Carga de datos

library(readr)
ejemplo_regresion <- read_csv("ejemplo_regresion.csv")
head(ejemplo_regresion, n=6)
## # A tibble: 6 × 3
##      X1    X2     Y
##   <dbl> <dbl> <dbl>
## 1  3.92  7298  0.75
## 2  3.61  6855  0.71
## 3  3.32  6636  0.66
## 4  3.07  6506  0.61
## 5  3.06  6450  0.7 
## 6  3.11  6402  0.72

Correr el modelo

library(stargazer)
modelo_clase <- lm(formula = Y~X1+X2,data = ejemplo_regresion)
#summary
summary(modelo_clase)
## 
## Call:
## lm(formula = Y ~ X1 + X2, data = ejemplo_regresion)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.085090 -0.039102 -0.003341  0.030236  0.105692 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.564e+00  7.940e-02  19.705 1.82e-15 ***
## X1           2.372e-01  5.556e-02   4.269 0.000313 ***
## X2          -2.491e-04  3.205e-05  -7.772 9.51e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.0533 on 22 degrees of freedom
## Multiple R-squared:  0.8653, Adjusted R-squared:  0.8531 
## F-statistic: 70.66 on 2 and 22 DF,  p-value: 2.65e-10
#stargazer
stargazer(modelo_clase, title = "Modelo de Regresión", type = "text", digits = 6)
## 
## Modelo de Regresión
## ===============================================
##                         Dependent variable:    
##                     ---------------------------
##                                  Y             
## -----------------------------------------------
## X1                          0.237197***        
##                             (0.055559)         
##                                                
## X2                         -0.000249***        
##                             (0.000032)         
##                                                
## Constant                    1.564497***        
##                             (0.079396)         
##                                                
## -----------------------------------------------
## Observations                    25             
## R2                           0.865296          
## Adjusted R2                  0.853050          
## Residual Std. Error     0.053302 (df = 22)     
## F Statistic          70.660570*** (df = 2; 22) 
## ===============================================
## Note:               *p<0.1; **p<0.05; ***p<0.01

Matrices A P ^ M

mat_x<-model.matrix(modelo_clase)
# Matrix X'X
mat_xx<-t(mat_x)%*%mat_x
print(mat_xx)
##             (Intercept)          X1           X2
## (Intercept)       25.00     96.3400     181083.0
## X1                96.34    379.2928     710932.3
## X2            181083.00 710932.3200 1335796275.0
# Matrix A 
mat_A<-solve(mat_xx)%*%t(mat_x) 
print(mat_A)
##                         1             2             3             4
## (Intercept)  2.671735e-02  1.536650e-01  2.048227e-01  0.2285864559
## X1           3.989544e-02 -3.565847e-02 -2.215854e-01 -0.4165400478
## X2          -1.939144e-05  3.278674e-06  9.513298e-05  0.0001955722
##                         5            6             7             8
## (Intercept)  0.2471098101  0.267955249  2.881990e-01  3.021260e-01
## X1          -0.3943792324 -0.311747228 -1.830474e-01 -1.122102e-01
## X2           0.0001812249  0.000134385  6.311916e-05  2.350957e-05
##                         9            10            11            12
## (Intercept)  3.125846e-01  3.115468e-01  3.109783e-01  0.3192380551
## X1           5.631978e-02  5.455055e-02  8.183743e-02  0.2183626148
## X2          -6.759587e-05 -6.651133e-05 -8.095003e-05 -0.0001547247
##                        13            14            15            16
## (Intercept)  0.2647959132  0.2313887316  0.1593708433  0.0942621738
## X1           0.2008967572  0.2569672798  0.1718624834  0.2021429065
## X2          -0.0001379163 -0.0001631348 -0.0001079146 -0.0001150357
##                        17            18            19            20
## (Intercept)  2.940927e-02 -0.0310791444 -0.1506869905 -2.013240e-01
## X1           1.857657e-01  0.2521791772  0.1989653933  1.879867e-01
## X2          -9.736917e-05 -0.0001243516 -0.0000795279 -6.669616e-05
##                        21            22            23           24
## (Intercept) -3.118477e-01 -0.4081610633 -0.4936128503 -0.556949583
## X1           1.973536e-01 -0.0798709381 -0.1219474069 -0.211089593
## X2          -5.642085e-05  0.0001043654  0.0001385483  0.000194718
##                        25
## (Intercept) -0.5990949550
## X1          -0.2170100301
## X2           0.0002036863
# Matrix P
mat_P<-mat_x%*%mat_A
print(mat_P)
##             1          2             3           4           5            6
## 1  0.04158873 0.03781156  3.048860e-02  0.02303563  0.02372260  0.026648158
## 2  0.03781156 0.04741323  5.703616e-02  0.06552455  0.06569752  0.063757225
## 3  0.03048860 0.05703616  1.004618e-01  0.14349084  0.14037925  0.124733596
## 4  0.02303563 0.06552455  1.434908e-01  0.22220146  0.21541482  0.185200348
## 5  0.02372260 0.06569752  1.403792e-01  0.21541482  0.20921001  0.180792258
## 6  0.02664816 0.06375722  1.247336e-01  0.18520035  0.18079226  0.158754414
## 7  0.03129701 0.06007990  9.934054e-02  0.13689689  0.13519269  0.123010600
## 8  0.03383474 0.05820518  8.559755e-02  0.11059386  0.11039943  0.103660458
## 9  0.04004349 0.05252933  5.100009e-02  0.04570760  0.04892978  0.054990366
## 10 0.03998532 0.05253917  5.128549e-02  0.04629432  0.04947345  0.055393522
## 11 0.04100766 0.05149892  4.549412e-02  0.03555827  0.03927310  0.047250570
## 12 0.04603893 0.04688955  1.744909e-02 -0.01702736 -0.01054640  0.007798511
## 13 0.04579828 0.04461719  1.656080e-02 -0.01573428 -0.01001993  0.006644885
## 14 0.04814241 0.04075129  1.957310e-03 -0.04107698 -0.03451110 -0.013832267
## 15 0.04551090 0.04003970  1.383288e-02 -0.01510384 -0.01077924  0.002993784
## 16 0.04713214 0.03542863  2.000001e-03 -0.03358109 -0.02916052 -0.013531666
## 17 0.04701070 0.03255787  9.655854e-06 -0.03377378 -0.03017877 -0.016216760
## 18 0.04994515 0.02685737 -1.904159e-02 -0.06592067 -0.06147877 -0.042900936
## 19 0.04886272 0.02241431 -1.786905e-02 -0.05727177 -0.05480786 -0.041042251
## 20 0.04883537 0.02010589 -1.980380e-02 -0.05812998 -0.05627486 -0.043674112
## 21 0.05001919 0.01383400 -3.104239e-02 -0.07304609 -0.07186006 -0.059284179
## 22 0.04040327 0.01892940  1.923596e-02  0.02563620  0.02059045  0.011587364
## 23 0.03947851 0.01590533  2.092801e-02  0.03340359  0.02686436  0.014116670
## 24 0.03663083 0.01580855  3.438130e-02  0.06184036  0.05304706  0.033146114
## 25 0.03672810 0.01376819  3.209381e-02  0.05986710  0.05063077  0.030003329
##                7            8            9           10          11
## 1   3.129701e-02  0.033834744  0.040043491  0.039985317  0.04100766
## 2   6.007990e-02  0.058205176  0.052529329  0.052539165  0.05149892
## 3   9.934054e-02  0.085597548  0.051000087  0.051285486  0.04549412
## 4   1.368969e-01  0.110593862  0.045707605  0.046294321  0.03555827
## 5   1.351927e-01  0.110399429  0.048929776  0.049473450  0.03927310
## 6   1.230106e-01  0.103660458  0.054990366  0.055393522  0.04725057
## 7   1.025598e-01  0.091640109  0.062920604  0.063109962  0.05818661
## 8   9.164011e-02  0.085371329  0.067629278  0.067699807  0.06454509
## 9   6.292060e-02  0.067629278  0.076032081  0.075829293  0.07691052
## 10  6.310996e-02  0.067699807  0.075829293  0.075629759  0.07666767
## 11  5.818661e-02  0.064545086  0.076910524  0.076667674  0.07839425
## 12  3.489541e-02  0.050145832  0.083691329  0.083227155  0.08838551
## 13  3.142371e-02  0.045330207  0.076232442  0.075818693  0.08060435
## 14  1.741105e-02  0.034827185  0.074473737  0.073984332  0.08022514
## 15  2.384913e-02  0.035463862  0.061990628  0.061666884  0.06585153
## 16  1.059384e-02  0.023921981  0.055229525  0.054884418  0.05991338
## 17  5.670364e-03  0.017684986  0.046531179  0.046239071  0.05093572
## 18 -1.345506e-02  0.002635740  0.041865244  0.041492189  0.04793840
## 19 -1.844176e-02 -0.006266712  0.024852000  0.024613416  0.02986663
## 20 -2.260777e-02 -0.011340942  0.018136668  0.017936579  0.02297592
## 21 -3.763051e-02 -0.026183041  0.004885754  0.004716492  0.01012931
## 22  5.184751e-05 -0.006863930 -0.018703991 -0.018390895 -0.01984774
## 23 -2.788711e-03 -0.012765433 -0.031030084 -0.030614439 -0.03302593
## 24  5.416744e-03 -0.010589838 -0.042611712 -0.042027558 -0.04660778
## 25  1.376993e-03 -0.015176724 -0.048065153 -0.047454094 -0.05213122
##              12           13          14           15           16
## 1   0.046038933  0.045798283  0.04814241  0.045510898  0.047132139
## 2   0.046889547  0.044617195  0.04075129  0.040039703  0.035428634
## 3   0.017449090  0.016560798  0.00195731  0.013832885  0.002000001
## 4  -0.017027358 -0.015734277 -0.04107698 -0.015103836 -0.033581091
## 5  -0.010546403 -0.010019933 -0.03451110 -0.010779242 -0.029160523
## 6   0.007798511  0.006644885 -0.01383227  0.002993784 -0.013531666
## 7   0.034895411  0.031423714  0.01741105  0.023849129  0.010593837
## 8   0.050145832  0.045330207  0.03482719  0.035463862  0.023921981
## 9   0.083691329  0.076232442  0.07447374  0.061990628  0.055229525
## 10  0.083227155  0.075818693  0.07398433  0.061666884  0.054884418
## 11  0.088385511  0.080604350  0.08022514  0.065851527  0.059913384
## 12  0.115534854  0.105617598  0.11232580  0.087330333  0.085271677
## 13  0.105617598  0.097278159  0.10400832  0.081978444  0.081081798
## 14  0.112325805  0.104008320  0.11428940  0.089004701  0.090844454
## 15  0.087330333  0.081978444  0.08900470  0.072353813  0.073852397
## 16  0.085271677  0.081081798  0.09084445  0.073852397  0.078290810
## 17  0.074306310  0.071933225  0.08195660  0.068160746  0.074117541
## 18  0.079726880  0.077890979  0.09248418  0.075462692  0.085310455
## 19  0.055095904  0.056936697  0.07079203  0.061413561  0.073364592
## 20  0.046880620  0.050114337  0.06426903  0.057248734  0.070440106
## 21  0.035333920  0.041135721  0.05770913  0.053303532  0.070211887
## 22 -0.029396034 -0.017313040 -0.01374752  0.005809294  0.017310860
## 23 -0.047770704 -0.033003454 -0.03018006 -0.004854438  0.008026809
## 24 -0.072491687 -0.054913777 -0.05571007 -0.021705137 -0.009557036
## 25 -0.078713032 -0.060021365 -0.06039810 -0.024674895 -0.011396989
##               17          18           19          20           21
## 1   4.701070e-02  0.04994515  0.048862716  0.04883537  0.050019190
## 2   3.255787e-02  0.02685737  0.022414305  0.02010589  0.013833997
## 3   9.655854e-06 -0.01904159 -0.017869048 -0.01980380 -0.031042393
## 4  -3.377378e-02 -0.06592067 -0.057271769 -0.05812998 -0.073046093
## 5  -3.017877e-02 -0.06147877 -0.054807860 -0.05627486 -0.071860062
## 6  -1.621676e-02 -0.04290094 -0.041042251 -0.04367411 -0.059284179
## 7   5.670364e-03 -0.01345506 -0.018441763 -0.02260777 -0.037630506
## 8   1.768499e-02  0.00263574 -0.006266712 -0.01134094 -0.026183041
## 9   4.653118e-02  0.04186524  0.024852000  0.01813667  0.004885754
## 10  4.623907e-02  0.04149219  0.024613416  0.01793658  0.004716492
## 11  5.093572e-02  0.04793840  0.029866626  0.02297592  0.010129313
## 12  7.430631e-02  0.07972688  0.055095904  0.04688062  0.035333920
## 13  7.193323e-02  0.07789098  0.056936697  0.05011434  0.041135721
## 14  8.195660e-02  0.09248418  0.070792028  0.06426903  0.057709131
## 15  6.816075e-02  0.07546269  0.061413561  0.05724873  0.053303532
## 16  7.411754e-02  0.08531046  0.073364592  0.07044011  0.070211887
## 17  7.205185e-02  0.08416583  0.076401216  0.07509919  0.077986031
## 18  8.416583e-02  0.10232508  0.094798376  0.09433034  0.101153521
## 19  7.640122e-02  0.09479838  0.096014597  0.09873020  0.111008077
## 20  7.509919e-02  0.09433034  0.098730196  0.10269757  0.117430507
## 21  7.798603e-02  0.10115352  0.111008077  0.11743051  0.137942637
## 22  3.144922e-02  0.03992847  0.067329782  0.07826476  0.100211409
## 23  2.520430e-02  0.03359584  0.067425330  0.08066855  0.106460997
## 24  1.061421e-02  0.01526132  0.056453392  0.07188940  0.099800950
## 25  1.008350e-02  0.01562898  0.059326591  0.07577771  0.105773207
##               22           23           24           25
## 1   4.040327e-02  0.039478511  0.036630829  0.036728099
## 2   1.892940e-02  0.015905328  0.015808550  0.013768192
## 3   1.923596e-02  0.020928007  0.034381300  0.032093809
## 4   2.563620e-02  0.033403586  0.061840365  0.059867102
## 5   2.059045e-02  0.026864357  0.053047055  0.050630771
## 6   1.158736e-02  0.014116670  0.033146114  0.030003329
## 7   5.184751e-05 -0.002788711  0.005416744  0.001376993
## 8  -6.863930e-03 -0.012765433 -0.010589838 -0.015176724
## 9  -1.870399e-02 -0.031030084 -0.042611712 -0.048065153
## 10 -1.839090e-02 -0.030614439 -0.042027558 -0.047454094
## 11 -1.984774e-02 -0.033025927 -0.046607784 -0.052131218
## 12 -2.939603e-02 -0.047770704 -0.072491687 -0.078713032
## 13 -1.731304e-02 -0.033003454 -0.054913777 -0.060021365
## 14 -1.374752e-02 -0.030180062 -0.055710066 -0.060398099
## 15  5.809294e-03 -0.004854438 -0.021705137 -0.024674895
## 16  1.731086e-02  0.008026809 -0.009557036 -0.011396989
## 17  3.144922e-02  0.025204299  0.010614210  0.010083496
## 18  3.992847e-02  0.033595835  0.015261315  0.015628983
## 19  6.732978e-02  0.067425330  0.056453392  0.059326591
## 20  7.826476e-02  0.080668548  0.071889405  0.075777709
## 21  1.002114e-01  0.106460997  0.099800950  0.105773207
## 22  1.357829e-01  0.155593202  0.173616472  0.182532291
## 23  1.555932e-01  0.180141211  0.203749335  0.214471225
## 24  1.736165e-01  0.203749335  0.236134518  0.248424042
## 25  1.825323e-01  0.214471225  0.248424042  0.261545731
# Matrix M
mat_M<-diag(25)-mat_P
print(mat_M)
##              1           2             3           4           5            6
## 1   0.95841127 -0.03781156 -3.048860e-02 -0.02303563 -0.02372260 -0.026648158
## 2  -0.03781156  0.95258677 -5.703616e-02 -0.06552455 -0.06569752 -0.063757225
## 3  -0.03048860 -0.05703616  8.995382e-01 -0.14349084 -0.14037925 -0.124733596
## 4  -0.02303563 -0.06552455 -1.434908e-01  0.77779854 -0.21541482 -0.185200348
## 5  -0.02372260 -0.06569752 -1.403792e-01 -0.21541482  0.79078999 -0.180792258
## 6  -0.02664816 -0.06375722 -1.247336e-01 -0.18520035 -0.18079226  0.841245586
## 7  -0.03129701 -0.06007990 -9.934054e-02 -0.13689689 -0.13519269 -0.123010600
## 8  -0.03383474 -0.05820518 -8.559755e-02 -0.11059386 -0.11039943 -0.103660458
## 9  -0.04004349 -0.05252933 -5.100009e-02 -0.04570760 -0.04892978 -0.054990366
## 10 -0.03998532 -0.05253917 -5.128549e-02 -0.04629432 -0.04947345 -0.055393522
## 11 -0.04100766 -0.05149892 -4.549412e-02 -0.03555827 -0.03927310 -0.047250570
## 12 -0.04603893 -0.04688955 -1.744909e-02  0.01702736  0.01054640 -0.007798511
## 13 -0.04579828 -0.04461719 -1.656080e-02  0.01573428  0.01001993 -0.006644885
## 14 -0.04814241 -0.04075129 -1.957310e-03  0.04107698  0.03451110  0.013832267
## 15 -0.04551090 -0.04003970 -1.383288e-02  0.01510384  0.01077924 -0.002993784
## 16 -0.04713214 -0.03542863 -2.000001e-03  0.03358109  0.02916052  0.013531666
## 17 -0.04701070 -0.03255787 -9.655854e-06  0.03377378  0.03017877  0.016216760
## 18 -0.04994515 -0.02685737  1.904159e-02  0.06592067  0.06147877  0.042900936
## 19 -0.04886272 -0.02241431  1.786905e-02  0.05727177  0.05480786  0.041042251
## 20 -0.04883537 -0.02010589  1.980380e-02  0.05812998  0.05627486  0.043674112
## 21 -0.05001919 -0.01383400  3.104239e-02  0.07304609  0.07186006  0.059284179
## 22 -0.04040327 -0.01892940 -1.923596e-02 -0.02563620 -0.02059045 -0.011587364
## 23 -0.03947851 -0.01590533 -2.092801e-02 -0.03340359 -0.02686436 -0.014116670
## 24 -0.03663083 -0.01580855 -3.438130e-02 -0.06184036 -0.05304706 -0.033146114
## 25 -0.03672810 -0.01376819 -3.209381e-02 -0.05986710 -0.05063077 -0.030003329
##                7            8            9           10          11
## 1  -3.129701e-02 -0.033834744 -0.040043491 -0.039985317 -0.04100766
## 2  -6.007990e-02 -0.058205176 -0.052529329 -0.052539165 -0.05149892
## 3  -9.934054e-02 -0.085597548 -0.051000087 -0.051285486 -0.04549412
## 4  -1.368969e-01 -0.110593862 -0.045707605 -0.046294321 -0.03555827
## 5  -1.351927e-01 -0.110399429 -0.048929776 -0.049473450 -0.03927310
## 6  -1.230106e-01 -0.103660458 -0.054990366 -0.055393522 -0.04725057
## 7   8.974402e-01 -0.091640109 -0.062920604 -0.063109962 -0.05818661
## 8  -9.164011e-02  0.914628671 -0.067629278 -0.067699807 -0.06454509
## 9  -6.292060e-02 -0.067629278  0.923967919 -0.075829293 -0.07691052
## 10 -6.310996e-02 -0.067699807 -0.075829293  0.924370241 -0.07666767
## 11 -5.818661e-02 -0.064545086 -0.076910524 -0.076667674  0.92160575
## 12 -3.489541e-02 -0.050145832 -0.083691329 -0.083227155 -0.08838551
## 13 -3.142371e-02 -0.045330207 -0.076232442 -0.075818693 -0.08060435
## 14 -1.741105e-02 -0.034827185 -0.074473737 -0.073984332 -0.08022514
## 15 -2.384913e-02 -0.035463862 -0.061990628 -0.061666884 -0.06585153
## 16 -1.059384e-02 -0.023921981 -0.055229525 -0.054884418 -0.05991338
## 17 -5.670364e-03 -0.017684986 -0.046531179 -0.046239071 -0.05093572
## 18  1.345506e-02 -0.002635740 -0.041865244 -0.041492189 -0.04793840
## 19  1.844176e-02  0.006266712 -0.024852000 -0.024613416 -0.02986663
## 20  2.260777e-02  0.011340942 -0.018136668 -0.017936579 -0.02297592
## 21  3.763051e-02  0.026183041 -0.004885754 -0.004716492 -0.01012931
## 22 -5.184751e-05  0.006863930  0.018703991  0.018390895  0.01984774
## 23  2.788711e-03  0.012765433  0.031030084  0.030614439  0.03302593
## 24 -5.416744e-03  0.010589838  0.042611712  0.042027558  0.04660778
## 25 -1.376993e-03  0.015176724  0.048065153  0.047454094  0.05213122
##              12           13          14           15           16
## 1  -0.046038933 -0.045798283 -0.04814241 -0.045510898 -0.047132139
## 2  -0.046889547 -0.044617195 -0.04075129 -0.040039703 -0.035428634
## 3  -0.017449090 -0.016560798 -0.00195731 -0.013832885 -0.002000001
## 4   0.017027358  0.015734277  0.04107698  0.015103836  0.033581091
## 5   0.010546403  0.010019933  0.03451110  0.010779242  0.029160523
## 6  -0.007798511 -0.006644885  0.01383227 -0.002993784  0.013531666
## 7  -0.034895411 -0.031423714 -0.01741105 -0.023849129 -0.010593837
## 8  -0.050145832 -0.045330207 -0.03482719 -0.035463862 -0.023921981
## 9  -0.083691329 -0.076232442 -0.07447374 -0.061990628 -0.055229525
## 10 -0.083227155 -0.075818693 -0.07398433 -0.061666884 -0.054884418
## 11 -0.088385511 -0.080604350 -0.08022514 -0.065851527 -0.059913384
## 12  0.884465146 -0.105617598 -0.11232580 -0.087330333 -0.085271677
## 13 -0.105617598  0.902721841 -0.10400832 -0.081978444 -0.081081798
## 14 -0.112325805 -0.104008320  0.88571060 -0.089004701 -0.090844454
## 15 -0.087330333 -0.081978444 -0.08900470  0.927646187 -0.073852397
## 16 -0.085271677 -0.081081798 -0.09084445 -0.073852397  0.921709190
## 17 -0.074306310 -0.071933225 -0.08195660 -0.068160746 -0.074117541
## 18 -0.079726880 -0.077890979 -0.09248418 -0.075462692 -0.085310455
## 19 -0.055095904 -0.056936697 -0.07079203 -0.061413561 -0.073364592
## 20 -0.046880620 -0.050114337 -0.06426903 -0.057248734 -0.070440106
## 21 -0.035333920 -0.041135721 -0.05770913 -0.053303532 -0.070211887
## 22  0.029396034  0.017313040  0.01374752 -0.005809294 -0.017310860
## 23  0.047770704  0.033003454  0.03018006  0.004854438 -0.008026809
## 24  0.072491687  0.054913777  0.05571007  0.021705137  0.009557036
## 25  0.078713032  0.060021365  0.06039810  0.024674895  0.011396989
##               17          18           19          20           21
## 1  -4.701070e-02 -0.04994515 -0.048862716 -0.04883537 -0.050019190
## 2  -3.255787e-02 -0.02685737 -0.022414305 -0.02010589 -0.013833997
## 3  -9.655854e-06  0.01904159  0.017869048  0.01980380  0.031042393
## 4   3.377378e-02  0.06592067  0.057271769  0.05812998  0.073046093
## 5   3.017877e-02  0.06147877  0.054807860  0.05627486  0.071860062
## 6   1.621676e-02  0.04290094  0.041042251  0.04367411  0.059284179
## 7  -5.670364e-03  0.01345506  0.018441763  0.02260777  0.037630506
## 8  -1.768499e-02 -0.00263574  0.006266712  0.01134094  0.026183041
## 9  -4.653118e-02 -0.04186524 -0.024852000 -0.01813667 -0.004885754
## 10 -4.623907e-02 -0.04149219 -0.024613416 -0.01793658 -0.004716492
## 11 -5.093572e-02 -0.04793840 -0.029866626 -0.02297592 -0.010129313
## 12 -7.430631e-02 -0.07972688 -0.055095904 -0.04688062 -0.035333920
## 13 -7.193323e-02 -0.07789098 -0.056936697 -0.05011434 -0.041135721
## 14 -8.195660e-02 -0.09248418 -0.070792028 -0.06426903 -0.057709131
## 15 -6.816075e-02 -0.07546269 -0.061413561 -0.05724873 -0.053303532
## 16 -7.411754e-02 -0.08531046 -0.073364592 -0.07044011 -0.070211887
## 17  9.279482e-01 -0.08416583 -0.076401216 -0.07509919 -0.077986031
## 18 -8.416583e-02  0.89767492 -0.094798376 -0.09433034 -0.101153521
## 19 -7.640122e-02 -0.09479838  0.903985403 -0.09873020 -0.111008077
## 20 -7.509919e-02 -0.09433034 -0.098730196  0.89730243 -0.117430507
## 21 -7.798603e-02 -0.10115352 -0.111008077 -0.11743051  0.862057363
## 22 -3.144922e-02 -0.03992847 -0.067329782 -0.07826476 -0.100211409
## 23 -2.520430e-02 -0.03359584 -0.067425330 -0.08066855 -0.106460997
## 24 -1.061421e-02 -0.01526132 -0.056453392 -0.07188940 -0.099800950
## 25 -1.008350e-02 -0.01562898 -0.059326591 -0.07577771 -0.105773207
##               22           23           24           25
## 1  -4.040327e-02 -0.039478511 -0.036630829 -0.036728099
## 2  -1.892940e-02 -0.015905328 -0.015808550 -0.013768192
## 3  -1.923596e-02 -0.020928007 -0.034381300 -0.032093809
## 4  -2.563620e-02 -0.033403586 -0.061840365 -0.059867102
## 5  -2.059045e-02 -0.026864357 -0.053047055 -0.050630771
## 6  -1.158736e-02 -0.014116670 -0.033146114 -0.030003329
## 7  -5.184751e-05  0.002788711 -0.005416744 -0.001376993
## 8   6.863930e-03  0.012765433  0.010589838  0.015176724
## 9   1.870399e-02  0.031030084  0.042611712  0.048065153
## 10  1.839090e-02  0.030614439  0.042027558  0.047454094
## 11  1.984774e-02  0.033025927  0.046607784  0.052131218
## 12  2.939603e-02  0.047770704  0.072491687  0.078713032
## 13  1.731304e-02  0.033003454  0.054913777  0.060021365
## 14  1.374752e-02  0.030180062  0.055710066  0.060398099
## 15 -5.809294e-03  0.004854438  0.021705137  0.024674895
## 16 -1.731086e-02 -0.008026809  0.009557036  0.011396989
## 17 -3.144922e-02 -0.025204299 -0.010614210 -0.010083496
## 18 -3.992847e-02 -0.033595835 -0.015261315 -0.015628983
## 19 -6.732978e-02 -0.067425330 -0.056453392 -0.059326591
## 20 -7.826476e-02 -0.080668548 -0.071889405 -0.075777709
## 21 -1.002114e-01 -0.106460997 -0.099800950 -0.105773207
## 22  8.642171e-01 -0.155593202 -0.173616472 -0.182532291
## 23 -1.555932e-01  0.819858789 -0.203749335 -0.214471225
## 24 -1.736165e-01 -0.203749335  0.763865482 -0.248424042
## 25 -1.825323e-01 -0.214471225 -0.248424042  0.738454269

Vector de Coeficientes estimados

options(scipen = 999999)
modelo_clase$coefficients
##   (Intercept)            X1            X2 
##  1.5644967711  0.2371974748 -0.0002490793

Matriz de Varianza-Covarianza de los parámetros

var_cov <- vcov(modelo_clase)
print(var_cov)
##                  (Intercept)              X1                 X2
## (Intercept)  0.0063037218732  0.000240996434 -0.000000982806321
## X1           0.0002409964344  0.003086843196 -0.000001675537651
## X2          -0.0000009828063 -0.000001675538  0.000000001027106

Intervalos de confianza

confint(object = modelo_clase,level = .95)
##                     2.5 %        97.5 %
## (Intercept)  1.3998395835  1.7291539588
## X1           0.1219744012  0.3524205485
## X2          -0.0003155438 -0.0001826148

EJERCICIO 2

Cargar los datos

library(readxl)
Ejercicio_2 <- read_excel("Ejercicio_2.xlsx")
head(Ejercicio_2)
## # A tibble: 6 × 3
##       Y    X1    X2
##   <dbl> <dbl> <dbl>
## 1   320    50   7.5
## 2   450    53   5.1
## 3   370    60   4.2
## 4   470    63   3.9
## 5   420    69   1.4
## 6   500    82   2.2

Obtener otra variable que no este en la data

library(dplyr)
X3 <- mutate(Ejercicio_2, x_3=X1*X2) 

Estimar el modelo

library(stargazer)
modelo_lineal_2 <- lm(formula = Y~X1+X2+x_3, data = X3)
stargazer(modelo_lineal_2, title = "Modelo de regresión", type = "text", digits = 6)
## 
## Modelo de regresión
## ===============================================
##                         Dependent variable:    
##                     ---------------------------
##                                  Y             
## -----------------------------------------------
## X1                          2.328470***        
##                             (0.476584)         
##                                                
## X2                         -25.067830**        
##                             (11.450310)        
##                                                
## x_3                         0.286141***        
##                             (0.076628)         
##                                                
## Constant                   303.686100***       
##                             (71.504320)        
##                                                
## -----------------------------------------------
## Observations                    20             
## R2                           0.963435          
## Adjusted R2                  0.956579          
## Residual Std. Error     67.658010 (df = 16)    
## F Statistic         140.525700*** (df = 3; 16) 
## ===============================================
## Note:               *p<0.1; **p<0.05; ***p<0.01

matriz A,P,M

mat_x_2<-model.matrix(modelo_lineal_2)
# Matrix X'X
mat_xx_2<-t(mat_x_2)%*%mat_x_2
print(mat_xx_2)
##             (Intercept)        X1        X2        x_3
## (Intercept)        20.0    3036.0    121.30    18759.2
## X1               3036.0  574618.0  18759.20  3537282.8
## X2                121.3   18759.2   1001.43   152723.2
## x_3             18759.2 3537282.8 152723.18 27686606.9
# Matrix A 
mat_A_2<-solve(mat_xx_2)%*%t(mat_x_2) 
print(mat_A_2)
##                         1              2             3             4
## (Intercept) -0.0356096554  0.21924176776  0.2954481810  0.3161310057
## X1           0.0004498074 -0.00103343874 -0.0014497842 -0.0015540405
## X2           0.0402845728 -0.00677022588 -0.0223101919 -0.0267907244
## x_3         -0.0002420114  0.00003059369  0.0001172122  0.0001410061
##                         5             6              7              8
## (Intercept)  0.5229342817  0.3908124303  0.02164584417  0.09419561484
## X1          -0.0026668207 -0.0018314752  0.00008198534 -0.00023838955
## X2          -0.0657936173 -0.0449030381  0.01770369057  0.00359661964
## x_3          0.0003528161  0.0002234023 -0.00009751386 -0.00003179408
##                         9            10             11            12
## (Intercept) -0.2631550259 -0.2603304050  0.04488176540 -0.0541571462
## X1           0.0011558430  0.0005707126  0.00020105115  0.0012856655
## X2           0.0660088862  0.0610665025  0.00145713918  0.0121882568
## x_3         -0.0002800182 -0.0001563735 -0.00003650356 -0.0001758376
##                        13             14            15            16
## (Intercept) -0.0727262937 -0.01516406912 -0.2237294279 -0.3258582180
## X1           0.0011421885  0.00042224564  0.0024621499  0.0033456933
## X2           0.0103274418 -0.00398293555  0.0314418154  0.0474826342
## x_3         -0.0001207875  0.00002689207 -0.0003099488 -0.0004477805
##                       17            18            19            20
## (Intercept) -0.138353677  0.1822093725  0.2979066352  0.0036770193
## X1           0.001537066 -0.0014915076 -0.0025668128  0.0001778607
## X2           0.012296225 -0.0475519444 -0.0692782745 -0.0164728316
## x_3         -0.000127457  0.0004079108  0.0005990749  0.0001271178
# Matrix P
mat_P_2<-mat_x_2%*%mat_A_2
print(mat_P_2)
##              1            2             3            4            5
## 1   0.19826072  0.128265769  0.0995871143  0.090375837  0.028447154
## 2   0.12826577  0.138210836  0.1365101033  0.135248115  0.141411528
## 3   0.09958711  0.136510103  0.1442958033  0.145901071  0.175501505
## 4   0.09037584  0.135248115  0.1459010714  0.148387829  0.185016386
## 5   0.02844715  0.141411528  0.1755015047  0.185016386  0.280894626
## 6   0.04624175  0.125124395  0.1486285407  0.155197592  0.223157052
## 7   0.12195509  0.089921892  0.0763469718  0.071896158  0.042668161
## 8   0.09732800  0.091309788  0.0869859350  0.085392083  0.079710695
## 9   0.18469696  0.059061063  0.0128682989 -0.001702724 -0.118039173
## 10  0.16756392  0.039088764 -0.0090144643 -0.024637124 -0.150563812
## 11  0.05217403  0.053101974  0.0538659219  0.054261906  0.057268046
## 12  0.03559895  0.028614326  0.0298623818  0.031170678  0.034631418
## 13  0.01654363  0.007830786  0.0087418192  0.009831114  0.008875059
## 14 -0.01383928 -0.005829095  0.0002191413  0.002511339  0.010992544
## 15  0.01896090 -0.016661374 -0.0220518963 -0.022145314 -0.039763593
## 16  0.02962851 -0.027410109 -0.0385302441 -0.039916937 -0.071785291
## 17 -0.01707506 -0.028630052 -0.0266047274 -0.024879417 -0.027393741
## 18 -0.09603904 -0.029097155 -0.0042057258  0.003015497  0.052126810
## 19 -0.12536798 -0.029523701  0.0038959856  0.013204858  0.081677600
## 20 -0.06330699 -0.036547852 -0.0228035353 -0.018128946  0.005167027
##               6            7            8            9           10         11
## 1   0.046241751  0.121955092  0.097328003  0.184696960  0.167563924 0.05217403
## 2   0.125124395  0.089921892  0.091309788  0.059061063  0.039088764 0.05310197
## 3   0.148628541  0.076346972  0.086985935  0.012868299 -0.009014464 0.05386592
## 4   0.155197592  0.071896158  0.085392083 -0.001702724 -0.024637124 0.05426191
## 5   0.223157052  0.042668161  0.079710695 -0.118039173 -0.150563812 0.05726805
## 6   0.182146557  0.049725261  0.076824582 -0.073671627 -0.107395447 0.05798842
## 7   0.049725261  0.085510509  0.073277138  0.118478764  0.114744909 0.04963436
## 8   0.076824582  0.073277138  0.071056300  0.067308530  0.054404548 0.05245747
## 9  -0.073671627  0.118478764  0.067308530  0.317660757  0.372651576 0.03265285
## 10 -0.107395447  0.114744909  0.054404548  0.372651576  0.481964523 0.01708991
## 11  0.057988424  0.049634363  0.052457468  0.032652849  0.017089907 0.05454562
## 12  0.046360482  0.036640868  0.044788588 -0.009503208 -0.062019023 0.06633701
## 13  0.021863469  0.029233390  0.033324891  0.012828737 -0.012390724 0.05886949
## 14  0.015548944  0.018004394  0.021988363  0.020181563  0.031741613 0.04843224
## 15 -0.008575898  0.025614139  0.027814886  0.007564146 -0.048814921 0.06883552
## 16 -0.027829177  0.027643199  0.027300617  0.011378157 -0.066870915 0.07560513
## 17 -0.008255798  0.012206610  0.016033174  0.007740738 -0.008615327 0.05741239
## 18  0.028878582 -0.014267431 -0.002143972 -0.005431085  0.078127345 0.02802009
## 19  0.043088890 -0.024370144 -0.008796467 -0.012878045  0.105284939 0.01785780
## 20  0.004953426 -0.004864243  0.003634848 -0.003846276  0.027659708 0.04358983
##              12           13            14           15          16
## 1   0.035598947  0.016543627 -0.0138392778  0.018960898  0.02962851
## 2   0.028614326  0.007830786 -0.0058290953 -0.016661374 -0.02741011
## 3   0.029862382  0.008741819  0.0002191413 -0.022051896 -0.03853024
## 4   0.031170678  0.009831114  0.0025113388 -0.022145314 -0.03991694
## 5   0.034631418  0.008875059  0.0109925440 -0.039763593 -0.07178529
## 6   0.046360482  0.021863469  0.0155489442 -0.008575898 -0.02782918
## 7   0.036640868  0.029233390  0.0180043944  0.025614139  0.02764320
## 8   0.044788588  0.033324891  0.0219883633  0.027814886  0.02730062
## 9  -0.009503208  0.012828737  0.0201815628  0.007564146  0.01137816
## 10 -0.062019023 -0.012390724  0.0317416130 -0.048814921 -0.06687091
## 11  0.066337009  0.058869488  0.0484322383  0.068835516  0.07560513
## 12  0.121597086  0.100558043  0.0638275253  0.150408865  0.18237192
## 13  0.100558043  0.094673424  0.0766512307  0.133369600  0.15661120
## 14  0.063827525  0.076651231  0.0879496240  0.088491296  0.09210567
## 15  0.150408865  0.133369600  0.0884912965  0.213586258  0.26411642
## 16  0.182371919  0.156611203  0.0921056704  0.264116420  0.33314492
## 17  0.108612174  0.111608287  0.0999456236  0.159581907  0.18663791
## 18 -0.011541757  0.037732014  0.1125333727 -0.012595048 -0.05492049
## 19 -0.053139072  0.012217287  0.1173783112 -0.072581899 -0.13932916
## 20  0.054822750  0.081027256  0.1111655784  0.084846013  0.08004867
##              17           18           19           20
## 1  -0.017075060 -0.096039037 -0.125367980 -0.063306992
## 2  -0.028630052 -0.029097155 -0.029523701 -0.036547852
## 3  -0.026604727 -0.004205726  0.003895986 -0.022803535
## 4  -0.024879417  0.003015497  0.013204858 -0.018128946
## 5  -0.027393741  0.052126810  0.081677600  0.005167027
## 6  -0.008255798  0.028878582  0.043088890  0.004953426
## 7   0.012206610 -0.014267431 -0.024370144 -0.004864243
## 8   0.016033174 -0.002143972 -0.008796467  0.003634848
## 9   0.007740738 -0.005431085 -0.012878045 -0.003846276
## 10 -0.008615327  0.078127345  0.105284939  0.027659708
## 11  0.057412388  0.028020086  0.017857804  0.043589832
## 12  0.108612174 -0.011541757 -0.053139072  0.054822750
## 13  0.111608287  0.037732014  0.012217287  0.081027256
## 14  0.099945624  0.112533373  0.117378311  0.111165578
## 15  0.159581907 -0.012595048 -0.072581899  0.084846013
## 16  0.186637914 -0.054920491 -0.139329164  0.080048669
## 17  0.143641852  0.072467900  0.048026048  0.117539508
## 18  0.072467900  0.281984823  0.356404240  0.178951032
## 19  0.048026048  0.356404240  0.465673118  0.201277391
## 20  0.117539508  0.178951032  0.201277391  0.154814807
# Matrix M
mat_M_2<-diag(20)-mat_P_2
print(mat_M_2)
##              1            2             3            4            5
## 1   0.80173928 -0.128265769 -0.0995871143 -0.090375837 -0.028447154
## 2  -0.12826577  0.861789164 -0.1365101033 -0.135248115 -0.141411528
## 3  -0.09958711 -0.136510103  0.8557041967 -0.145901071 -0.175501505
## 4  -0.09037584 -0.135248115 -0.1459010714  0.851612171 -0.185016386
## 5  -0.02844715 -0.141411528 -0.1755015047 -0.185016386  0.719105374
## 6  -0.04624175 -0.125124395 -0.1486285407 -0.155197592 -0.223157052
## 7  -0.12195509 -0.089921892 -0.0763469718 -0.071896158 -0.042668161
## 8  -0.09732800 -0.091309788 -0.0869859350 -0.085392083 -0.079710695
## 9  -0.18469696 -0.059061063 -0.0128682989  0.001702724  0.118039173
## 10 -0.16756392 -0.039088764  0.0090144643  0.024637124  0.150563812
## 11 -0.05217403 -0.053101974 -0.0538659219 -0.054261906 -0.057268046
## 12 -0.03559895 -0.028614326 -0.0298623818 -0.031170678 -0.034631418
## 13 -0.01654363 -0.007830786 -0.0087418192 -0.009831114 -0.008875059
## 14  0.01383928  0.005829095 -0.0002191413 -0.002511339 -0.010992544
## 15 -0.01896090  0.016661374  0.0220518963  0.022145314  0.039763593
## 16 -0.02962851  0.027410109  0.0385302441  0.039916937  0.071785291
## 17  0.01707506  0.028630052  0.0266047274  0.024879417  0.027393741
## 18  0.09603904  0.029097155  0.0042057258 -0.003015497 -0.052126810
## 19  0.12536798  0.029523701 -0.0038959856 -0.013204858 -0.081677600
## 20  0.06330699  0.036547852  0.0228035353  0.018128946 -0.005167027
##               6            7            8            9           10          11
## 1  -0.046241751 -0.121955092 -0.097328003 -0.184696960 -0.167563924 -0.05217403
## 2  -0.125124395 -0.089921892 -0.091309788 -0.059061063 -0.039088764 -0.05310197
## 3  -0.148628541 -0.076346972 -0.086985935 -0.012868299  0.009014464 -0.05386592
## 4  -0.155197592 -0.071896158 -0.085392083  0.001702724  0.024637124 -0.05426191
## 5  -0.223157052 -0.042668161 -0.079710695  0.118039173  0.150563812 -0.05726805
## 6   0.817853443 -0.049725261 -0.076824582  0.073671627  0.107395447 -0.05798842
## 7  -0.049725261  0.914489491 -0.073277138 -0.118478764 -0.114744909 -0.04963436
## 8  -0.076824582 -0.073277138  0.928943700 -0.067308530 -0.054404548 -0.05245747
## 9   0.073671627 -0.118478764 -0.067308530  0.682339243 -0.372651576 -0.03265285
## 10  0.107395447 -0.114744909 -0.054404548 -0.372651576  0.518035477 -0.01708991
## 11 -0.057988424 -0.049634363 -0.052457468 -0.032652849 -0.017089907  0.94545438
## 12 -0.046360482 -0.036640868 -0.044788588  0.009503208  0.062019023 -0.06633701
## 13 -0.021863469 -0.029233390 -0.033324891 -0.012828737  0.012390724 -0.05886949
## 14 -0.015548944 -0.018004394 -0.021988363 -0.020181563 -0.031741613 -0.04843224
## 15  0.008575898 -0.025614139 -0.027814886 -0.007564146  0.048814921 -0.06883552
## 16  0.027829177 -0.027643199 -0.027300617 -0.011378157  0.066870915 -0.07560513
## 17  0.008255798 -0.012206610 -0.016033174 -0.007740738  0.008615327 -0.05741239
## 18 -0.028878582  0.014267431  0.002143972  0.005431085 -0.078127345 -0.02802009
## 19 -0.043088890  0.024370144  0.008796467  0.012878045 -0.105284939 -0.01785780
## 20 -0.004953426  0.004864243 -0.003634848  0.003846276 -0.027659708 -0.04358983
##              12           13            14           15          16
## 1  -0.035598947 -0.016543627  0.0138392778 -0.018960898 -0.02962851
## 2  -0.028614326 -0.007830786  0.0058290953  0.016661374  0.02741011
## 3  -0.029862382 -0.008741819 -0.0002191413  0.022051896  0.03853024
## 4  -0.031170678 -0.009831114 -0.0025113388  0.022145314  0.03991694
## 5  -0.034631418 -0.008875059 -0.0109925440  0.039763593  0.07178529
## 6  -0.046360482 -0.021863469 -0.0155489442  0.008575898  0.02782918
## 7  -0.036640868 -0.029233390 -0.0180043944 -0.025614139 -0.02764320
## 8  -0.044788588 -0.033324891 -0.0219883633 -0.027814886 -0.02730062
## 9   0.009503208 -0.012828737 -0.0201815628 -0.007564146 -0.01137816
## 10  0.062019023  0.012390724 -0.0317416130  0.048814921  0.06687091
## 11 -0.066337009 -0.058869488 -0.0484322383 -0.068835516 -0.07560513
## 12  0.878402914 -0.100558043 -0.0638275253 -0.150408865 -0.18237192
## 13 -0.100558043  0.905326576 -0.0766512307 -0.133369600 -0.15661120
## 14 -0.063827525 -0.076651231  0.9120503760 -0.088491296 -0.09210567
## 15 -0.150408865 -0.133369600 -0.0884912965  0.786413742 -0.26411642
## 16 -0.182371919 -0.156611203 -0.0921056704 -0.264116420  0.66685508
## 17 -0.108612174 -0.111608287 -0.0999456236 -0.159581907 -0.18663791
## 18  0.011541757 -0.037732014 -0.1125333727  0.012595048  0.05492049
## 19  0.053139072 -0.012217287 -0.1173783112  0.072581899  0.13932916
## 20 -0.054822750 -0.081027256 -0.1111655784 -0.084846013 -0.08004867
##              17           18           19           20
## 1   0.017075060  0.096039037  0.125367980  0.063306992
## 2   0.028630052  0.029097155  0.029523701  0.036547852
## 3   0.026604727  0.004205726 -0.003895986  0.022803535
## 4   0.024879417 -0.003015497 -0.013204858  0.018128946
## 5   0.027393741 -0.052126810 -0.081677600 -0.005167027
## 6   0.008255798 -0.028878582 -0.043088890 -0.004953426
## 7  -0.012206610  0.014267431  0.024370144  0.004864243
## 8  -0.016033174  0.002143972  0.008796467 -0.003634848
## 9  -0.007740738  0.005431085  0.012878045  0.003846276
## 10  0.008615327 -0.078127345 -0.105284939 -0.027659708
## 11 -0.057412388 -0.028020086 -0.017857804 -0.043589832
## 12 -0.108612174  0.011541757  0.053139072 -0.054822750
## 13 -0.111608287 -0.037732014 -0.012217287 -0.081027256
## 14 -0.099945624 -0.112533373 -0.117378311 -0.111165578
## 15 -0.159581907  0.012595048  0.072581899 -0.084846013
## 16 -0.186637914  0.054920491  0.139329164 -0.080048669
## 17  0.856358148 -0.072467900 -0.048026048 -0.117539508
## 18 -0.072467900  0.718015177 -0.356404240 -0.178951032
## 19 -0.048026048 -0.356404240  0.534326882 -0.201277391
## 20 -0.117539508 -0.178951032 -0.201277391  0.845185193

Vector de coeficientes estimados

options(scipen = 999999)
modelo_lineal_2$coefficients
## (Intercept)          X1          X2         x_3 
## 303.6860694   2.3284704 -25.0678343   0.2861407

Obtener la matriz varianza-covarianza del modelo

var_cov_2 <- vcov(modelo_lineal_2)
print(var_cov_2)
##             (Intercept)           X1           X2          x_3
## (Intercept) 5112.868475 -31.06160236 -720.2279796  4.477105378
## X1           -31.061602   0.22713224    4.5575025 -0.033112632
## X2          -720.227980   4.55750247  131.1095187 -0.817497682
## x_3            4.477105  -0.03311263   -0.8174977  0.005871802

Intervalos de confianza

confint(object = modelo_lineal_2, level = .95)
##                   2.5 %      97.5 %
## (Intercept) 152.1036722 455.2684666
## X1            1.3181576   3.3387832
## X2          -49.3413997  -0.7942689
## x_3           0.1236973   0.4485842