Set various values needed, including names of files and FIPS codes
for New Hampshire and South Carolina
#nhdatafiile <- "NHD2016.xlsx"
nhdatafilecsv <- "NHD2016.csv"
usshapefile <- "cb_2014_us_county_5m/cb_2014_us_county_5m.shp"
nhfipscode <- "33"
scdatafile <- "SCGOP2016.csv"
scfipscode <- "45"
Step 1: Read in the NH election results file:
setwd("C:/Users/Upsta/OneDrive/R Programming/GIS")
nhdata <- import(nhdatafilecsv)
Eliminate columns for minor candidates and just use County, Clinton,
and Sanders columns:
nhdata <- nhdata[, c("County", "Clinton", "Sanders")]
Step 2: Decide what data to map
Add columns for percents and margins:
nhdata$SandersMarginVotes <- nhdata$Sanders - nhdata$Clinton
nhdata$SandersPct <- (nhdata$Sanders) / (nhdata$Sanders + nhdata$Clinton)
nhdata$ClintonPct <- (nhdata$Clinton) / (nhdata$Sanders + nhdata$Clinton)
nhdata$SandersMarginPctgPoints <- nhdata$SandersPct - nhdata$ClintonPct
Step 3: Get Geographic data files
Read in the shapefile for US states and counties:
library(raster)
## Warning: package 'raster' was built under R version 4.2.3
##
## Attaching package: 'raster'
## The following object is masked from 'package:dplyr':
##
## select
library(rgdal)
## Warning: package 'rgdal' was built under R version 4.2.3
## Please note that rgdal will be retired during 2023,
## plan transition to sf/stars/terra functions using GDAL and PROJ
## at your earliest convenience.
## See https://r-spatial.org/r/2022/04/12/evolution.html and https://github.com/r-spatial/evolution
## rgdal: version: 1.6-5, (SVN revision 1199)
## Geospatial Data Abstraction Library extensions to R successfully loaded
## Loaded GDAL runtime: GDAL 3.5.2, released 2022/09/02
## Path to GDAL shared files: C:/Users/Upsta/AppData/Local/R/win-library/4.2/rgdal/gdal
## GDAL binary built with GEOS: TRUE
## Loaded PROJ runtime: Rel. 8.2.1, January 1st, 2022, [PJ_VERSION: 821]
## Path to PROJ shared files: C:/Users/Upsta/AppData/Local/R/win-library/4.2/rgdal/proj
## PROJ CDN enabled: FALSE
## Linking to sp version:1.6-0
## To mute warnings of possible GDAL/OSR exportToProj4() degradation,
## use options("rgdal_show_exportToProj4_warnings"="none") before loading sp or rgdal.
setwd("C:/Users/Upsta/OneDrive/R Programming/GIS")
usgeo <- shapefile("cb_2014_us_county_5m/cb_2014_us_county_5m.shp")
## Warning: [vect] Z coordinates ignored
Do a quick plot (qtm stands for quick thematic map) of the shapefile
ands check its structure
tmap_options(check.and.fix = TRUE)
qtm(usgeo)
## Warning: The shape usgeo is invalid. See sf::st_is_valid

Subset just the NH data from the US shapefile
nhgeo <- usgeo[usgeo$STATEFP == nhfipscode,]
tmap test plot of the New Hampshire data
qtm(nhgeo)

Structure of the object
#str(nhgeo)
str(nhgeo$NAME)
## chr [1:10] "Grafton" "Hillsborough" "Coos" "Belknap" "Rockingham" ...
str(nhdata$County)
## chr [1:10] "Belknap" "Carroll" "Cheshire" "Coos" "Grafton" "Hillsborough" ...
nhgeo$NAME <- as.character(nhgeo$NAME)
nhgeo$NAME
## [1] "Grafton" "Hillsborough" "Coos" "Belknap" "Rockingham"
## [6] "Cheshire" "Strafford" "Merrimack" "Carroll" "Sullivan"
Order each data set by county name
nhgeo <- nhgeo[order(nhgeo$NAME),]
nhdata <- nhdata[order(nhdata$County),]
if (identical(nhgeo$NAME, nhdata$County)) {
nhmap <- merge(nhgeo, nhdata, by.x = "NAME", by.y = "County")
} else {stop}
Step 4: Merge geo data with tresults data using the merge
function
#str(nhmap)
Step 5: Create a static map with tmap’s qtm() function:
qtm(nhmap, "SandersMarginVotes")
## Some legend labels were too wide. These labels have been resized to 0.62, 0.62, 0.62, 0.57, 0.53. Increase legend.width (argument of tm_layout) to make the legend wider and therefore the labels larger.

qtm(nhmap, "SandersMarginPctgPoints")

For more control over look and feel, use the tm_shape()
function:
tm_shape(nhmap) +
tm_fill("SandersMarginPctgPoints", title ="Sanders Margin, Total Votes", palette = "PRGn") +
tm_borders(alpha=.5) +
tm_text("NAME", size=0.8)

Same code as above, but store the static map in a variable, and
chnage the theme to “classic” style
nhstaticmap <- tm_shape(nhmap) +
tm_fill("SandersMarginVotes", title ="Sanders Margin, Total Votes", palette = "PRGn") +
tm_borders(alpha=.5) +
tm_text("NAME", size=0.8) +
tm_style("classic")
View the map
nhstaticmap
## Some legend labels were too wide. These labels have been resized to 0.62, 0.62, 0.62, 0.57, 0.53. Increase legend.width (argument of tm_layout) to make the legend wider and therefore the labels larger.

Save the map the a jpg file with the tmap’s tmap_save():
tmap_save(nhstaticmap, filename="nhdemprimary.jpg")
## Map saved to C:\Users\Upsta\OneDrive\R Programming\nhdemprimary.jpg
## Resolution: 1501.336 by 2937.385 pixels
## Size: 5.004452 by 9.791282 inches (300 dpi)
Part 6
Create a palette
clintonPalette <- colorNumeric(palette="Blues", domain=nhmap$ClintonPct)
and a pop-up window
library(scales)
## Warning: package 'scales' was built under R version 4.2.3
##
## Attaching package: 'scales'
## The following object is masked from 'package:purrr':
##
## discard
## The following object is masked from 'package:readr':
##
## col_factor
nhpopup <- paste0("CountY: ", nhmap$NAME,
"<br /><br /> Sanders, ", percent(nhmap$SandersPct), " Clinton ", percent(nhmap$ClintonPct))
Step 7: Now generate the interactive map
nhmap_projected <- sp::spTransform(nhmap, "+proj=longlat +datum=WGS84")
leaflet(nhmap_projected) %>%
addProviderTiles("CartoDB.Positron") %>%
addPolygons(stroke=FALSE,
smoothFactor = 0.2,
fillOpacity = .8,
popup=nhpopup,
color= ~clintonPalette(nhmap$ClintonPct))
South Carolina Data
setwd("C:/Users/Upsta/OneDrive/R Programming/GIS")
scdata <- rio::import(scdatafile)
South Carolina shapefile and Quick plot of scgeo SC geospatial
object:
scgeo <- usgeo[usgeo@data$STATEFP=="45",]
qtm(scgeo)

Add a column with percent votes for each candidate. Candidates are
in columns 2-7:
candidates <- colnames(scdata[2:7])
for(i in 2:7) {
j = i + 7
temp <- scdata[[i]] / scdata$Total
scdata[[j]] <- temp
colnames(scdata)[j] <- paste0(colnames(scdata)[i], "Pct")
}
winnner <- colnames(scdata[2:7])
Get winner in each precinct
for(i in 1:nrow(scdata)){
scdata$winner[i] <- names(which.max(scdata[i,2:7]))
}
Import spreadsheet with percent of adult population holding at least
a 4-yr college degree
setwd("C:/Users/Upsta/OneDrive/R Programming/GIS")
sced <- rio::import("SCdegree.xlsx")
Add the election results and rename county column
scmap <- merge(scgeo, scdata, by.x="NAME", by.y= "County")
Instead of just coloring the winner, let’s color by strength of win
with multiple layers
minpct <- min(c(scdata$`Donald J TrumpPct`, scdata$`Marco RubioPct`, scdata$`Ted CruzPct`))
maxpct <- max(c(scdata$`Donald J TrumpPct`, scdata$`Marco RubioPct`, scdata$`Ted CruzPct`))
Create leaflet palettes for each layer of the map:
trumpPalette <- colorNumeric(palette = "Purples", domain=c(minpct, maxpct))
rubioPalette <- colorNumeric(palette = "Reds", domain = c(minpct, maxpct))
cruzPalette <- colorNumeric(palette = "Oranges", domain = c(minpct, maxpct))
winnerPalette <- colorFactor(palette=c("#984ea3","#e41a1c"), domain = scmap$winner)
edPalette <- colorNumeric(palette= "Blues", domain = scmap$PctCollegeDegree)
Create a pop-up:
scpopup <- paste0("<b>County: ", scmap$NAME, "<br />Winner: ", scmap$winner, "</b><br /><br
/>Trump: ", percent(scmap$`Donald J TrumpPct`), "<br />Rubio: ", percent(scmap$`Marco RubioPct`), "<br />Cruz: ", percent(scmap$`Ted CruzPct`), "<br /><br />Pct w college ed: ", sced$PctCollegeDegree, "% vs state-wide avg of 25%")
Add the projection we know from the NH map we’ll need for the data
on a Leaflet map:
scmap <- sp::spTransform(scmap, "+proj=longlat +datum=WGS84")
Basic interactive map shwoing winner in each county
leaflet(scmap) %>%
addProviderTiles("CartoDB.Positron") %>%
addPolygons(stroke=TRUE,
weight=1,
smoothFactor = 0.2,
fillOpacity = .75,
popup=scpopup,
color= ~winnerPalette(scmap$winner),
group="Winners" ) %>%
addLegend(position="bottomleft", colors=c("#984ea3", "#e41a1c"), labels=c("Trump", "Rubio"))
Put top 3 candidates in there own layers and add education layer,
store in scGOPmap2 variable
scGOPmap <- leaflet(scmap) %>%
addProviderTiles("CartoDB.Positron") %>%
addPolygons(stroke=TRUE,
weight=1,
smoothFactor =0.2,
fillOpacity =.75,
popup=scpopup,
color= ~winnerPalette(scmap$winner),
group="Winners" ) %>%
addLegend(position="bottomleft", colors=c("#984ea3", "#ea1a1c"), labels=c("Trump", "Rubio")) %>%
addPolygons(stroke=TRUE,
weight=1,
smoothFactor =0.2,
fillOpacity =.75,
popup=scpopup,
color= ~trumpPalette(scmap$`Donald J TrumpPct`),
group= "Trump") %>%
addPolygons(stroke=TRUE,
weight=1,
smoothFactor =0.2,
fillOpacity =.75,
popup=scpopup,
color= ~rubioPalette(scmap$`Marco RubioPct`),
group="Rubio") %>%
addPolygons(stroke=TRUE,
weight=1,
smoothFactor =0.2,
fillOpacity =.75,
popup=scpopup,
color= ~cruzPalette(scmap$`Ted CruzPct`),
group="Cruz") %>%
addPolygons(stroke=TRUE,
weight=1,
smoothFactor =0.2,
fillOpacity =.75,
popup=scpopup,
color= ~edPalette(sced$PctCollegeDegree),
group="College degs") %>%
addLayersControl(
baseGroups =c("Winners", "Trump", "Rubio", "Cruz", "College degs"),
position = "bottomleft",
options = layersControlOptions(collapsed = FALSE)
)
scGOPmap