpa,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.402781 0.028090 121.136 < 2e-16 ***
## icad_sexmale 0.422472 0.011103 38.051 < 2e-16 ***
## countrydenmark 0.375782 0.030726 12.230 < 2e-16 ***
## countryestonia 0.530180 0.033956 15.614 < 2e-16 ***
## countrynorway 0.641209 0.038026 16.862 < 2e-16 ***
## countryportugal 0.373344 0.033064 11.291 < 2e-16 ***
## countryuk 0.400944 0.027563 14.547 < 2e-16 ***
## countryusa 0.107000 0.027655 3.869 0.00011 ***
## bmi_z -0.073733 0.004715 -15.640 < 2e-16 ***
## parenteducation -0.039673 0.012104 -3.278 0.00105 **
## ethnicitywhite -0.085532 0.015604 -5.481 4.31e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.50865 0.01033 -49.262 < 2e-16 ***
## icad_sexmale -0.08376 0.01502 -5.577 2.5e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Nu link function: identity
## Nu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.52116 0.01472 35.41 < 2e-16 ***
## icad_sexmale 0.08345 0.02237 3.73 0.000192 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 11989
## Degrees of Freedom for the fit: 15
## Residual Deg. of Freedom: 11974
## at cycle: 7
##
## Global Deviance: 110656.2
## AIC: 110686.2
## SBC: 110797.1
## ******************************************************************
## ******************************************************************
## Family: c("NO", "Normal")
##
## Call: gamlss(formula = sedentary_evenson ~ icad_sex + country +
## bmi_z + parenteducation + ethnicity, sigma.formula = ~icad_sex,
## family = NO(mu.link = log), data = sensitivity_ethnicity_cpm,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.875982 0.011720 501.342 < 2e-16 ***
## icad_sexmale -0.048817 0.004880 -10.004 < 2e-16 ***
## countryestonia -0.006945 0.013869 -0.501 0.61658
## countrynorway -0.051728 0.017425 -2.969 0.00300 **
## countryportugal 0.063420 0.014240 4.454 8.52e-06 ***
## countryuk 0.024880 0.008986 2.769 0.00563 **
## countryusa 0.090923 0.010387 8.754 < 2e-16 ***
## bmi_z 0.004522 0.002345 1.928 0.05385 .
## parenteducation 0.033487 0.006163 5.434 5.63e-08 ***
## ethnicitywhite -0.030690 0.007710 -3.981 6.92e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.536e+00 9.341e-03 485.596 <2e-16 ***
## icad_sexmale -5.323e-05 1.351e-02 -0.004 0.997
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 11050
## Degrees of Freedom for the fit: 12
## Residual Deg. of Freedom: 11038
## at cycle: 2
##
## Global Deviance: 131598.6
## AIC: 131622.6
## SBC: 131710.3
## ******************************************************************
## ******************************************************************
## Family: c("BCCGo", "Box-Cox-Cole-Green-orig.")
##
## Call: gamlss(formula = sedentary_evenson ~ icad_sex + country +
## bmi_z + parenteducation + ethnicity, sigma.formula = ~icad_sex,
## nu.formula = ~icad_sex, family = BCCGo, data = sensitivity_ethnicity_cpm,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.8722768 0.0115819 507.021 < 2e-16 ***
## icad_sexmale -0.0492981 0.0052534 -9.384 < 2e-16 ***
## countryestonia -0.0009632 0.0128859 -0.075 0.94042
## countrynorway -0.0470853 0.0155789 -3.022 0.00251 **
## countryportugal 0.0589055 0.0135377 4.351 1.37e-05 ***
## countryuk 0.0015202 0.0085688 0.177 0.85919
## countryusa 0.0920615 0.0101134 9.103 < 2e-16 ***
## bmi_z 0.0051007 0.0023696 2.153 0.03137 *
## parenteducation 0.0304092 0.0060030 5.066 4.13e-07 ***
## ethnicitywhite -0.0229452 0.0078633 -2.918 0.00353 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.382268 0.009816 -140.822 < 2e-16 ***
## icad_sexmale 0.051049 0.014242 3.584 0.000339 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Nu link function: identity
## Nu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.70557 0.04012 17.588 <2e-16 ***
## icad_sexmale 0.02100 0.05489 0.383 0.702
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 11050
## Degrees of Freedom for the fit: 14
## Residual Deg. of Freedom: 11036
## at cycle: 6
##
## Global Deviance: 131335.7
## AIC: 131363.7
## SBC: 131466
## ******************************************************************
## ******************************************************************
## Family: c("NO", "Normal")
##
## Call: gamlss(formula = light_evenson ~ icad_sex + country +
## bmi_z + parenteducation + ethnicity, sigma.formula = ~icad_sex,
## family = NO(mu.link = log), data = sensitivity_ethnicity,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.888659 0.011231 524.325 < 2e-16 ***
## icad_sexmale 0.013703 0.003945 3.473 0.000516 ***
## countrydenmark 0.079089 0.012386 6.385 1.77e-10 ***
## countryestonia 0.119524 0.013395 8.923 < 2e-16 ***
## countrynorway 0.084080 0.015021 5.598 2.22e-08 ***
## countryportugal 0.037270 0.013498 2.761 0.005769 **
## countryuk 0.020207 0.011291 1.790 0.073524 .
## countryusa -0.032327 0.011275 -2.867 0.004148 **
## bmi_z -0.005790 0.002012 -2.878 0.004008 **
## parenteducation -0.009233 0.004958 -1.862 0.062571 .
## ethnicitywhite -0.020665 0.006376 -3.241 0.001195 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.338427 0.009019 481.043 < 2e-16 ***
## icad_sexmale 0.034737 0.012964 2.679 0.00738 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 11989
## Degrees of Freedom for the fit: 13
## Residual Deg. of Freedom: 11976
## at cycle: 3
##
## Global Deviance: 138454.6
## AIC: 138480.6
## SBC: 138576.7
## ******************************************************************
## ******************************************************************
## Family: c("BCCGo", "Box-Cox-Cole-Green-orig.")
##
## Call: gamlss(formula = light_evenson ~ icad_sex + country +
## bmi_z + parenteducation + ethnicity, sigma.formula = ~icad_sex,
## nu.formula = ~icad_sex, family = BCCGo, data = sensitivity_ethnicity,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.904925 0.010283 574.251 < 2e-16 ***
## icad_sexmale 0.012645 0.004087 3.094 0.00198 **
## countrydenmark 0.070438 0.011435 6.160 7.52e-10 ***
## countryestonia 0.105758 0.012649 8.361 < 2e-16 ***
## countrynorway 0.071247 0.014088 5.057 4.32e-07 ***
## countryportugal 0.035009 0.012324 2.841 0.00451 **
## countryuk -0.011593 0.010289 -1.127 0.25987
## countryusa -0.016850 0.010230 -1.647 0.09956 .
## bmi_z -0.005268 0.001790 -2.942 0.00327 **
## parenteducation -0.012916 0.004515 -2.860 0.00424 **
## ethnicitywhite -0.015287 0.005746 -2.660 0.00782 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.56872 0.01012 -154.999 <2e-16 ***
## icad_sexmale 0.02054 0.01453 1.414 0.157
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Nu link function: identity
## Nu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.37404 0.04654 29.522 <2e-16 ***
## icad_sexmale -0.01925 0.06245 -0.308 0.758
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 11989
## Degrees of Freedom for the fit: 15
## Residual Deg. of Freedom: 11974
## at cycle: 8
##
## Global Deviance: 138323.5
## AIC: 138353.5
## SBC: 138464.3
## ******************************************************************
## ******************************************************************
## Family: c("NO", "Normal")
##
## Call: gamlss(formula = moderate_evenson ~ icad_sex + country +
## bmi_z + parenteducation + ethnicity, sigma.formula = ~icad_sex,
## family = NO(mu.link = log), data = sensitivity_ethnicity,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.276964 0.028957 113.168 < 2e-16 ***
## icad_sexmale 0.336439 0.008834 38.086 < 2e-16 ***
## countrydenmark 0.223865 0.031500 7.107 1.25e-12 ***
## countryestonia 0.406607 0.032393 12.552 < 2e-16 ***
## countrynorway 0.462114 0.033767 13.685 < 2e-16 ***
## countryportugal 0.283675 0.032660 8.686 < 2e-16 ***
## countryuk 0.311167 0.028896 10.769 < 2e-16 ***
## countryusa -0.024825 0.029256 -0.849 0.396
## bmi_z -0.046268 0.004942 -9.362 < 2e-16 ***
## parenteducation -0.045808 0.011292 -4.057 5.01e-05 ***
## ethnicitywhite -0.059899 0.015370 -3.897 9.78e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.708164 0.009013 300.48 <2e-16 ***
## icad_sexmale 0.277371 0.012946 21.43 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 11989
## Degrees of Freedom for the fit: 13
## Residual Deg. of Freedom: 11976
## at cycle: 3
##
## Global Deviance: 102189.4
## AIC: 102215.4
## SBC: 102311.5
## ******************************************************************
## ******************************************************************
## Family: c("BCCGo", "Box-Cox-Cole-Green-orig.")
##
## Call: gamlss(formula = moderate_evenson ~ icad_sex + country +
## bmi_z + parenteducation + ethnicity, sigma.formula = ~icad_sex,
## nu.formula = ~icad_sex, family = BCCGo, data = sensitivity_ethnicity,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.254311 0.025546 127.391 < 2e-16 ***
## icad_sexmale 0.355492 0.010072 35.296 < 2e-16 ***
## countrydenmark 0.201778 0.027971 7.214 5.76e-13 ***
## countryestonia 0.387939 0.030953 12.533 < 2e-16 ***
## countrynorway 0.434359 0.034539 12.576 < 2e-16 ***
## countryportugal 0.254034 0.030029 8.460 < 2e-16 ***
## countryuk 0.228501 0.025173 9.077 < 2e-16 ***
## countryusa -0.046620 0.025137 -1.855 0.063673 .
## bmi_z -0.047120 0.004276 -11.020 < 2e-16 ***
## parenteducation -0.044548 0.011004 -4.048 5.19e-05 ***
## ethnicitywhite -0.053401 0.014043 -3.803 0.000144 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.61300 0.01043 -58.758 < 2e-16 ***
## icad_sexmale -0.06702 0.01511 -4.435 9.27e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Nu link function: identity
## Nu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.59808 0.01667 35.877 < 2e-16 ***
## icad_sexmale 0.06950 0.02462 2.823 0.00476 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 11989
## Degrees of Freedom for the fit: 15
## Residual Deg. of Freedom: 11974
## at cycle: 7
##
## Global Deviance: 100973.2
## AIC: 101003.2
## SBC: 101114.1
## ******************************************************************
## ******************************************************************
## Family: c("NO", "Normal")
##
## Call: gamlss(formula = vigorous_evenson ~ icad_sex + country +
## bmi_z + parenteducation + ethnicity, sigma.formula = ~icad_sex,
## family = NO(mu.link = log), data = sensitivity_ethnicity_vig,
## trace = FALSE)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: log
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.724764 0.080492 21.428 < 2e-16 ***
## icad_sexmale 0.525559 0.014770 35.583 < 2e-16 ***
## countrydenmark 0.833019 0.083127 10.021 < 2e-16 ***
## countryestonia 0.961668 0.084517 11.378 < 2e-16 ***
## countrynorway 1.162603 0.084093 13.825 < 2e-16 ***
## countryportugal 0.720208 0.086372 8.338 < 2e-16 ***
## countryuk 0.911777 0.080645 11.306 < 2e-16 ***
## countryusa 0.571057 0.080739 7.073 1.60e-12 ***
## bmi_z -0.132401 0.008978 -14.747 < 2e-16 ***
## parenteducation -0.029261 0.018661 -1.568 0.117
## ethnicitywhite -0.128659 0.024834 -5.181 2.24e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.28375 0.00904 252.6 <2e-16 ***
## icad_sexmale 0.34269 0.01303 26.3 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 11960
## Degrees of Freedom for the fit: 13
## Residual Deg. of Freedom: 11947
## at cycle: 4
##
## Global Deviance: 92542.77
## AIC: 92568.77
## SBC: 92664.83
## ******************************************************************