# Set various values needed, including names of files and FIPS codes for New Hampshire and South Carolina
nhdatafilecsv <- "NHD2016.csv"
nhfipscode <- "33"
scdatafile <- "SCGOP2016.csv"
scfipscode <- "45"

Load the tmap, tmaptools, and leaflet packages into your working session:

library(tidyverse)
## Warning: package 'tibble' was built under R version 4.2.3
## Warning: package 'dplyr' was built under R version 4.2.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.1     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the ]8;;http://conflicted.r-lib.org/conflicted package]8;; to force all conflicts to become errors
library(tmap)
## Warning: package 'tmap' was built under R version 4.2.3
library(tmaptools)
## Warning: package 'tmaptools' was built under R version 4.2.3
library(leaflet)
## Warning: package 'leaflet' was built under R version 4.2.3
library(sf)
## Warning: package 'sf' was built under R version 4.2.3
## Linking to GEOS 3.9.3, GDAL 3.5.2, PROJ 8.2.1; sf_use_s2() is TRUE
library(leaflet.extras)
## Warning: package 'leaflet.extras' was built under R version 4.2.3
library(dplyr)
library(rio)
## Warning: package 'rio' was built under R version 4.2.3
library(sp)
## Warning: package 'sp' was built under R version 4.2.3

Step 1: Read in the NH election results file:

setwd("C:/Users/myngu/OneDrive/Montgomery College/Spring 2023/DATA 110/Data Sets/GIS")
nhdata <- import(nhdatafilecsv)

Eliminate columns for minor candidates and just use County, Clinton and Sanders columns:

nhdata <- nhdata[,c("County", "Clinton", "Sanders")]

Step 2: Decide what data to map

###Add columns for percents and margins:

nhdata$SandersMarginVotes <- nhdata$Sanders - nhdata$Clinton
9
## [1] 9
nhdata$SandersPct <- (nhdata$Sanders) / (nhdata$Sanders + nhdata$Clinton)
# Will use formatting later to multiply by a hundred
nhdata$ClintonPct <- (nhdata$Clinton) / (nhdata$Sanders + nhdata$Clinton)
nhdata$SandersMarginPctgPoints <- nhdata$SandersPct - nhdata$ClintonPct

Step 3: Get geographic data files

Read in the shapefile for US states and counties:

  • If libraries with raster and rgdal don’t work (see next chunk), try library(sf) with the command st_read
  • All these options are here and should help you get the qtm command in the next chunk
#install.packages("raster")
#install.packages("rgdal")
setwd("C:/Users/myngu/OneDrive/Montgomery College/Spring 2023/DATA 110/Data Sets/GIS")
library(raster)
## Warning: package 'raster' was built under R version 4.2.3
## 
## Attaching package: 'raster'
## The following object is masked from 'package:dplyr':
## 
##     select
library(rgdal)
## Warning: package 'rgdal' was built under R version 4.2.3
## Please note that rgdal will be retired during 2023,
## plan transition to sf/stars/terra functions using GDAL and PROJ
## at your earliest convenience.
## See https://r-spatial.org/r/2022/04/12/evolution.html and https://github.com/r-spatial/evolution
## rgdal: version: 1.6-5, (SVN revision 1199)
## Geospatial Data Abstraction Library extensions to R successfully loaded
## Loaded GDAL runtime: GDAL 3.5.2, released 2022/09/02
## Path to GDAL shared files: C:/Users/myngu/AppData/Local/R/win-library/4.2/rgdal/gdal
## GDAL binary built with GEOS: TRUE 
## Loaded PROJ runtime: Rel. 8.2.1, January 1st, 2022, [PJ_VERSION: 821]
## Path to PROJ shared files: C:/Users/myngu/AppData/Local/R/win-library/4.2/rgdal/proj
## PROJ CDN enabled: FALSE
## Linking to sp version:1.6-0
## To mute warnings of possible GDAL/OSR exportToProj4() degradation,
## use options("rgdal_show_exportToProj4_warnings"="none") before loading sp or rgdal.
library(sf)
usgeo <- shapefile("cb_2014_us_county_5m/cb_2014_us_county_5m.shp")
## Warning: [vect] Z coordinates ignored

Do a quick plot (qtm stands for quick thematic map) of the shapefile and check its structure:

tmap_options(check.and.fix = TRUE)
qtm(usgeo)
## Warning: The shape usgeo is invalid. See sf::st_is_valid

Subset just the NH data from the US shapefile

nhgeo <- usgeo[usgeo$STATEFP==nhfipscode,]

tmap test plot of the New Hampshire data

qtm(nhgeo)

structure of the object

str(nhgeo$NAME)
##  chr [1:10] "Grafton" "Hillsborough" "Coos" "Belknap" "Rockingham" ...
str(nhdata$County)
##  chr [1:10] "Belknap" "Carroll" "Cheshire" "Coos" "Grafton" "Hillsborough" ...
# They're not. Change the county names to plain characters in nhgeo:
nhgeo$NAME <- as.character(nhgeo$NAME)

Order each data set by county name

nhgeo <- nhgeo[order(nhgeo$NAME),]
nhdata <- nhdata[order(nhdata$County),]
# Are the two county columns identical now? They should be:
identical(nhgeo$NAME,nhdata$County)
## [1] TRUE

Step 4: Merge geo data with results data using the merge function

library(sf) # sf stands for simple features#
12
## [1] 12
nhmap <- merge(nhgeo, nhdata, by.x = "NAME", by.y = "County")
# See the new data structure with
#str(nhmap)

Step 5: Create a static map with tmap’s qtm() function:

qtm(nhmap, "SandersMarginVotes")
## Some legend labels were too wide. These labels have been resized to 0.62, 0.62, 0.62, 0.57, 0.53. Increase legend.width (argument of tm_layout) to make the legend wider and therefore the labels larger.

qtm(nhmap, "SandersMarginPctgPoints")

For more control over look and feel, use the tm_shape() function:

tm_shape(nhmap) +
tm_fill("SandersMarginVotes", title="Sanders Margin, Total Votes", palette = "PRGn") +
tm_borders(alpha=.5) +
tm_text("NAME", size=0.8)
## Some legend labels were too wide. These labels have been resized to 0.62, 0.62, 0.62, 0.57, 0.53. Increase legend.width (argument of tm_layout) to make the legend wider and therefore the labels larger.

Same code as above, but store the static map in a variable, and change the theme to “classic” style:

nhstaticmap <- tm_shape(nhmap) +
tm_fill("SandersMarginVotes", title="Sanders Margin, Total Votes", palette = "viridis") +
#I like viridis
tm_borders(alpha=.5) +
tm_text("NAME", size=0.8) +
tm_style("classic")

View the map

nhstaticmap
## Some legend labels were too wide. These labels have been resized to 0.62, 0.62, 0.62, 0.57, 0.53. Increase legend.width (argument of tm_layout) to make the legend wider and therefore the labels larger.

save the map to a jpg file with tmap’s tmap_save():

tmap_save(nhstaticmap, filename="nhdemprimary.jpg")
## Map saved to C:\Users\myngu\OneDrive\Montgomery College\Spring 2023\DATA 110\nhdemprimary.jpg
## Resolution: 1501.336 by 2937.385 pixels
## Size: 5.004452 by 9.791282 inches (300 dpi)

Part 6

Next up: Code for a basic interactive map, this time for Clinton percentages in NH

Create a palette

clintonPalette <- colorNumeric(palette = "Blues", domain=nhmap$ClintonPct)

and a pop-up window

library(scales)
## Warning: package 'scales' was built under R version 4.2.3
## 
## Attaching package: 'scales'
## The following object is masked from 'package:purrr':
## 
##     discard
## The following object is masked from 'package:readr':
## 
##     col_factor
nhpopup <- paste0("County: ", nhmap$NAME,
"Sanders ", percent(nhmap$SandersPct), " - Clinton ", percent(nhmap$ClintonPct))

Step 7: Now generate the interactive map:

# re-project
nhmap_projected <- sp::spTransform(nhmap, "+proj=longlat +datum=WGS84")
leaflet(nhmap_projected) %>%
addProviderTiles("CartoDB.Positron") %>%
addPolygons(stroke=FALSE,
smoothFactor = 0.2,
fillOpacity = .8,
popup=nhpopup,
color= ~clintonPalette(nhmap$ClintonPct)
)

South Carolina data

setwd("C:/Users/myngu/OneDrive/Montgomery College/Spring 2023/DATA 110/Data Sets/GIS")
scdata <- rio::import(scdatafile)

South Carolina shapefile and Quick plot of scgeo SC geospatial object:

scgeo <- usgeo[usgeo@data$STATEFP=="45",]
qtm(scgeo)

Add a column with percent of votes for each candidate. Candidates are in columns 2-7:

candidates <- colnames(scdata[2:7])
for(i in 2:7){
j = i + 7
temp <- scdata[[i]] / scdata$Total
scdata[[j]] <- temp
colnames(scdata)[j] <- paste0(colnames(scdata)[i], "Pct")
}
winner <- colnames(scdata[2:7])

Get winner in each precinct

for(i in 1:nrow(scdata)){
scdata$winner[i] <- names(which.max(scdata[i,2:7]))
}

Import spreadsheet with percent of adult population holding at least a 4-yr college degree

setwd("C:/Users/myngu/OneDrive/Montgomery College/Spring 2023/DATA 110/Data Sets/GIS")
sced <- rio::import("SCdegree.xlsx")

Check if county names are in the same format in both files

str(scgeo$NAME)
##  chr [1:46] "Edgefield" "Lee" "Horry" "Allendale" "Marion" "Dorchester" ...
## chr [1:46] "Edgefield" "Lee" "Horry" "Allendale" "Marion" "Dorchester" ...
str(scdata$County)
##  chr [1:46] "Abbeville" "Aiken" "Allendale" "Anderson" "Bamberg" "Barnwell" ...
## chr [1:46] "Abbeville" "Aiken" "Allendale" "Anderson" "Bamberg" "Barnwell" ...
# Change the county names to plain characters in scgeo:
scgeo$NAME <- as.character(scgeo$NAME)

# Order each data set by county name
scgeo <- scgeo[order(scgeo$NAME),]
scdata <- scdata[order(scdata$County),]

# Are the two county columns identical now? They should be:
identical(scgeo$NAME,scdata$County )
## [1] TRUE

Add the election results and rename county column

scmap <- merge(scgeo, scdata, by.x = "NAME", by.y = "County")

Instead of just coloring the winner, let’s color by strength of win with multiple layers

# Use same intensity for all - get minimum and maximum for the top 3 combined
minpct <- min(c(scdata$`Donald J TrumpPct`, scdata$`Marco RubioPct`, scdata$`Ted CruzPct`
))
maxpct <- max(c(scdata$`Donald J TrumpPct`, scdata$`Marco RubioPct`, scdata$`Ted CruzPct`
))

Create leaflet palettes for each layer of the map:

trumpPalette <- colorNumeric(palette = "Purples", domain=c(minpct, maxpct))
rubioPalette <- colorNumeric(palette = "Reds", domain = c(minpct, maxpct))
cruzPalette <- colorNumeric(palette = "Oranges", domain = c(minpct, maxpct))
winnerPalette <- colorFactor(palette=c("#984ea3", "#e41a1c"), domain = scmap$winner)
edPalette <- colorNumeric(palette = "Blues", domain=scmap$PctCollegeDegree)

Create a pop-up:

scpopup <- paste0("<b>County: ", scmap$NAME, "<br />Winner: ", scmap$winner, "</b><br /><
br />Trump: ", percent(scmap$`Donald J TrumpPct`), "<br />Rubio: ", percent(scmap$`Marco
RubioPct`), "<br />Cruz: ", percent(scmap$`Ted CruzPct`), "<br /><br />Pct w college ed:
", sced$PctCollegeDegree, "% vs state-wide avg of 25%")

Add the projection we know from the NH map we’ll need for this data on a Leaflet map:

scmap <- sp::spTransform(scmap, "+proj=longlat +datum=WGS84")

Basic interactive map showing winner in each county:

leaflet(scmap) %>%
  addProviderTiles("CartoDB.Positron") %>%
  addPolygons(stroke=TRUE,
              weight=1,
              smoothFactor = 0.2,
              fillOpacity = .75,
              popup=scpopup,
              color= ~winnerPalette(scmap$winner),
              group="Winners") %>%
  addLegend(position="bottomleft", colors=c("#984ea3", "#e41a1c"), labels=c("Trump", "Rubio"))

Put top 3 candidates in their own layers and add education layer, store in scGOPmap variable

scGOPmap <- leaflet(scmap) %>%
  addProviderTiles("CartoDB.Positron") %>%
  addPolygons(stroke=TRUE,
              weight=1,
              smoothFactor = 0.2,
              fillOpacity = .75,
              popup=scpopup,
              color= ~winnerPalette(scmap$winner),
              group="Winners") %>%
  addLegend(position="bottomleft", colors=c("#984ea3", "#e41a1c"), labels=c("Trump", "Rubio")) %>%

  addPolygons(stroke=TRUE,
              weight=1,
              smoothFactor = 0.2,
              fillOpacity = .75,
              popup=scpopup,
              color= ~trumpPalette(scmap$`Donald J TrumpPct`),
              group="Trump") %>%
  
  addPolygons(stroke=TRUE,
            weight=1,
            smoothFactor = 0.2,
            fillOpacity = .75,
            popup=scpopup,
            color= ~rubioPalette(scmap$`Marco RubioPct`),
            group="Rubio") %>%
  
  addPolygons(stroke=TRUE,
              weight=1,
              smoothFactor = 0.2,
              fillOpacity = .75,
              popup=scpopup,
              color= ~cruzPalette(scmap$`Ted CruzPct`),
              group="Cruz") %>%
  
  addPolygons(stroke=TRUE,
              weight=1,
              smoothFactor = 0.2,
              fillOpacity = .75,
              popup=scpopup,
              color= ~edPalette(sced$PctCollegeDegree), #this data is in the sced table, not scmaps
              group="College degs") %>%
  
  addLayersControl(
    baseGroups=c("Winners", "Trump", "Rubio", "Cruz", "College degs"),
    position = "bottomleft",
    options = layersControlOptions(collapsed = FALSE))

# Now display the map
scGOPmap

save as a self-contained HTML file

#htmlwidgets::saveWidget(scGOPmap2, file="scGOPwidget2.html")

#save as an HTML file with dependencies in another directory:

#htmlwidgets::saveWidget(widget=scGOPmap2, file="scGOPprimary_withdependencies.html", selfcontained=FALSE, libdir = "js")