setwd("~/Library/CloudStorage/GoogleDrive-icarounam@gmail.com/Mi unidad/Agrosavia/Colaboraciones/Fabricio/data")
library(Plasticity)
library(agricolae)
library(Rmisc)
## Loading required package: lattice
## Loading required package: plyr
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:plyr':
## 
##     arrange, count, desc, failwith, id, mutate, rename, summarise,
##     summarize
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)
library(psych)
## 
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
library(FSA)
## ## FSA v0.9.1. See citation('FSA') if used in publication.
## ## Run fishR() for related website and fishR('IFAR') for related book.
## 
## Attaching package: 'FSA'
## The following object is masked from 'package:psych':
## 
##     headtail
## The following object is masked from 'package:plyr':
## 
##     mapvalues
library(forcats)
library(Hmisc)
## Loading required package: survival
## Loading required package: Formula
## 
## Attaching package: 'Hmisc'
## The following object is masked from 'package:psych':
## 
##     describe
## The following objects are masked from 'package:dplyr':
## 
##     src, summarize
## The following objects are masked from 'package:plyr':
## 
##     is.discrete, summarize
## The following objects are masked from 'package:base':
## 
##     format.pval, units
library("PerformanceAnalytics")
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## Attaching package: 'xts'
## The following objects are masked from 'package:dplyr':
## 
##     first, last
## 
## Attaching package: 'PerformanceAnalytics'
## The following objects are masked from 'package:agricolae':
## 
##     kurtosis, skewness
## The following object is masked from 'package:graphics':
## 
##     legend
library(onewaytests)
## Registered S3 methods overwritten by 'car':
##   method       from
##   hist.boot    FSA 
##   confint.boot FSA
## 
## Attaching package: 'onewaytests'
## The following object is masked from 'package:Hmisc':
## 
##     describe
## The following object is masked from 'package:psych':
## 
##     describe
library(emmeans)
library(ggthemes)
library(multcompView)
library(RColorBrewer)
clone <- read.table("res_fin.csv", header=T, sep=",")
clone$Repetición<-as.factor(clone$Repetición)
clone$Clon<-as.factor(clone$Clon)
clone$env<-as.factor(clone$env)
## Generando bases de datos para los rangos ambientales a evaluar (100-300, 500-2000)
clone.200 <- filter(clone, clone$env == "100" | clone$env=="300")
clone.400 <- filter(clone, clone$env == "300" | clone$env=="500")
clone.650 <- filter(clone, clone$env == "500" | clone$env=="800")
clone.850 <- filter(clone, clone$env == "800" | clone$env=="900")
clone.1050 <- filter(clone, clone$env == "900" | clone$env=="1200")
clone.1350 <- filter(clone, clone$env == "1200" | clone$env=="1500")
clone.1750 <- filter(clone, clone$env == "1500" | clone$env=="2000")

##Quitando las intensidades de luz no utilizadas
clone.200.fin <- droplevels(clone.200)
clone.400.fin <- droplevels(clone.400)
clone.650.fin <- droplevels(clone.650)
clone.850.fin <- droplevels(clone.850)
clone.1050.fin <- droplevels(clone.1050)
clone.1350.fin <- droplevels(clone.1350)
clone.1750.fin <- droplevels(clone.1750)

##Convirtiendo a factor los genotipos y ambientes
#genotipos
clone.200.fin$Clon<-as.factor(clone.200.fin$Clon)
clone.400.fin$Clon<-as.factor(clone.400.fin$Clon)
clone.650.fin$Clon<-as.factor(clone.650.fin$Clon)
clone.850.fin$Clon<-as.factor(clone.850.fin$Clon)
clone.1050.fin$Clon<-as.factor(clone.1050.fin$Clon)
clone.1350.fin$Clon<-as.factor(clone.1350.fin$Clon)
clone.1750.fin$Clon<-as.factor(clone.1750.fin$Clon)

#ambientes
clone.200.fin$env<-as.factor(clone.200.fin$env)
clone.400.fin$env<-as.factor(clone.400.fin$env)
clone.650.fin$env<-as.factor(clone.650.fin$env)
clone.850.fin$env<-as.factor(clone.850.fin$env)
clone.1050.fin$env<-as.factor(clone.1050.fin$env)
clone.1350.fin$env<-as.factor(clone.1350.fin$env)
clone.1750.fin$env<-as.factor(clone.1750.fin$env)

## Calculo del RDPI para todos los caracteres luz 200
A.200.rdpi<-rdpi(clone.200.fin, Clon, A, env)
## 
## Attaching package: 'sciplot'
## The following object is masked from 'package:FSA':
## 
##     se
## [1] "ANOVA test"
##              Df Sum Sq Mean Sq F value Pr(>F)  
## RDPI$sp      19  0.672 0.03535   1.946  0.011 *
## Residuals   300  5.450 0.01817                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Joining, by = "sp"

## [1] "Tukey HSD test for differences accross groups"
## # A tibble: 20 × 5
##    sp      mean     sd     se groups
##    <fct>  <dbl>  <dbl>  <dbl> <chr> 
##  1 TCS 01 0.268 0.0647 0.0162 a     
##  2 TCS 02 0.359 0.0743 0.0186 a     
##  3 TCS 03 0.388 0.208  0.0521 a     
##  4 TCS 04 0.267 0.135  0.0339 a     
##  5 TCS 05 0.226 0.0948 0.0237 a     
##  6 TCS 08 0.278 0.0651 0.0163 a     
##  7 TCS 10 0.243 0.173  0.0433 a     
##  8 TCS 11 0.298 0.158  0.0396 a     
##  9 TCS 12 0.327 0.220  0.0550 a     
## 10 TCS 20 0.369 0.198  0.0495 a     
## 11 TCS 40 0.336 0.129  0.0323 a     
## 12 TCS 41 0.307 0.0739 0.0185 a     
## 13 TCS 42 0.268 0.0545 0.0136 a     
## 14 TCS 43 0.329 0.0990 0.0247 a     
## 15 TCS 44 0.306 0.116  0.0289 a     
## 16 TCS 45 0.271 0.0548 0.0137 a     
## 17 TCS 46 0.303 0.0709 0.0177 a     
## 18 TCS 47 0.253 0.0960 0.0240 a     
## 19 TCS 48 0.325 0.108  0.0270 a     
## 20 TCS 49 0.386 0.242  0.0605 a
E.200.rdpi<-rdpi(clone.200.fin, Clon, E, env)
## [1] "ANOVA test"
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## RDPI$sp      19  2.230 0.11738   4.327 1.52e-08 ***
## Residuals   300  8.138 0.02713                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Joining, by = "sp"

## [1] "Tukey HSD test for differences accross groups"
## # A tibble: 20 × 5
##    sp       mean     sd      se groups
##    <fct>   <dbl>  <dbl>   <dbl> <chr> 
##  1 TCS 01 0.165  0.142  0.0356  abc   
##  2 TCS 02 0.121  0.0954 0.0238  bc    
##  3 TCS 03 0.364  0.346  0.0864  a     
##  4 TCS 04 0.202  0.145  0.0363  abc   
##  5 TCS 05 0.132  0.133  0.0332  bc    
##  6 TCS 08 0.137  0.103  0.0258  bc    
##  7 TCS 10 0.138  0.106  0.0266  bc    
##  8 TCS 11 0.165  0.154  0.0386  abc   
##  9 TCS 12 0.207  0.176  0.0439  abc   
## 10 TCS 20 0.250  0.222  0.0554  ab    
## 11 TCS 40 0.124  0.115  0.0289  bc    
## 12 TCS 41 0.0325 0.0162 0.00404 c     
## 13 TCS 42 0.0683 0.0511 0.0128  bc    
## 14 TCS 43 0.212  0.176  0.0440  abc   
## 15 TCS 44 0.190  0.167  0.0417  abc   
## 16 TCS 45 0.0463 0.0330 0.00824 bc    
## 17 TCS 46 0.146  0.101  0.0254  bc    
## 18 TCS 47 0.128  0.122  0.0306  bc    
## 19 TCS 48 0.139  0.121  0.0302  bc    
## 20 TCS 49 0.357  0.336  0.0841  a
WUE.200.rdpi<-rdpi(clone.200.fin, Clon, WUE, env)
## [1] "ANOVA test"
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## RDPI$sp      19  0.976 0.05138    3.21 1.12e-05 ***
## Residuals   300  4.802 0.01601                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Joining, by = "sp"

## [1] "Tukey HSD test for differences accross groups"
## # A tibble: 20 × 5
##    sp      mean     sd     se groups
##    <fct>  <dbl>  <dbl>  <dbl> <chr> 
##  1 TCS 01 0.248 0.146  0.0366 abc   
##  2 TCS 02 0.363 0.0808 0.0202 a     
##  3 TCS 03 0.335 0.200  0.0501 ab    
##  4 TCS 04 0.222 0.105  0.0262 abc   
##  5 TCS 05 0.235 0.130  0.0325 abc   
##  6 TCS 08 0.259 0.108  0.0269 abc   
##  7 TCS 10 0.150 0.100  0.0251 c     
##  8 TCS 11 0.269 0.0719 0.0180 abc   
##  9 TCS 12 0.200 0.114  0.0284 bc    
## 10 TCS 20 0.241 0.165  0.0412 abc   
## 11 TCS 40 0.344 0.110  0.0275 ab    
## 12 TCS 41 0.327 0.0524 0.0131 ab    
## 13 TCS 42 0.261 0.0848 0.0212 abc   
## 14 TCS 43 0.366 0.221  0.0553 a     
## 15 TCS 44 0.285 0.137  0.0343 abc   
## 16 TCS 45 0.245 0.0918 0.0230 abc   
## 17 TCS 46 0.285 0.143  0.0356 abc   
## 18 TCS 47 0.249 0.116  0.0291 abc   
## 19 TCS 48 0.314 0.0874 0.0219 ab    
## 20 TCS 49 0.222 0.132  0.0331 abc
gsw.200.rdpi<-rdpi(clone.200.fin, Clon, gsw, env)
## [1] "ANOVA test"
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## RDPI$sp      19  2.490 0.13105   5.802 2.32e-12 ***
## Residuals   300  6.776 0.02259                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Joining, by = "sp"

## [1] "Tukey HSD test for differences accross groups"
## # A tibble: 20 × 5
##    sp       mean     sd      se groups
##    <fct>   <dbl>  <dbl>   <dbl> <chr> 
##  1 TCS 01 0.0977 0.0766 0.0192  d     
##  2 TCS 02 0.0976 0.0753 0.0188  d     
##  3 TCS 03 0.319  0.286  0.0714  ab    
##  4 TCS 04 0.180  0.127  0.0317  bcd   
##  5 TCS 05 0.204  0.159  0.0398  bcd   
##  6 TCS 08 0.0963 0.0697 0.0174  d     
##  7 TCS 10 0.201  0.140  0.0351  bcd   
##  8 TCS 11 0.0829 0.0562 0.0140  d     
##  9 TCS 12 0.301  0.253  0.0632  abc   
## 10 TCS 20 0.219  0.181  0.0452  abcd  
## 11 TCS 40 0.168  0.135  0.0337  bcd   
## 12 TCS 41 0.0905 0.0560 0.0140  d     
## 13 TCS 42 0.150  0.118  0.0295  bcd   
## 14 TCS 43 0.0294 0.0197 0.00493 d     
## 15 TCS 44 0.153  0.120  0.0300  bcd   
## 16 TCS 45 0.154  0.132  0.0330  bcd   
## 17 TCS 46 0.129  0.0897 0.0224  cd    
## 18 TCS 47 0.160  0.130  0.0325  bcd   
## 19 TCS 48 0.0928 0.0810 0.0202  d     
## 20 TCS 49 0.402  0.306  0.0766  a
cica.200.rdpi<-rdpi(clone.200.fin, Clon, cica, env)
## [1] "ANOVA test"
##              Df Sum Sq  Mean Sq F value   Pr(>F)    
## RDPI$sp      19 0.1618 0.008518   3.029 3.17e-05 ***
## Residuals   300 0.8435 0.002812                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Joining, by = "sp"

## [1] "Tukey HSD test for differences accross groups"
## # A tibble: 20 × 5
##    sp       mean      sd      se groups
##    <fct>   <dbl>   <dbl>   <dbl> <chr> 
##  1 TCS 01 0.106  0.0368  0.00919 abcd  
##  2 TCS 02 0.108  0.0272  0.00681 abcd  
##  3 TCS 03 0.164  0.0651  0.0163  a     
##  4 TCS 04 0.104  0.0334  0.00835 abcd  
##  5 TCS 05 0.146  0.0971  0.0243  abc   
##  6 TCS 08 0.121  0.0141  0.00352 abcd  
##  7 TCS 10 0.100  0.0633  0.0158  abcd  
##  8 TCS 11 0.0809 0.0455  0.0114  cd    
##  9 TCS 12 0.111  0.0420  0.0105  abcd  
## 10 TCS 20 0.0780 0.0710  0.0177  d     
## 11 TCS 40 0.125  0.0303  0.00759 abcd  
## 12 TCS 41 0.135  0.0612  0.0153  abcd  
## 13 TCS 42 0.141  0.0803  0.0201  abcd  
## 14 TCS 43 0.152  0.0307  0.00768 ab    
## 15 TCS 44 0.0980 0.0271  0.00677 abcd  
## 16 TCS 45 0.104  0.0614  0.0154  abcd  
## 17 TCS 46 0.130  0.0442  0.0111  abcd  
## 18 TCS 47 0.120  0.0577  0.0144  abcd  
## 19 TCS 48 0.103  0.00849 0.00212 abcd  
## 20 TCS 49 0.0957 0.0660  0.0165  bcd
dos.rdpi<-data.frame(A.200.rdpi$sp, A.200.rdpi$rdpi, E.200.rdpi$rdpi, WUE.200.rdpi$rdpi, gsw.200.rdpi$rdpi, 
                     cica.200.rdpi$rdpi)
colnames(dos.rdpi)<-c('gen', 'Ardpi', 'Erdpi', 'WUErdpi', 'gswrdpi', 'cicardpi')
dos.rdpi$treatment <- "200"
dos.sum<-dos.rdpi %>% 
  select(Ardpi, Erdpi, WUErdpi, gswrdpi, cicardpi)%>%
  summarise(
    Ardpi_m = mean(Ardpi), 
    Erdpi_m = mean(Erdpi), 
    WUErdpi_m = mean(WUErdpi), 
    gswrdpi_m = mean(gswrdpi), 
    cicardpi_m = mean(cicardpi))
dos.sum
##    Ardpi_m   Erdpi_m WUErdpi_m gswrdpi_m cicardpi_m
## 1 0.305404 0.1662431 0.2709382 0.1663682  0.1162209
## Calculo del RDPI para todos los caracteres luz 400
A.400.rdpi<-rdpi(clone.400.fin, Clon, A, env)
## [1] "ANOVA test"
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## RDPI$sp      19  2.502  0.1317   7.237 5.47e-16 ***
## Residuals   300  5.459  0.0182                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Joining, by = "sp"

## [1] "Tukey HSD test for differences accross groups"
## # A tibble: 20 × 5
##    sp       mean     sd      se groups
##    <fct>   <dbl>  <dbl>   <dbl> <chr> 
##  1 TCS 01 0.0757 0.0550 0.0138  def   
##  2 TCS 02 0.0679 0.0552 0.0138  ef    
##  3 TCS 03 0.257  0.222  0.0555  abc   
##  4 TCS 04 0.155  0.104  0.0259  bcdef 
##  5 TCS 05 0.120  0.0934 0.0233  cdef  
##  6 TCS 08 0.0595 0.0412 0.0103  ef    
##  7 TCS 10 0.244  0.160  0.0401  abcd  
##  8 TCS 11 0.127  0.105  0.0263  cdef  
##  9 TCS 12 0.301  0.269  0.0672  ab    
## 10 TCS 20 0.229  0.197  0.0491  abcde 
## 11 TCS 40 0.128  0.0955 0.0239  cdef  
## 12 TCS 41 0.0383 0.0222 0.00556 f     
## 13 TCS 42 0.0664 0.0476 0.0119  ef    
## 14 TCS 43 0.0502 0.0297 0.00742 f     
## 15 TCS 44 0.134  0.0935 0.0234  bcdef 
## 16 TCS 45 0.0648 0.0462 0.0116  ef    
## 17 TCS 46 0.159  0.123  0.0306  bcdef 
## 18 TCS 47 0.109  0.0866 0.0216  cdef  
## 19 TCS 48 0.0998 0.0768 0.0192  cdef  
## 20 TCS 49 0.361  0.296  0.0741  a
E.400.rdpi<-rdpi(clone.400.fin, Clon, E, env)
## [1] "ANOVA test"
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## RDPI$sp      19  2.085 0.10974   4.339 1.41e-08 ***
## Residuals   300  7.587 0.02529                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Joining, by = "sp"

## [1] "Tukey HSD test for differences accross groups"
## # A tibble: 20 × 5
##    sp       mean     sd      se groups
##    <fct>   <dbl>  <dbl>   <dbl> <chr> 
##  1 TCS 01 0.168  0.144  0.0361  ab    
##  2 TCS 02 0.127  0.0940 0.0235  b     
##  3 TCS 03 0.367  0.347  0.0868  a     
##  4 TCS 04 0.221  0.167  0.0416  ab    
##  5 TCS 05 0.135  0.126  0.0316  b     
##  6 TCS 08 0.118  0.0892 0.0223  b     
##  7 TCS 10 0.136  0.0969 0.0242  b     
##  8 TCS 11 0.141  0.0945 0.0236  b     
##  9 TCS 12 0.225  0.185  0.0462  ab    
## 10 TCS 20 0.182  0.160  0.0401  ab    
## 11 TCS 40 0.123  0.103  0.0257  b     
## 12 TCS 41 0.0416 0.0408 0.0102  b     
## 13 TCS 42 0.0962 0.0732 0.0183  b     
## 14 TCS 43 0.208  0.162  0.0406  ab    
## 15 TCS 44 0.187  0.167  0.0418  ab    
## 16 TCS 45 0.0442 0.0278 0.00695 b     
## 17 TCS 46 0.196  0.136  0.0339  ab    
## 18 TCS 47 0.138  0.114  0.0284  b     
## 19 TCS 48 0.142  0.119  0.0297  b     
## 20 TCS 49 0.354  0.328  0.0821  a
WUE.400.rdpi<-rdpi(clone.400.fin, Clon, WUE, env)
## [1] "ANOVA test"
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## RDPI$sp      19 0.6955 0.03661   4.879 5.61e-10 ***
## Residuals   300 2.2509 0.00750                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Joining, by = "sp"

## [1] "Tukey HSD test for differences accross groups"
## # A tibble: 20 × 5
##    sp       mean     sd      se groups
##    <fct>   <dbl>  <dbl>   <dbl> <chr> 
##  1 TCS 01 0.124  0.0970 0.0243  ab    
##  2 TCS 02 0.0887 0.0614 0.0154  b     
##  3 TCS 03 0.224  0.165  0.0413  a     
##  4 TCS 04 0.0864 0.0684 0.0171  b     
##  5 TCS 05 0.114  0.0987 0.0247  b     
##  6 TCS 08 0.0711 0.0538 0.0135  b     
##  7 TCS 10 0.115  0.0830 0.0208  b     
##  8 TCS 11 0.0679 0.0468 0.0117  b     
##  9 TCS 12 0.118  0.112  0.0281  ab    
## 10 TCS 20 0.0825 0.0540 0.0135  b     
## 11 TCS 40 0.111  0.0787 0.0197  b     
## 12 TCS 41 0.0474 0.0281 0.00702 b     
## 13 TCS 42 0.0494 0.0359 0.00898 b     
## 14 TCS 43 0.227  0.168  0.0420  a     
## 15 TCS 44 0.0901 0.0659 0.0165  b     
## 16 TCS 45 0.0684 0.0737 0.0184  b     
## 17 TCS 46 0.110  0.0989 0.0247  b     
## 18 TCS 47 0.106  0.0816 0.0204  b     
## 19 TCS 48 0.0773 0.0531 0.0133  b     
## 20 TCS 49 0.0676 0.0460 0.0115  b
gsw.400.rdpi<-rdpi(clone.400.fin, Clon, gsw, env)
## [1] "ANOVA test"
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## RDPI$sp      19  2.484 0.13075   5.532 1.15e-11 ***
## Residuals   300  7.090 0.02363                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Joining, by = "sp"

## [1] "Tukey HSD test for differences accross groups"
## # A tibble: 20 × 5
##    sp       mean     sd      se groups
##    <fct>   <dbl>  <dbl>   <dbl> <chr> 
##  1 TCS 01 0.108  0.0832 0.0208  d     
##  2 TCS 02 0.127  0.0976 0.0244  cd    
##  3 TCS 03 0.326  0.285  0.0712  ab    
##  4 TCS 04 0.208  0.149  0.0372  abcd  
##  5 TCS 05 0.214  0.163  0.0407  abcd  
##  6 TCS 08 0.0704 0.0551 0.0138  d     
##  7 TCS 10 0.211  0.159  0.0397  abcd  
##  8 TCS 11 0.0885 0.0642 0.0161  d     
##  9 TCS 12 0.318  0.257  0.0642  abc   
## 10 TCS 20 0.146  0.122  0.0305  bcd   
## 11 TCS 40 0.162  0.124  0.0310  bcd   
## 12 TCS 41 0.122  0.0936 0.0234  d     
## 13 TCS 42 0.163  0.127  0.0318  bcd   
## 14 TCS 43 0.0326 0.0238 0.00594 d     
## 15 TCS 44 0.155  0.124  0.0309  bcd   
## 16 TCS 45 0.155  0.131  0.0327  bcd   
## 17 TCS 46 0.219  0.174  0.0435  abcd  
## 18 TCS 47 0.181  0.131  0.0328  bcd   
## 19 TCS 48 0.103  0.0742 0.0185  d     
## 20 TCS 49 0.400  0.295  0.0738  a
cica.400.rdpi<-rdpi(clone.400.fin, Clon, cica, env)
## [1] "ANOVA test"
##              Df Sum Sq  Mean Sq F value   Pr(>F)    
## RDPI$sp      19 0.1602 0.008429   4.137 4.72e-08 ***
## Residuals   300 0.6113 0.002038                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Joining, by = "sp"

## [1] "Tukey HSD test for differences accross groups"
## # A tibble: 20 × 5
##    sp       mean     sd      se groups
##    <fct>   <dbl>  <dbl>   <dbl> <chr> 
##  1 TCS 01 0.0256 0.0212 0.00529 d     
##  2 TCS 02 0.0430 0.0315 0.00788 abcd  
##  3 TCS 03 0.0893 0.0645 0.0161  abc   
##  4 TCS 04 0.0386 0.0272 0.00680 bcd   
##  5 TCS 05 0.0999 0.0736 0.0184  a     
##  6 TCS 08 0.0260 0.0116 0.00289 d     
##  7 TCS 10 0.0638 0.0480 0.0120  abcd  
##  8 TCS 11 0.0704 0.0477 0.0119  abcd  
##  9 TCS 12 0.0365 0.0259 0.00648 bcd   
## 10 TCS 20 0.0930 0.0755 0.0189  ab    
## 11 TCS 40 0.0471 0.0271 0.00677 abcd  
## 12 TCS 41 0.0748 0.0548 0.0137  abcd  
## 13 TCS 42 0.0835 0.0616 0.0154  abc   
## 14 TCS 43 0.0487 0.0298 0.00746 abcd  
## 15 TCS 44 0.0331 0.0251 0.00628 cd    
## 16 TCS 45 0.0678 0.0527 0.0132  abcd  
## 17 TCS 46 0.0610 0.0475 0.0119  abcd  
## 18 TCS 47 0.0653 0.0470 0.0118  abcd  
## 19 TCS 48 0.0325 0.0185 0.00462 cd    
## 20 TCS 49 0.0453 0.0355 0.00888 abcd
tres.rdpi<-data.frame(A.400.rdpi$sp, A.400.rdpi$rdpi, E.400.rdpi$rdpi, WUE.400.rdpi$rdpi, gsw.400.rdpi$rdpi, 
                     cica.400.rdpi$rdpi)
colnames(tres.rdpi)<-c('gen', 'Ardpi', 'Erdpi', 'WUErdpi', 'gswrdpi', 'cicardpi')
tres.rdpi$treatment <- "400"
tres.sum<-tres.rdpi %>% 
  select(Ardpi, Erdpi, WUErdpi, gswrdpi, cicardpi)%>%
  summarise(
    Ardpi_m = mean(Ardpi), 
    Erdpi_m = mean(Erdpi), 
    WUErdpi_m = mean(WUErdpi), 
    gswrdpi_m = mean(gswrdpi), 
    cicardpi_m = mean(cicardpi))
tres.sum
##     Ardpi_m   Erdpi_m WUErdpi_m gswrdpi_m cicardpi_m
## 1 0.1423913 0.1674835 0.1022347 0.1754807 0.05726504
## Calculo del RDPI para todos los caracteres luz 650
A.650.rdpi<-rdpi(clone.650.fin, Clon, A, env)
## [1] "ANOVA test"
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## RDPI$sp      19  2.750 0.14475   6.929 3.23e-15 ***
## Residuals   300  6.267 0.02089                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Joining, by = "sp"

## [1] "Tukey HSD test for differences accross groups"
## # A tibble: 20 × 5
##    sp       mean     sd      se groups
##    <fct>   <dbl>  <dbl>   <dbl> <chr> 
##  1 TCS 01 0.0842 0.0615 0.0154  def   
##  2 TCS 02 0.0940 0.0705 0.0176  def   
##  3 TCS 03 0.262  0.234  0.0585  abcd  
##  4 TCS 04 0.179  0.132  0.0331  bcdef 
##  5 TCS 05 0.135  0.107  0.0268  bcdef 
##  6 TCS 08 0.0542 0.0366 0.00916 ef    
##  7 TCS 10 0.290  0.186  0.0464  abc   
##  8 TCS 11 0.114  0.0795 0.0199  cdef  
##  9 TCS 12 0.306  0.266  0.0665  ab    
## 10 TCS 20 0.220  0.205  0.0514  abcde 
## 11 TCS 40 0.122  0.0785 0.0196  cdef  
## 12 TCS 41 0.0620 0.0437 0.0109  ef    
## 13 TCS 42 0.0931 0.0674 0.0169  def   
## 14 TCS 43 0.0251 0.0176 0.00441 f     
## 15 TCS 44 0.133  0.107  0.0269  bcdef 
## 16 TCS 45 0.0664 0.0557 0.0139  ef    
## 17 TCS 46 0.258  0.219  0.0549  abcd  
## 18 TCS 47 0.152  0.108  0.0270  bcdef 
## 19 TCS 48 0.127  0.0987 0.0247  bcdef 
## 20 TCS 49 0.364  0.270  0.0675  a
E.650.rdpi<-rdpi(clone.650.fin, Clon, E, env)
## [1] "ANOVA test"
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## RDPI$sp      19  2.140 0.11264   4.292 1.87e-08 ***
## Residuals   300  7.874 0.02625                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Joining, by = "sp"

## [1] "Tukey HSD test for differences accross groups"
## # A tibble: 20 × 5
##    sp       mean     sd      se groups
##    <fct>   <dbl>  <dbl>   <dbl> <chr> 
##  1 TCS 01 0.169  0.142  0.0355  bcd   
##  2 TCS 02 0.134  0.109  0.0271  cd    
##  3 TCS 03 0.375  0.349  0.0872  a     
##  4 TCS 04 0.249  0.189  0.0473  abc   
##  5 TCS 05 0.139  0.121  0.0302  bcd   
##  6 TCS 08 0.100  0.0855 0.0214  cd    
##  7 TCS 10 0.228  0.139  0.0347  abcd  
##  8 TCS 11 0.128  0.0945 0.0236  cd    
##  9 TCS 12 0.240  0.195  0.0487  abcd  
## 10 TCS 20 0.180  0.151  0.0379  abcd  
## 11 TCS 40 0.125  0.0735 0.0184  cd    
## 12 TCS 41 0.0739 0.0581 0.0145  cd    
## 13 TCS 42 0.129  0.0987 0.0247  cd    
## 14 TCS 43 0.198  0.145  0.0363  abcd  
## 15 TCS 44 0.190  0.168  0.0419  abcd  
## 16 TCS 45 0.0420 0.0260 0.00649 d     
## 17 TCS 46 0.270  0.186  0.0466  abc   
## 18 TCS 47 0.147  0.0968 0.0242  bcd   
## 19 TCS 48 0.196  0.140  0.0350  abcd  
## 20 TCS 49 0.343  0.304  0.0760  ab
WUE.650.rdpi<-rdpi(clone.650.fin, Clon, WUE, env)
## [1] "ANOVA test"
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## RDPI$sp      19 0.6181 0.03253   4.389 1.05e-08 ***
## Residuals   300 2.2236 0.00741                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Joining, by = "sp"

## [1] "Tukey HSD test for differences accross groups"
## # A tibble: 20 × 5
##    sp       mean     sd      se groups
##    <fct>   <dbl>  <dbl>   <dbl> <chr> 
##  1 TCS 01 0.117  0.0913 0.0228  abc   
##  2 TCS 02 0.0615 0.0471 0.0118  c     
##  3 TCS 03 0.216  0.174  0.0435  a     
##  4 TCS 04 0.0847 0.0641 0.0160  c     
##  5 TCS 05 0.106  0.0968 0.0242  bc    
##  6 TCS 08 0.0637 0.0512 0.0128  c     
##  7 TCS 10 0.115  0.0884 0.0221  abc   
##  8 TCS 11 0.0927 0.0740 0.0185  bc    
##  9 TCS 12 0.112  0.0974 0.0243  abc   
## 10 TCS 20 0.0755 0.0638 0.0160  c     
## 11 TCS 40 0.106  0.0851 0.0213  bc    
## 12 TCS 41 0.0282 0.0220 0.00550 c     
## 13 TCS 42 0.0434 0.0346 0.00864 c     
## 14 TCS 43 0.198  0.152  0.0380  ab    
## 15 TCS 44 0.0728 0.0587 0.0147  c     
## 16 TCS 45 0.0732 0.0680 0.0170  c     
## 17 TCS 46 0.106  0.101  0.0253  bc    
## 18 TCS 47 0.0985 0.0817 0.0204  bc    
## 19 TCS 48 0.0759 0.0615 0.0154  c     
## 20 TCS 49 0.0675 0.0603 0.0151  c
gsw.650.rdpi<-rdpi(clone.650.fin, Clon, gsw, env)
## [1] "ANOVA test"
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## RDPI$sp      19  2.481 0.13056   4.683 1.81e-09 ***
## Residuals   300  8.363 0.02788                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Joining, by = "sp"

## [1] "Tukey HSD test for differences accross groups"
## # A tibble: 20 × 5
##    sp       mean     sd      se groups
##    <fct>   <dbl>  <dbl>   <dbl> <chr> 
##  1 TCS 01 0.113  0.0878 0.0219  cd    
##  2 TCS 02 0.156  0.116  0.0289  bcd   
##  3 TCS 03 0.337  0.290  0.0725  ab    
##  4 TCS 04 0.248  0.177  0.0442  abcd  
##  5 TCS 05 0.215  0.172  0.0430  abcd  
##  6 TCS 08 0.0762 0.0493 0.0123  d     
##  7 TCS 10 0.307  0.205  0.0512  abc   
##  8 TCS 11 0.165  0.117  0.0293  bcd   
##  9 TCS 12 0.332  0.265  0.0663  ab    
## 10 TCS 20 0.157  0.127  0.0317  bcd   
## 11 TCS 40 0.154  0.104  0.0260  bcd   
## 12 TCS 41 0.152  0.116  0.0290  bcd   
## 13 TCS 42 0.187  0.140  0.0350  abcd  
## 14 TCS 43 0.0460 0.0334 0.00836 d     
## 15 TCS 44 0.164  0.128  0.0321  bcd   
## 16 TCS 45 0.162  0.129  0.0322  bcd   
## 17 TCS 46 0.302  0.242  0.0605  abc   
## 18 TCS 47 0.207  0.153  0.0382  abcd  
## 19 TCS 48 0.173  0.114  0.0284  bcd   
## 20 TCS 49 0.386  0.272  0.0680  a
cica.650.rdpi<-rdpi(clone.650.fin, Clon, cica, env)
## [1] "ANOVA test"
##              Df Sum Sq  Mean Sq F value   Pr(>F)    
## RDPI$sp      19 0.2073 0.010912   4.772 1.06e-09 ***
## Residuals   300 0.6859 0.002286                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Joining, by = "sp"

## [1] "Tukey HSD test for differences accross groups"
## # A tibble: 20 × 5
##    sp       mean     sd      se groups
##    <fct>   <dbl>  <dbl>   <dbl> <chr> 
##  1 TCS 01 0.0171 0.0130 0.00325 d     
##  2 TCS 02 0.0393 0.0263 0.00657 bcd   
##  3 TCS 03 0.0902 0.0709 0.0177  ab    
##  4 TCS 04 0.0417 0.0318 0.00796 bcd   
##  5 TCS 05 0.0905 0.0708 0.0177  ab    
##  6 TCS 08 0.0190 0.0115 0.00287 cd    
##  7 TCS 10 0.0622 0.0470 0.0117  abcd  
##  8 TCS 11 0.0896 0.0700 0.0175  ab    
##  9 TCS 12 0.0517 0.0326 0.00816 abcd  
## 10 TCS 20 0.105  0.0883 0.0221  a     
## 11 TCS 40 0.0324 0.0246 0.00616 bcd   
## 12 TCS 41 0.0739 0.0561 0.0140  abcd  
## 13 TCS 42 0.0784 0.0698 0.0174  abc   
## 14 TCS 43 0.0273 0.0212 0.00529 cd    
## 15 TCS 44 0.0334 0.0268 0.00669 bcd   
## 16 TCS 45 0.0702 0.0562 0.0140  abcd  
## 17 TCS 46 0.0497 0.0333 0.00833 abcd  
## 18 TCS 47 0.0610 0.0446 0.0112  abcd  
## 19 TCS 48 0.0403 0.0314 0.00784 bcd   
## 20 TCS 49 0.0366 0.0262 0.00656 bcd
cuatro.rdpi<-data.frame(A.650.rdpi$sp, A.650.rdpi$rdpi, E.650.rdpi$rdpi, WUE.650.rdpi$rdpi, gsw.650.rdpi$rdpi, 
                      cica.650.rdpi$rdpi)
colnames(cuatro.rdpi)<-c('gen', 'Ardpi', 'Erdpi', 'WUErdpi', 'gswrdpi', 'cicardpi')
cuatro.rdpi$treatment <- "650"
cuatro.sum<-cuatro.rdpi %>% 
  select(Ardpi, Erdpi, WUErdpi, gswrdpi, cicardpi)%>%
  summarise(
    Ardpi_m = mean(Ardpi), 
    Erdpi_m = mean(Erdpi), 
    WUErdpi_m = mean(WUErdpi), 
    gswrdpi_m = mean(gswrdpi), 
    cicardpi_m = mean(cicardpi))
cuatro.sum
##     Ardpi_m   Erdpi_m WUErdpi_m gswrdpi_m cicardpi_m
## 1 0.1570272 0.1828684 0.0957263 0.2019889 0.05549307
## Calculo del RDPI para todos los caracteres luz 850
A.850.rdpi<-rdpi(clone.850.fin, Clon, A, env)
## [1] "ANOVA test"
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## RDPI$sp      19  2.788 0.14673   5.799 2.38e-12 ***
## Residuals   300  7.592 0.02531                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Joining, by = "sp"

## [1] "Tukey HSD test for differences accross groups"
## # A tibble: 20 × 5
##    sp       mean     sd      se groups
##    <fct>   <dbl>  <dbl>   <dbl> <chr> 
##  1 TCS 01 0.0890 0.0713 0.0178  de    
##  2 TCS 02 0.112  0.0875 0.0219  cde   
##  3 TCS 03 0.278  0.252  0.0629  abcd  
##  4 TCS 04 0.201  0.168  0.0420  abcde 
##  5 TCS 05 0.136  0.110  0.0276  abcde 
##  6 TCS 08 0.0647 0.0527 0.0132  e     
##  7 TCS 10 0.337  0.247  0.0618  a     
##  8 TCS 11 0.104  0.0787 0.0197  cde   
##  9 TCS 12 0.325  0.261  0.0653  ab    
## 10 TCS 20 0.214  0.194  0.0484  abcde 
## 11 TCS 40 0.109  0.0772 0.0193  cde   
## 12 TCS 41 0.0819 0.0665 0.0166  de    
## 13 TCS 42 0.111  0.0935 0.0234  cde   
## 14 TCS 43 0.0297 0.0238 0.00596 e     
## 15 TCS 44 0.136  0.120  0.0300  bcde  
## 16 TCS 45 0.0764 0.0656 0.0164  e     
## 17 TCS 46 0.298  0.272  0.0681  abc   
## 18 TCS 47 0.215  0.171  0.0427  abcde 
## 19 TCS 48 0.202  0.136  0.0341  abcde 
## 20 TCS 49 0.301  0.231  0.0577  abc
E.850.rdpi<-rdpi(clone.850.fin, Clon, E, env)
## [1] "ANOVA test"
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## RDPI$sp      19  2.257 0.11876   4.072 6.95e-08 ***
## Residuals   300  8.750 0.02917                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Joining, by = "sp"

## [1] "Tukey HSD test for differences accross groups"
## # A tibble: 20 × 5
##    sp       mean     sd      se groups
##    <fct>   <dbl>  <dbl>   <dbl> <chr> 
##  1 TCS 01 0.168  0.143  0.0358  bc    
##  2 TCS 02 0.139  0.124  0.0310  bc    
##  3 TCS 03 0.387  0.356  0.0891  a     
##  4 TCS 04 0.268  0.219  0.0547  ab    
##  5 TCS 05 0.141  0.116  0.0289  bc    
##  6 TCS 08 0.105  0.0822 0.0205  bc    
##  7 TCS 10 0.273  0.200  0.0501  ab    
##  8 TCS 11 0.155  0.117  0.0292  bc    
##  9 TCS 12 0.263  0.193  0.0482  ab    
## 10 TCS 20 0.174  0.152  0.0379  abc   
## 11 TCS 40 0.118  0.0865 0.0216  bc    
## 12 TCS 41 0.0973 0.0786 0.0197  bc    
## 13 TCS 42 0.151  0.120  0.0301  bc    
## 14 TCS 43 0.183  0.135  0.0337  abc   
## 15 TCS 44 0.194  0.171  0.0428  abc   
## 16 TCS 45 0.0363 0.0310 0.00774 c     
## 17 TCS 46 0.305  0.235  0.0587  ab    
## 18 TCS 47 0.177  0.121  0.0302  abc   
## 19 TCS 48 0.272  0.185  0.0462  ab    
## 20 TCS 49 0.293  0.241  0.0602  ab
WUE.850.rdpi<-rdpi(clone.850.fin, Clon, WUE, env)
## [1] "ANOVA test"
##              Df Sum Sq  Mean Sq F value   Pr(>F)    
## RDPI$sp      19 0.5564 0.029284   3.891 2.04e-07 ***
## Residuals   300 2.2581 0.007527                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Joining, by = "sp"

## [1] "Tukey HSD test for differences accross groups"
## # A tibble: 20 × 5
##    sp       mean     sd      se groups
##    <fct>   <dbl>  <dbl>   <dbl> <chr> 
##  1 TCS 01 0.114  0.0854 0.0214  abc   
##  2 TCS 02 0.0509 0.0398 0.00995 c     
##  3 TCS 03 0.219  0.177  0.0444  a     
##  4 TCS 04 0.0849 0.0637 0.0159  bc    
##  5 TCS 05 0.108  0.0934 0.0233  bc    
##  6 TCS 08 0.0666 0.0484 0.0121  c     
##  7 TCS 10 0.119  0.0904 0.0226  abc   
##  8 TCS 11 0.0999 0.0843 0.0211  bc    
##  9 TCS 12 0.116  0.105  0.0263  abc   
## 10 TCS 20 0.0726 0.0592 0.0148  bc    
## 11 TCS 40 0.118  0.0909 0.0227  abc   
## 12 TCS 41 0.0359 0.0262 0.00656 c     
## 13 TCS 42 0.0469 0.0343 0.00857 c     
## 14 TCS 43 0.180  0.142  0.0354  ab    
## 15 TCS 44 0.0685 0.0538 0.0135  c     
## 16 TCS 45 0.0780 0.0601 0.0150  bc    
## 17 TCS 46 0.101  0.103  0.0257  bc    
## 18 TCS 47 0.106  0.0778 0.0195  bc    
## 19 TCS 48 0.0867 0.0757 0.0189  bc    
## 20 TCS 49 0.0967 0.0777 0.0194  bc
gsw.850.rdpi<-rdpi(clone.850.fin, Clon, gsw, env)
## [1] "ANOVA test"
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## RDPI$sp      19  2.795 0.14709   4.368 1.19e-08 ***
## Residuals   300 10.102 0.03367                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Joining, by = "sp"

## [1] "Tukey HSD test for differences accross groups"
## # A tibble: 20 × 5
##    sp       mean     sd      se groups
##    <fct>   <dbl>  <dbl>   <dbl> <chr> 
##  1 TCS 01 0.120  0.0957 0.0239  cd    
##  2 TCS 02 0.168  0.132  0.0329  abcd  
##  3 TCS 03 0.355  0.303  0.0757  ab    
##  4 TCS 04 0.280  0.214  0.0534  abcd  
##  5 TCS 05 0.219  0.168  0.0420  abcd  
##  6 TCS 08 0.0943 0.0749 0.0187  d     
##  7 TCS 10 0.399  0.273  0.0682  a     
##  8 TCS 11 0.205  0.161  0.0403  abcd  
##  9 TCS 12 0.359  0.263  0.0657  ab    
## 10 TCS 20 0.171  0.135  0.0339  abcd  
## 11 TCS 40 0.137  0.0891 0.0223  bcd   
## 12 TCS 41 0.174  0.134  0.0335  abcd  
## 13 TCS 42 0.208  0.153  0.0383  abcd  
## 14 TCS 43 0.0536 0.0385 0.00963 d     
## 15 TCS 44 0.175  0.134  0.0335  abcd  
## 16 TCS 45 0.177  0.130  0.0326  abcd  
## 17 TCS 46 0.339  0.285  0.0712  abc   
## 18 TCS 47 0.270  0.178  0.0446  abcd  
## 19 TCS 48 0.263  0.177  0.0444  abcd  
## 20 TCS 49 0.328  0.240  0.0601  abc
cica.850.rdpi<-rdpi(clone.850.fin, Clon, cica, env)
## [1] "ANOVA test"
##              Df Sum Sq  Mean Sq F value  Pr(>F)    
## RDPI$sp      19 0.2358 0.012412   5.008 2.6e-10 ***
## Residuals   300 0.7435 0.002478                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Joining, by = "sp"

## [1] "Tukey HSD test for differences accross groups"
## # A tibble: 20 × 5
##    sp       mean     sd      se groups
##    <fct>   <dbl>  <dbl>   <dbl> <chr> 
##  1 TCS 01 0.0197 0.0148 0.00370 d     
##  2 TCS 02 0.0341 0.0276 0.00691 bcd   
##  3 TCS 03 0.0943 0.0769 0.0192  ab    
##  4 TCS 04 0.0496 0.0352 0.00879 abcd  
##  5 TCS 05 0.0884 0.0693 0.0173  abc   
##  6 TCS 08 0.0220 0.0165 0.00412 d     
##  7 TCS 10 0.0712 0.0538 0.0135  abcd  
##  8 TCS 11 0.0955 0.0754 0.0188  ab    
##  9 TCS 12 0.0617 0.0410 0.0102  abcd  
## 10 TCS 20 0.108  0.0960 0.0240  a     
## 11 TCS 40 0.0262 0.0226 0.00564 cd    
## 12 TCS 41 0.0732 0.0571 0.0143  abcd  
## 13 TCS 42 0.0809 0.0655 0.0164  abcd  
## 14 TCS 43 0.0196 0.0140 0.00351 d     
## 15 TCS 44 0.0356 0.0288 0.00719 bcd   
## 16 TCS 45 0.0737 0.0548 0.0137  abcd  
## 17 TCS 46 0.0384 0.0315 0.00787 bcd   
## 18 TCS 47 0.0572 0.0425 0.0106  abcd  
## 19 TCS 48 0.0580 0.0390 0.00976 abcd  
## 20 TCS 49 0.0330 0.0220 0.00551 bcd
cinco.rdpi<-data.frame(A.850.rdpi$sp, A.850.rdpi$rdpi, E.850.rdpi$rdpi, WUE.850.rdpi$rdpi, gsw.850.rdpi$rdpi, 
                        cica.850.rdpi$rdpi)
colnames(cinco.rdpi)<-c('gen', 'Ardpi', 'Erdpi', 'WUErdpi', 'gswrdpi', 'cicardpi')
cinco.rdpi$treatment <- "850"
cinco.sum<-cinco.rdpi %>% 
  select(Ardpi, Erdpi, WUErdpi, gswrdpi, cicardpi)%>%
  summarise(
    Ardpi_m = mean(Ardpi), 
    Erdpi_m = mean(Erdpi), 
    WUErdpi_m = mean(WUErdpi), 
    gswrdpi_m = mean(gswrdpi), 
    cicardpi_m = mean(cicardpi))
cinco.sum
##     Ardpi_m   Erdpi_m  WUErdpi_m gswrdpi_m cicardpi_m
## 1 0.1709723 0.1949321 0.09843433 0.2248304 0.05702791
## Calculo del RDPI para todos los caracteres luz 1050
A.1050.rdpi<-rdpi(clone.1050.fin, Clon, A, env)
## [1] "ANOVA test"
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## RDPI$sp      19  3.082 0.16222   5.879 1.48e-12 ***
## Residuals   300  8.278 0.02759                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Joining, by = "sp"

## [1] "Tukey HSD test for differences accross groups"
## # A tibble: 20 × 5
##    sp       mean     sd      se groups
##    <fct>   <dbl>  <dbl>   <dbl> <chr> 
##  1 TCS 01 0.100  0.0737 0.0184  bcde  
##  2 TCS 02 0.116  0.0937 0.0234  bcde  
##  3 TCS 03 0.300  0.270  0.0675  abc   
##  4 TCS 04 0.218  0.194  0.0485  abcde 
##  5 TCS 05 0.138  0.0954 0.0238  bcde  
##  6 TCS 08 0.0815 0.0645 0.0161  de    
##  7 TCS 10 0.389  0.257  0.0641  a     
##  8 TCS 11 0.103  0.0772 0.0193  bcde  
##  9 TCS 12 0.366  0.268  0.0670  a     
## 10 TCS 20 0.202  0.175  0.0437  abcde 
## 11 TCS 40 0.121  0.0903 0.0226  bcde  
## 12 TCS 41 0.0962 0.0755 0.0189  cde   
## 13 TCS 42 0.129  0.111  0.0276  bcde  
## 14 TCS 43 0.0453 0.0273 0.00683 e     
## 15 TCS 44 0.145  0.124  0.0311  bcde  
## 16 TCS 45 0.0860 0.0742 0.0185  de    
## 17 TCS 46 0.306  0.281  0.0701  ab    
## 18 TCS 47 0.271  0.234  0.0585  abcd  
## 19 TCS 48 0.222  0.172  0.0431  abcde 
## 20 TCS 49 0.237  0.170  0.0424  abcde
E.1050.rdpi<-rdpi(clone.1050.fin, Clon, E, env)
## [1] "ANOVA test"
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## RDPI$sp      19  2.311 0.12165   4.007 1.02e-07 ***
## Residuals   300  9.108 0.03036                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Joining, by = "sp"

## [1] "Tukey HSD test for differences accross groups"
## # A tibble: 20 × 5
##    sp       mean     sd     se groups
##    <fct>   <dbl>  <dbl>  <dbl> <chr> 
##  1 TCS 01 0.184  0.143  0.0358 abc   
##  2 TCS 02 0.150  0.112  0.0281 bc    
##  3 TCS 03 0.399  0.367  0.0917 a     
##  4 TCS 04 0.287  0.238  0.0594 ab    
##  5 TCS 05 0.142  0.110  0.0276 bc    
##  6 TCS 08 0.118  0.0856 0.0214 bc    
##  7 TCS 10 0.326  0.206  0.0514 ab    
##  8 TCS 11 0.167  0.119  0.0298 bc    
##  9 TCS 12 0.327  0.208  0.0520 ab    
## 10 TCS 20 0.185  0.149  0.0372 abc   
## 11 TCS 40 0.148  0.103  0.0257 bc    
## 12 TCS 41 0.119  0.0908 0.0227 bc    
## 13 TCS 42 0.175  0.138  0.0345 bc    
## 14 TCS 43 0.188  0.128  0.0321 abc   
## 15 TCS 44 0.207  0.166  0.0414 abc   
## 16 TCS 45 0.0636 0.0411 0.0103 c     
## 17 TCS 46 0.318  0.245  0.0614 ab    
## 18 TCS 47 0.237  0.154  0.0385 abc   
## 19 TCS 48 0.300  0.216  0.0541 ab    
## 20 TCS 49 0.230  0.165  0.0412 abc
WUE.1050.rdpi<-rdpi(clone.1050.fin, Clon, WUE, env)
## [1] "ANOVA test"
##              Df Sum Sq  Mean Sq F value   Pr(>F)    
## RDPI$sp      19 0.5812 0.030590   4.309 1.69e-08 ***
## Residuals   300 2.1295 0.007098                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Joining, by = "sp"

## [1] "Tukey HSD test for differences accross groups"
## # A tibble: 20 × 5
##    sp       mean     sd      se groups
##    <fct>   <dbl>  <dbl>   <dbl> <chr> 
##  1 TCS 01 0.119  0.0850 0.0212  abc   
##  2 TCS 02 0.0481 0.0359 0.00898 c     
##  3 TCS 03 0.224  0.175  0.0439  a     
##  4 TCS 04 0.0906 0.0654 0.0164  bc    
##  5 TCS 05 0.104  0.0871 0.0218  bc    
##  6 TCS 08 0.0664 0.0503 0.0126  c     
##  7 TCS 10 0.118  0.107  0.0267  abc   
##  8 TCS 11 0.0941 0.0751 0.0188  bc    
##  9 TCS 12 0.130  0.0932 0.0233  abc   
## 10 TCS 20 0.0567 0.0397 0.00991 c     
## 11 TCS 40 0.124  0.0880 0.0220  abc   
## 12 TCS 41 0.0424 0.0324 0.00810 c     
## 13 TCS 42 0.0531 0.0374 0.00936 c     
## 14 TCS 43 0.173  0.130  0.0326  ab    
## 15 TCS 44 0.0685 0.0511 0.0128  bc    
## 16 TCS 45 0.0798 0.0560 0.0140  bc    
## 17 TCS 46 0.0993 0.0916 0.0229  bc    
## 18 TCS 47 0.120  0.0833 0.0208  abc   
## 19 TCS 48 0.0953 0.0765 0.0191  bc    
## 20 TCS 49 0.114  0.0830 0.0207  bc
gsw.1050.rdpi<-rdpi(clone.1050.fin, Clon, gsw, env)
## [1] "ANOVA test"
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## RDPI$sp      19  3.393 0.17860   4.786 9.77e-10 ***
## Residuals   300 11.195 0.03732                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Joining, by = "sp"

## [1] "Tukey HSD test for differences accross groups"
## # A tibble: 20 × 5
##    sp       mean     sd     se groups
##    <fct>   <dbl>  <dbl>  <dbl> <chr> 
##  1 TCS 01 0.139  0.103  0.0257 cde   
##  2 TCS 02 0.172  0.131  0.0328 cde   
##  3 TCS 03 0.374  0.319  0.0796 abc   
##  4 TCS 04 0.304  0.244  0.0610 abcde 
##  5 TCS 05 0.220  0.161  0.0401 bcde  
##  6 TCS 08 0.118  0.0940 0.0235 de    
##  7 TCS 10 0.472  0.271  0.0677 a     
##  8 TCS 11 0.220  0.156  0.0391 bcde  
##  9 TCS 12 0.423  0.272  0.0679 ab    
## 10 TCS 20 0.191  0.145  0.0364 bcde  
## 11 TCS 40 0.154  0.126  0.0315 cde   
## 12 TCS 41 0.189  0.135  0.0338 bcde  
## 13 TCS 42 0.228  0.169  0.0423 abcde 
## 14 TCS 43 0.0697 0.0466 0.0117 e     
## 15 TCS 44 0.190  0.139  0.0347 bcde  
## 16 TCS 45 0.203  0.146  0.0365 bcde  
## 17 TCS 46 0.351  0.293  0.0734 abcd  
## 18 TCS 47 0.329  0.227  0.0567 abcd  
## 19 TCS 48 0.303  0.215  0.0538 abcde 
## 20 TCS 49 0.303  0.202  0.0505 abcde
cica.1050.rdpi<-rdpi(clone.1050.fin, Clon, cica, env)
## [1] "ANOVA test"
##              Df Sum Sq  Mean Sq F value Pr(>F)    
## RDPI$sp      19 0.1977 0.010403   4.165  4e-08 ***
## Residuals   300 0.7493 0.002498                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Joining, by = "sp"

## [1] "Tukey HSD test for differences accross groups"
## # A tibble: 20 × 5
##    sp       mean     sd      se groups
##    <fct>   <dbl>  <dbl>   <dbl> <chr> 
##  1 TCS 01 0.0239 0.0195 0.00488 d     
##  2 TCS 02 0.0316 0.0248 0.00621 cd    
##  3 TCS 03 0.0953 0.0755 0.0189  ab    
##  4 TCS 04 0.0520 0.0382 0.00955 abcd  
##  5 TCS 05 0.0877 0.0692 0.0173  abc   
##  6 TCS 08 0.0254 0.0197 0.00492 cd    
##  7 TCS 10 0.0711 0.0539 0.0135  abcd  
##  8 TCS 11 0.0877 0.0671 0.0168  abc   
##  9 TCS 12 0.0625 0.0450 0.0112  abcd  
## 10 TCS 20 0.106  0.0937 0.0234  a     
## 11 TCS 40 0.0343 0.0318 0.00795 bcd   
## 12 TCS 41 0.0700 0.0523 0.0131  abcd  
## 13 TCS 42 0.0750 0.0630 0.0157  abcd  
## 14 TCS 43 0.0175 0.0124 0.00309 d     
## 15 TCS 44 0.0362 0.0285 0.00713 bcd   
## 16 TCS 45 0.0748 0.0572 0.0143  abcd  
## 17 TCS 46 0.0411 0.0331 0.00827 bcd   
## 18 TCS 47 0.0542 0.0372 0.00930 abcd  
## 19 TCS 48 0.0647 0.0530 0.0133  abcd  
## 20 TCS 49 0.0513 0.0340 0.00849 abcd
seis.rdpi<-data.frame(A.1050.rdpi$sp, A.1050.rdpi$rdpi, E.1050.rdpi$rdpi, WUE.1050.rdpi$rdpi, gsw.1050.rdpi$rdpi, 
                        cica.1050.rdpi$rdpi)
colnames(seis.rdpi)<-c('gen', 'Ardpi', 'Erdpi', 'WUErdpi', 'gswrdpi', 'cicardpi')
seis.rdpi$treatment <- "1050"
seis.sum<-seis.rdpi %>% 
  select(Ardpi, Erdpi, WUErdpi, gswrdpi, cicardpi)%>%
  summarise(
    Ardpi_m = mean(Ardpi), 
    Erdpi_m = mean(Erdpi), 
    WUErdpi_m = mean(WUErdpi), 
    gswrdpi_m = mean(gswrdpi), 
    cicardpi_m = mean(cicardpi))
seis.sum
##     Ardpi_m   Erdpi_m WUErdpi_m gswrdpi_m cicardpi_m
## 1 0.1836568 0.2135473 0.1010715 0.2476028 0.05809013
## Calculo del RDPI para todos los caracteres luz 1350
A.1350.rdpi<-rdpi(clone.1350.fin, Clon, A, env)
## [1] "ANOVA test"
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## RDPI$sp      19  2.691 0.14164    4.95 3.68e-10 ***
## Residuals   300  8.585 0.02862                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Joining, by = "sp"

## [1] "Tukey HSD test for differences accross groups"
## # A tibble: 20 × 5
##    sp       mean     sd     se groups
##    <fct>   <dbl>  <dbl>  <dbl> <chr> 
##  1 TCS 01 0.0974 0.0779 0.0195 c     
##  2 TCS 02 0.124  0.0843 0.0211 c     
##  3 TCS 03 0.340  0.290  0.0726 ab    
##  4 TCS 04 0.224  0.205  0.0512 abc   
##  5 TCS 05 0.135  0.0834 0.0209 bc    
##  6 TCS 08 0.0959 0.0722 0.0181 c     
##  7 TCS 10 0.373  0.238  0.0594 a     
##  8 TCS 11 0.130  0.0859 0.0215 bc    
##  9 TCS 12 0.373  0.281  0.0703 a     
## 10 TCS 20 0.189  0.155  0.0387 abc   
## 11 TCS 40 0.139  0.101  0.0252 bc    
## 12 TCS 41 0.160  0.0944 0.0236 abc   
## 13 TCS 42 0.148  0.117  0.0292 bc    
## 14 TCS 43 0.0990 0.0766 0.0191 c     
## 15 TCS 44 0.149  0.125  0.0313 bc    
## 16 TCS 45 0.0841 0.0754 0.0189 c     
## 17 TCS 46 0.294  0.246  0.0616 abc   
## 18 TCS 47 0.293  0.275  0.0687 abc   
## 19 TCS 48 0.230  0.175  0.0437 abc   
## 20 TCS 49 0.196  0.164  0.0411 abc
E.1350.rdpi<-rdpi(clone.1350.fin, Clon, E, env)
## [1] "ANOVA test"
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## RDPI$sp      19  2.131 0.11216   3.627 9.75e-07 ***
## Residuals   300  9.278 0.03093                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Joining, by = "sp"

## [1] "Tukey HSD test for differences accross groups"
## # A tibble: 20 × 5
##    sp       mean     sd     se groups
##    <fct>   <dbl>  <dbl>  <dbl> <chr> 
##  1 TCS 01 0.181  0.142  0.0356 bc    
##  2 TCS 02 0.167  0.106  0.0265 bc    
##  3 TCS 03 0.431  0.361  0.0903 a     
##  4 TCS 04 0.291  0.247  0.0617 abc   
##  5 TCS 05 0.160  0.110  0.0274 bc    
##  6 TCS 08 0.133  0.0886 0.0222 bc    
##  7 TCS 10 0.305  0.201  0.0504 ab    
##  8 TCS 11 0.196  0.127  0.0318 bc    
##  9 TCS 12 0.348  0.229  0.0574 ab    
## 10 TCS 20 0.201  0.149  0.0372 bc    
## 11 TCS 40 0.155  0.123  0.0307 bc    
## 12 TCS 41 0.226  0.128  0.0321 abc   
## 13 TCS 42 0.203  0.144  0.0360 bc    
## 14 TCS 43 0.239  0.152  0.0381 abc   
## 15 TCS 44 0.209  0.161  0.0403 abc   
## 16 TCS 45 0.0803 0.0571 0.0143 c     
## 17 TCS 46 0.299  0.225  0.0562 abc   
## 18 TCS 47 0.254  0.194  0.0484 abc   
## 19 TCS 48 0.302  0.205  0.0513 abc   
## 20 TCS 49 0.146  0.0976 0.0244 bc
WUE.1350.rdpi<-rdpi(clone.1350.fin, Clon, WUE, env)
## [1] "ANOVA test"
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## RDPI$sp      19 0.5379 0.02831   4.444 7.55e-09 ***
## Residuals   300 1.9111 0.00637                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Joining, by = "sp"

## [1] "Tukey HSD test for differences accross groups"
## # A tibble: 20 × 5
##    sp       mean     sd      se groups
##    <fct>   <dbl>  <dbl>   <dbl> <chr> 
##  1 TCS 01 0.120  0.0918 0.0230  bc    
##  2 TCS 02 0.0561 0.0310 0.00774 c     
##  3 TCS 03 0.223  0.165  0.0413  a     
##  4 TCS 04 0.0921 0.0641 0.0160  bc    
##  5 TCS 05 0.102  0.0753 0.0188  bc    
##  6 TCS 08 0.0685 0.0513 0.0128  c     
##  7 TCS 10 0.108  0.0892 0.0223  bc    
##  8 TCS 11 0.0830 0.0704 0.0176  bc    
##  9 TCS 12 0.115  0.0817 0.0204  bc    
## 10 TCS 20 0.0411 0.0284 0.00711 c     
## 11 TCS 40 0.120  0.0888 0.0222  bc    
## 12 TCS 41 0.0786 0.0511 0.0128  bc    
## 13 TCS 42 0.0595 0.0400 0.00999 c     
## 14 TCS 43 0.179  0.126  0.0314  ab    
## 15 TCS 44 0.0665 0.0478 0.0119  c     
## 16 TCS 45 0.0834 0.0572 0.0143  bc    
## 17 TCS 46 0.0944 0.0815 0.0204  bc    
## 18 TCS 47 0.126  0.0901 0.0225  abc   
## 19 TCS 48 0.0874 0.0632 0.0158  bc    
## 20 TCS 49 0.0965 0.0753 0.0188  bc
gsw.1350.rdpi<-rdpi(clone.1350.fin, Clon, gsw, env)
## [1] "ANOVA test"
##              Df Sum Sq Mean Sq F value  Pr(>F)    
## RDPI$sp      19  2.837 0.14933   3.703 6.2e-07 ***
## Residuals   300 12.098 0.04033                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Joining, by = "sp"

## [1] "Tukey HSD test for differences accross groups"
## # A tibble: 20 × 5
##    sp      mean    sd     se groups
##    <fct>  <dbl> <dbl>  <dbl> <chr> 
##  1 TCS 01 0.156 0.119 0.0297 d     
##  2 TCS 02 0.187 0.119 0.0296 cd    
##  3 TCS 03 0.423 0.315 0.0787 abc   
##  4 TCS 04 0.314 0.261 0.0651 abcd  
##  5 TCS 05 0.225 0.143 0.0358 abcd  
##  6 TCS 08 0.144 0.102 0.0256 d     
##  7 TCS 10 0.471 0.272 0.0680 a     
##  8 TCS 11 0.211 0.157 0.0392 bcd   
##  9 TCS 12 0.443 0.284 0.0709 ab    
## 10 TCS 20 0.217 0.156 0.0391 bcd   
## 11 TCS 40 0.170 0.140 0.0350 cd    
## 12 TCS 41 0.268 0.164 0.0409 abcd  
## 13 TCS 42 0.254 0.176 0.0440 abcd  
## 14 TCS 43 0.174 0.130 0.0324 cd    
## 15 TCS 44 0.199 0.141 0.0352 bcd   
## 16 TCS 45 0.239 0.165 0.0413 abcd  
## 17 TCS 46 0.343 0.263 0.0659 abcd  
## 18 TCS 47 0.338 0.278 0.0694 abcd  
## 19 TCS 48 0.312 0.219 0.0548 abcd  
## 20 TCS 49 0.256 0.203 0.0506 abcd
cica.1350.rdpi<-rdpi(clone.1350.fin, Clon, cica, env)
## [1] "ANOVA test"
##              Df Sum Sq  Mean Sq F value   Pr(>F)    
## RDPI$sp      19 0.1537 0.008089   3.375 4.28e-06 ***
## Residuals   300 0.7190 0.002397                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Joining, by = "sp"

## [1] "Tukey HSD test for differences accross groups"
## # A tibble: 20 × 5
##    sp       mean     sd      se groups
##    <fct>   <dbl>  <dbl>   <dbl> <chr> 
##  1 TCS 01 0.0372 0.0271 0.00676 bc    
##  2 TCS 02 0.0346 0.0229 0.00572 bc    
##  3 TCS 03 0.0956 0.0654 0.0164  ab    
##  4 TCS 04 0.0528 0.0393 0.00983 abc   
##  5 TCS 05 0.0895 0.0623 0.0156  abc   
##  6 TCS 08 0.0298 0.0220 0.00550 c     
##  7 TCS 10 0.0726 0.0628 0.0157  abc   
##  8 TCS 11 0.0750 0.0543 0.0136  abc   
##  9 TCS 12 0.0739 0.0498 0.0124  abc   
## 10 TCS 20 0.100  0.0889 0.0222  a     
## 11 TCS 40 0.0345 0.0330 0.00825 bc    
## 12 TCS 41 0.0778 0.0540 0.0135  abc   
## 13 TCS 42 0.0761 0.0591 0.0148  abc   
## 14 TCS 43 0.0503 0.0369 0.00922 abc   
## 15 TCS 44 0.0392 0.0295 0.00737 abc   
## 16 TCS 45 0.0807 0.0640 0.0160  abc   
## 17 TCS 46 0.0444 0.0332 0.00829 abc   
## 18 TCS 47 0.0402 0.0292 0.00730 abc   
## 19 TCS 48 0.0655 0.0493 0.0123  abc   
## 20 TCS 49 0.0428 0.0315 0.00787 abc
siete.rdpi<-data.frame(A.1350.rdpi$sp, A.1350.rdpi$rdpi, E.1350.rdpi$rdpi, WUE.1350.rdpi$rdpi, gsw.1350.rdpi$rdpi, 
                      cica.1350.rdpi$rdpi)
colnames(siete.rdpi)<-c('gen', 'Ardpi', 'Erdpi', 'WUErdpi', 'gswrdpi', 'cicardpi')
siete.rdpi$treatment <- "1350"
siete.sum<-siete.rdpi %>% 
  select(Ardpi, Erdpi, WUErdpi, gswrdpi, cicardpi)%>%
  summarise(
    Ardpi_m = mean(Ardpi), 
    Erdpi_m = mean(Erdpi), 
    WUErdpi_m = mean(WUErdpi), 
    gswrdpi_m = mean(gswrdpi), 
    cicardpi_m = mean(cicardpi))
siete.sum
##     Ardpi_m   Erdpi_m  WUErdpi_m gswrdpi_m cicardpi_m
## 1 0.1937137 0.2263364 0.09999357 0.2671455 0.06062948
## Calculo del RDPI para todos los caracteres luz 1750
A.1750.rdpi<-rdpi(clone.1750.fin, Clon, A, env)
## [1] "ANOVA test"
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## RDPI$sp      19  2.043 0.10751   3.999 1.07e-07 ***
## Residuals   300  8.066 0.02689                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Joining, by = "sp"

## [1] "Tukey HSD test for differences accross groups"
## # A tibble: 20 × 5
##    sp       mean     sd     se groups
##    <fct>   <dbl>  <dbl>  <dbl> <chr> 
##  1 TCS 01 0.133  0.0827 0.0207 bcde  
##  2 TCS 02 0.125  0.0824 0.0206 bcde  
##  3 TCS 03 0.369  0.332  0.0829 a     
##  4 TCS 04 0.220  0.206  0.0516 abcde 
##  5 TCS 05 0.154  0.0763 0.0191 bcde  
##  6 TCS 08 0.151  0.0811 0.0203 bcde  
##  7 TCS 10 0.314  0.212  0.0530 abc   
##  8 TCS 11 0.142  0.0954 0.0239 bcde  
##  9 TCS 12 0.328  0.279  0.0696 ab    
## 10 TCS 20 0.195  0.130  0.0326 abcde 
## 11 TCS 40 0.140  0.102  0.0255 bcde  
## 12 TCS 41 0.0926 0.0687 0.0172 e     
## 13 TCS 42 0.146  0.115  0.0287 bcde  
## 14 TCS 43 0.111  0.0737 0.0184 cde   
## 15 TCS 44 0.143  0.118  0.0295 bcde  
## 16 TCS 45 0.0997 0.0807 0.0202 de    
## 17 TCS 46 0.228  0.203  0.0506 abcde 
## 18 TCS 47 0.303  0.266  0.0665 abcd  
## 19 TCS 48 0.238  0.154  0.0386 abcde 
## 20 TCS 49 0.166  0.143  0.0358 abcde
E.1750.rdpi<-rdpi(clone.1750.fin, Clon, E, env)
## [1] "ANOVA test"
##              Df Sum Sq Mean Sq F value  Pr(>F)    
## RDPI$sp      19  1.562 0.08219   2.671 0.00024 ***
## Residuals   300  9.230 0.03077                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Joining, by = "sp"

## [1] "Tukey HSD test for differences accross groups"
## # A tibble: 20 × 5
##    sp      mean     sd     se groups
##    <fct>  <dbl>  <dbl>  <dbl> <chr> 
##  1 TCS 01 0.172 0.112  0.0280 b     
##  2 TCS 02 0.170 0.114  0.0285 b     
##  3 TCS 03 0.435 0.373  0.0932 a     
##  4 TCS 04 0.283 0.242  0.0606 ab    
##  5 TCS 05 0.210 0.115  0.0287 b     
##  6 TCS 08 0.252 0.158  0.0395 ab    
##  7 TCS 10 0.272 0.170  0.0425 ab    
##  8 TCS 11 0.200 0.133  0.0331 b     
##  9 TCS 12 0.289 0.227  0.0568 ab    
## 10 TCS 20 0.245 0.154  0.0385 ab    
## 11 TCS 40 0.147 0.128  0.0321 b     
## 12 TCS 41 0.182 0.117  0.0293 b     
## 13 TCS 42 0.217 0.154  0.0385 ab    
## 14 TCS 43 0.219 0.159  0.0397 ab    
## 15 TCS 44 0.205 0.145  0.0361 b     
## 16 TCS 45 0.103 0.0651 0.0163 b     
## 17 TCS 46 0.236 0.211  0.0527 ab    
## 18 TCS 47 0.269 0.188  0.0471 ab    
## 19 TCS 48 0.310 0.194  0.0485 ab    
## 20 TCS 49 0.166 0.101  0.0253 b
WUE.1750.rdpi<-rdpi(clone.1750.fin, Clon, WUE, env)
## [1] "ANOVA test"
##              Df Sum Sq  Mean Sq F value   Pr(>F)    
## RDPI$sp      19 0.3744 0.019704   3.097 2.15e-05 ***
## Residuals   300 1.9088 0.006363                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Joining, by = "sp"

## [1] "Tukey HSD test for differences accross groups"
## # A tibble: 20 × 5
##    sp       mean     sd      se groups
##    <fct>   <dbl>  <dbl>   <dbl> <chr> 
##  1 TCS 01 0.109  0.0802 0.0200  abc   
##  2 TCS 02 0.0698 0.0325 0.00812 c     
##  3 TCS 03 0.199  0.151  0.0376  a     
##  4 TCS 04 0.0886 0.0621 0.0155  bc    
##  5 TCS 05 0.106  0.0667 0.0167  abc   
##  6 TCS 08 0.121  0.105  0.0263  abc   
##  7 TCS 10 0.0981 0.0761 0.0190  abc   
##  8 TCS 11 0.0780 0.0501 0.0125  bc    
##  9 TCS 12 0.0989 0.0779 0.0195  abc   
## 10 TCS 20 0.0578 0.0398 0.00994 c     
## 11 TCS 40 0.140  0.0946 0.0236  abc   
## 12 TCS 41 0.0942 0.0560 0.0140  bc    
## 13 TCS 42 0.0899 0.0530 0.0133  bc    
## 14 TCS 43 0.179  0.125  0.0313  ab    
## 15 TCS 44 0.0671 0.0488 0.0122  c     
## 16 TCS 45 0.0928 0.0547 0.0137  bc    
## 17 TCS 46 0.0981 0.0754 0.0189  abc   
## 18 TCS 47 0.139  0.0943 0.0236  abc   
## 19 TCS 48 0.109  0.0622 0.0155  abc   
## 20 TCS 49 0.115  0.0861 0.0215  abc
gsw.1750.rdpi<-rdpi(clone.1750.fin, Clon, gsw, env)
## [1] "ANOVA test"
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## RDPI$sp      19  2.158 0.11360   2.903 6.54e-05 ***
## Residuals   300 11.742 0.03914                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Joining, by = "sp"

## [1] "Tukey HSD test for differences accross groups"
## # A tibble: 20 × 5
##    sp      mean     sd     se groups
##    <fct>  <dbl>  <dbl>  <dbl> <chr> 
##  1 TCS 01 0.196 0.0865 0.0216 abc   
##  2 TCS 02 0.207 0.136  0.0339 abc   
##  3 TCS 03 0.437 0.338  0.0845 a     
##  4 TCS 04 0.302 0.269  0.0673 abc   
##  5 TCS 05 0.236 0.133  0.0334 abc   
##  6 TCS 08 0.287 0.161  0.0402 abc   
##  7 TCS 10 0.420 0.263  0.0658 ab    
##  8 TCS 11 0.181 0.0937 0.0234 bc    
##  9 TCS 12 0.390 0.298  0.0745 abc   
## 10 TCS 20 0.241 0.160  0.0401 abc   
## 11 TCS 40 0.160 0.137  0.0341 c     
## 12 TCS 41 0.192 0.121  0.0302 abc   
## 13 TCS 42 0.255 0.178  0.0444 abc   
## 14 TCS 43 0.173 0.120  0.0300 bc    
## 15 TCS 44 0.190 0.134  0.0336 abc   
## 16 TCS 45 0.248 0.174  0.0435 abc   
## 17 TCS 46 0.288 0.233  0.0583 abc   
## 18 TCS 47 0.365 0.269  0.0672 abc   
## 19 TCS 48 0.327 0.209  0.0521 abc   
## 20 TCS 49 0.218 0.190  0.0474 abc
cica.1750.rdpi<-rdpi(clone.1750.fin, Clon, cica, env)
## [1] "ANOVA test"
##              Df Sum Sq  Mean Sq F value  Pr(>F)    
## RDPI$sp      19 0.0963 0.005069    2.62 0.00032 ***
## Residuals   300 0.5805 0.001935                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Joining, by = "sp"

## [1] "Tukey HSD test for differences accross groups"
## # A tibble: 20 × 5
##    sp       mean     sd      se groups
##    <fct>   <dbl>  <dbl>   <dbl> <chr> 
##  1 TCS 01 0.0344 0.0239 0.00597 a     
##  2 TCS 02 0.0394 0.0225 0.00562 a     
##  3 TCS 03 0.0787 0.0561 0.0140  a     
##  4 TCS 04 0.0476 0.0384 0.00960 a     
##  5 TCS 05 0.0833 0.0559 0.0140  a     
##  6 TCS 08 0.0641 0.0454 0.0113  a     
##  7 TCS 10 0.0745 0.0602 0.0151  a     
##  8 TCS 11 0.0521 0.0353 0.00882 a     
##  9 TCS 12 0.0668 0.0439 0.0110  a     
## 10 TCS 20 0.0875 0.0761 0.0190  a     
## 11 TCS 40 0.0413 0.0275 0.00687 a     
## 12 TCS 41 0.0396 0.0261 0.00651 a     
## 13 TCS 42 0.0781 0.0509 0.0127  a     
## 14 TCS 43 0.0472 0.0305 0.00764 a     
## 15 TCS 44 0.0387 0.0299 0.00747 a     
## 16 TCS 45 0.0801 0.0621 0.0155  a     
## 17 TCS 46 0.0499 0.0359 0.00899 a     
## 18 TCS 47 0.0425 0.0334 0.00836 a     
## 19 TCS 48 0.0658 0.0476 0.0119  a     
## 20 TCS 49 0.0410 0.0292 0.00730 a
ocho.rdpi<-data.frame(A.1750.rdpi$sp, A.1750.rdpi$rdpi, E.1750.rdpi$rdpi, WUE.1750.rdpi$rdpi, gsw.1750.rdpi$rdpi, 
                       cica.1750.rdpi$rdpi)
colnames(ocho.rdpi)<-c('gen', 'Ardpi', 'Erdpi', 'WUErdpi', 'gswrdpi', 'cicardpi')
ocho.rdpi$treatment <- "1750"
ocho.sum<-ocho.rdpi %>% 
  select(Ardpi, Erdpi, WUErdpi, gswrdpi, cicardpi)%>%
  summarise(
    Ardpi_m = mean(Ardpi), 
    Erdpi_m = mean(Erdpi), 
    WUErdpi_m = mean(WUErdpi), 
    gswrdpi_m = mean(gswrdpi), 
    cicardpi_m = mean(cicardpi))
ocho.sum
##     Ardpi_m   Erdpi_m WUErdpi_m gswrdpi_m cicardpi_m
## 1 0.1899071 0.2290522 0.1074696 0.2657023 0.05763213
# Creando una nueva base de datos de RDPi para los ocho intervalos de luz
dos.rdpi$ID <- seq.int(nrow(dos.rdpi))
tres.rdpi$ID <- seq.int(nrow(tres.rdpi))
cuatro.rdpi$ID <- seq.int(nrow(cuatro.rdpi))
cinco.rdpi$ID <- seq.int(nrow(cinco.rdpi))
seis.rdpi$ID <- seq.int(nrow(seis.rdpi))
siete.rdpi$ID <- seq.int(nrow(siete.rdpi))
ocho.rdpi$ID <- seq.int(nrow(ocho.rdpi))
total2 <- rbind (dos.rdpi, tres.rdpi)
total3 <- rbind (total2, cuatro.rdpi)
total4 <- rbind (total3, cinco.rdpi)
total5 <- rbind (total4, seis.rdpi)
total6 <- rbind (total5, siete.rdpi)
total7 <- rbind (total6, ocho.rdpi)

write.csv(total7, "~/Library/CloudStorage/GoogleDrive-icarounam@gmail.com/Mi unidad/Agrosavia/Colaboraciones/Fabricio/data/total_7.csv")

## analysis of variance
anova_A <- aov(total7$Ardpi ~ total7$gen, data = total7)
anova(anova_A)
## Analysis of Variance Table
## 
## Response: total7$Ardpi
##              Df Sum Sq Mean Sq F value    Pr(>F)    
## total7$gen   19 12.413 0.65332   24.47 < 2.2e-16 ***
## Residuals  2220 59.272 0.02670                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova_E <- aov(total7$Erdpi ~ total7$gen, data = total7)
anova(anova_E)
## Analysis of Variance Table
## 
## Response: total7$Erdpi
##              Df Sum Sq Mean Sq F value    Pr(>F)    
## total7$gen   19 11.524 0.60652  20.877 < 2.2e-16 ***
## Residuals  2220 64.496 0.02905                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova_WUE <- aov(total7$WUErdpi ~ total7$gen, data = total7)
anova(anova_WUE)
## Analysis of Variance Table
## 
## Response: total7$WUErdpi
##              Df  Sum Sq  Mean Sq F value    Pr(>F)    
## total7$gen   19  3.0598 0.161040  13.376 < 2.2e-16 ***
## Residuals  2220 26.7268 0.012039                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova_gSw <- aov(total7$gswrdpi ~ total7$gen, data = total7)
anova(anova_gSw)
## Analysis of Variance Table
## 
## Response: total7$gswrdpi
##              Df Sum Sq Mean Sq F value    Pr(>F)    
## total7$gen   19 14.845 0.78131  23.299 < 2.2e-16 ***
## Residuals  2220 74.445 0.03353                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova_cica <- aov(total7$cicardpi ~ total7$gen, data = total7)
anova(anova_cica)
## Analysis of Variance Table
## 
## Response: total7$cicardpi
##              Df Sum Sq  Mean Sq F value    Pr(>F)    
## total7$gen   19 0.8123 0.042752  15.118 < 2.2e-16 ***
## Residuals  2220 6.2780 0.002828                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Mean contrast for A
A_emm <- emmeans(anova_A, "gen")
A_emm
##  gen    emmean     SE   df lower.CL upper.CL
##  TCS 01 0.1211 0.0154 2220   0.0908    0.151
##  TCS 02 0.1424 0.0154 2220   0.1121    0.173
##  TCS 03 0.3134 0.0154 2220   0.2831    0.344
##  TCS 04 0.2091 0.0154 2220   0.1788    0.239
##  TCS 05 0.1491 0.0154 2220   0.1188    0.179
##  TCS 08 0.1121 0.0154 2220   0.0819    0.142
##  TCS 10 0.3127 0.0154 2220   0.2824    0.343
##  TCS 11 0.1455 0.0154 2220   0.1152    0.176
##  TCS 12 0.3325 0.0154 2220   0.3022    0.363
##  TCS 20 0.2313 0.0154 2220   0.2010    0.262
##  TCS 40 0.1564 0.0154 2220   0.1262    0.187
##  TCS 41 0.1198 0.0154 2220   0.0895    0.150
##  TCS 42 0.1372 0.0154 2220   0.1070    0.168
##  TCS 43 0.0984 0.0154 2220   0.0682    0.129
##  TCS 44 0.1638 0.0154 2220   0.1335    0.194
##  TCS 45 0.1069 0.0154 2220   0.0766    0.137
##  TCS 46 0.2639 0.0154 2220   0.2336    0.294
##  TCS 47 0.2281 0.0154 2220   0.1978    0.258
##  TCS 48 0.2062 0.0154 2220   0.1759    0.236
##  TCS 49 0.2875 0.0154 2220   0.2572    0.318
## 
## Confidence level used: 0.95
pwpp(A_emm)

cld_A <-multcomp::cld(A_emm, alpha = 0.05, Letters = LETTERS, reversed=T)
plot(A_emm, comparisons = TRUE, xlab = expression(RDPI[A]))

## Mean contrast for E
E_emm <- emmeans(anova_E, "gen")
E_emm
##  gen    emmean     SE   df lower.CL upper.CL
##  TCS 01 0.1723 0.0161 2220   0.1407   0.2038
##  TCS 02 0.1439 0.0161 2220   0.1123   0.1755
##  TCS 03 0.3940 0.0161 2220   0.3624   0.4256
##  TCS 04 0.2573 0.0161 2220   0.2257   0.2889
##  TCS 05 0.1514 0.0161 2220   0.1198   0.1830
##  TCS 08 0.1374 0.0161 2220   0.1058   0.1690
##  TCS 10 0.2396 0.0161 2220   0.2080   0.2712
##  TCS 11 0.1646 0.0161 2220   0.1330   0.1962
##  TCS 12 0.2713 0.0161 2220   0.2397   0.3029
##  TCS 20 0.2025 0.0161 2220   0.1709   0.2341
##  TCS 40 0.1343 0.0161 2220   0.1028   0.1659
##  TCS 41 0.1103 0.0161 2220   0.0787   0.1418
##  TCS 42 0.1485 0.0161 2220   0.1170   0.1801
##  TCS 43 0.2067 0.0161 2220   0.1751   0.2383
##  TCS 44 0.1974 0.0161 2220   0.1658   0.2290
##  TCS 45 0.0593 0.0161 2220   0.0278   0.0909
##  TCS 46 0.2530 0.0161 2220   0.2214   0.2846
##  TCS 47 0.1928 0.0161 2220   0.1613   0.2244
##  TCS 48 0.2374 0.0161 2220   0.2058   0.2689
##  TCS 49 0.2700 0.0161 2220   0.2384   0.3016
## 
## Confidence level used: 0.95
pwpp(E_emm)

cld_E <-multcomp::cld(E_emm, alpha = 0.05, Letters = LETTERS, reversed=T)
plot(E_emm, comparisons = TRUE, xlab = expression(RDPI[E]))

## Mean contrast for WUE
WUE_emm <- emmeans(anova_WUE, "gen")
WUE_emm
##  gen    emmean     SE   df lower.CL upper.CL
##  TCS 01 0.1361 0.0104 2220   0.1157    0.156
##  TCS 02 0.1054 0.0104 2220   0.0851    0.126
##  TCS 03 0.2343 0.0104 2220   0.2140    0.255
##  TCS 04 0.1070 0.0104 2220   0.0867    0.127
##  TCS 05 0.1250 0.0104 2220   0.1047    0.145
##  TCS 08 0.1023 0.0104 2220   0.0820    0.123
##  TCS 10 0.1175 0.0104 2220   0.0972    0.138
##  TCS 11 0.1121 0.0104 2220   0.0918    0.132
##  TCS 12 0.1270 0.0104 2220   0.1067    0.147
##  TCS 20 0.0896 0.0104 2220   0.0693    0.110
##  TCS 40 0.1520 0.0104 2220   0.1317    0.172
##  TCS 41 0.0933 0.0104 2220   0.0730    0.114
##  TCS 42 0.0861 0.0104 2220   0.0658    0.106
##  TCS 43 0.2144 0.0104 2220   0.1941    0.235
##  TCS 44 0.1026 0.0104 2220   0.0822    0.123
##  TCS 45 0.1029 0.0104 2220   0.0826    0.123
##  TCS 46 0.1277 0.0104 2220   0.1073    0.148
##  TCS 47 0.1350 0.0104 2220   0.1146    0.155
##  TCS 48 0.1208 0.0104 2220   0.1005    0.141
##  TCS 49 0.1113 0.0104 2220   0.0910    0.132
## 
## Confidence level used: 0.95
pwpp(WUE_emm)

cld_WUE <-multcomp::cld(WUE_emm, alpha = 0.05, Letters = LETTERS, reversed=T)
plot(WUE_emm, comparisons = TRUE, xlab =expression(RDPI[WUE]))

## Mean contrast for gSw
gSw_emm <- emmeans(anova_gSw, "gen")
gSw_emm
##  gen    emmean     SE   df lower.CL upper.CL
##  TCS 01 0.1328 0.0173 2220   0.0988    0.167
##  TCS 02 0.1595 0.0173 2220   0.1255    0.193
##  TCS 03 0.3675 0.0173 2220   0.3336    0.401
##  TCS 04 0.2623 0.0173 2220   0.2284    0.296
##  TCS 05 0.2190 0.0173 2220   0.1851    0.253
##  TCS 08 0.1265 0.0173 2220   0.0926    0.160
##  TCS 10 0.3543 0.0173 2220   0.3204    0.388
##  TCS 11 0.1648 0.0173 2220   0.1309    0.199
##  TCS 12 0.3667 0.0173 2220   0.3328    0.401
##  TCS 20 0.1917 0.0173 2220   0.1578    0.226
##  TCS 40 0.1579 0.0173 2220   0.1240    0.192
##  TCS 41 0.1697 0.0173 2220   0.1357    0.204
##  TCS 42 0.2064 0.0173 2220   0.1725    0.240
##  TCS 43 0.0825 0.0173 2220   0.0486    0.116
##  TCS 44 0.1750 0.0173 2220   0.1410    0.209
##  TCS 45 0.1914 0.0173 2220   0.1575    0.225
##  TCS 46 0.2815 0.0173 2220   0.2476    0.315
##  TCS 47 0.2642 0.0173 2220   0.2303    0.298
##  TCS 48 0.2249 0.0173 2220   0.1909    0.259
##  TCS 49 0.3274 0.0173 2220   0.2935    0.361
## 
## Confidence level used: 0.95
pwpp(gSw_emm)

cld_gSw <-multcomp::cld(gSw_emm, alpha = 0.05, Letters = LETTERS, reversed=T)
plot(gSw_emm, comparisons = TRUE, xlab =expression(RDPI[gSw]))

## Mean contrast for cica
cica_emm <- emmeans(anova_cica, "gen")
cica_emm
##  gen    emmean      SE   df lower.CL upper.CL
##  TCS 01 0.0377 0.00502 2220   0.0279   0.0476
##  TCS 02 0.0471 0.00502 2220   0.0372   0.0569
##  TCS 03 0.1010 0.00502 2220   0.0912   0.1109
##  TCS 04 0.0552 0.00502 2220   0.0453   0.0651
##  TCS 05 0.0980 0.00502 2220   0.0881   0.1078
##  TCS 08 0.0439 0.00502 2220   0.0340   0.0537
##  TCS 10 0.0737 0.00502 2220   0.0638   0.0835
##  TCS 11 0.0787 0.00502 2220   0.0689   0.0886
##  TCS 12 0.0663 0.00502 2220   0.0565   0.0762
##  TCS 20 0.0969 0.00502 2220   0.0870   0.1067
##  TCS 40 0.0487 0.00502 2220   0.0388   0.0585
##  TCS 41 0.0777 0.00502 2220   0.0679   0.0876
##  TCS 42 0.0876 0.00502 2220   0.0777   0.0974
##  TCS 43 0.0519 0.00502 2220   0.0420   0.0617
##  TCS 44 0.0449 0.00502 2220   0.0350   0.0547
##  TCS 45 0.0788 0.00502 2220   0.0690   0.0887
##  TCS 46 0.0592 0.00502 2220   0.0493   0.0690
##  TCS 47 0.0630 0.00502 2220   0.0531   0.0728
##  TCS 48 0.0614 0.00502 2220   0.0516   0.0713
##  TCS 49 0.0494 0.00502 2220   0.0395   0.0592
## 
## Confidence level used: 0.95
pwpp(cica_emm)

cld_cica <-multcomp::cld(cica_emm, alpha = 0.05, Letters = LETTERS, reversed=T)
plot(cica_emm, comparisons = TRUE, xlab = expression(RDPI[Ci/Ca]))

## table with factors and 3rd quantile
dt_A <- group_by(total7, gen) %>%
  summarise(w=mean(Ardpi)) %>%
  arrange(desc(w))
dt_E <- group_by(total7, gen) %>%
  summarise(w=mean(Erdpi)) %>%
  arrange(desc(w))
dt_WUE <- group_by(total7, gen) %>%
  summarise(w=mean(WUErdpi)) %>%
  arrange(desc(w))
dt_gsw <- group_by(total7, gen) %>%
  summarise(w=mean(gswrdpi)) %>%
  arrange(desc(w))
dt_cica <- group_by(total7, gen) %>%
  summarise(w=mean(cicardpi)) %>%
  arrange(desc(w))
## extracting the compact letter display and adding to the Tk table
dt_A$cldA <- cld_A$.group
print(dt_A)
## # A tibble: 20 × 3
##    gen         w cldA     
##    <fct>   <dbl> <chr>    
##  1 TCS 12 0.333  " A     "
##  2 TCS 03 0.313  " A     "
##  3 TCS 10 0.313  " A     "
##  4 TCS 49 0.287  " AB    "
##  5 TCS 46 0.264  " ABC   "
##  6 TCS 20 0.231  "  BCD  "
##  7 TCS 47 0.228  "  BCD  "
##  8 TCS 04 0.209  "   CDE "
##  9 TCS 48 0.206  "   CDE "
## 10 TCS 44 0.164  "    DEF"
## 11 TCS 40 0.156  "    DEF"
## 12 TCS 05 0.149  "     EF"
## 13 TCS 11 0.145  "     EF"
## 14 TCS 02 0.142  "     EF"
## 15 TCS 42 0.137  "     EF"
## 16 TCS 01 0.121  "      F"
## 17 TCS 41 0.120  "      F"
## 18 TCS 08 0.112  "      F"
## 19 TCS 45 0.107  "      F"
## 20 TCS 43 0.0984 "      F"
dt_E$cldE <- cld_E$.group
print(dt_E)
## # A tibble: 20 × 3
##    gen         w cldE      
##    <fct>   <dbl> <chr>     
##  1 TCS 03 0.394  " A      "
##  2 TCS 12 0.271  "  B     "
##  3 TCS 49 0.270  "  B     "
##  4 TCS 04 0.257  "  B     "
##  5 TCS 46 0.253  "  BC    "
##  6 TCS 10 0.240  "  BCD   "
##  7 TCS 48 0.237  "  BCD   "
##  8 TCS 43 0.207  "  BCDE  "
##  9 TCS 20 0.203  "  BCDE  "
## 10 TCS 44 0.197  "  BCDE  "
## 11 TCS 47 0.193  "  BCDE  "
## 12 TCS 01 0.172  "   CDEF "
## 13 TCS 11 0.165  "    DEF "
## 14 TCS 05 0.151  "     EF "
## 15 TCS 42 0.149  "     EF "
## 16 TCS 02 0.144  "     EF "
## 17 TCS 08 0.137  "     EFG"
## 18 TCS 40 0.134  "     EFG"
## 19 TCS 41 0.110  "      FG"
## 20 TCS 45 0.0593 "       G"
dt_WUE$cldWUE <- cld_WUE$.group
print(dt_WUE)
## # A tibble: 20 × 3
##    gen         w cldWUE
##    <fct>   <dbl> <chr> 
##  1 TCS 03 0.234  " A  "
##  2 TCS 43 0.214  " A  "
##  3 TCS 40 0.152  "  B "
##  4 TCS 01 0.136  "  BC"
##  5 TCS 47 0.135  "  BC"
##  6 TCS 46 0.128  "  BC"
##  7 TCS 12 0.127  "  BC"
##  8 TCS 05 0.125  "  BC"
##  9 TCS 48 0.121  "  BC"
## 10 TCS 10 0.118  "  BC"
## 11 TCS 11 0.112  "  BC"
## 12 TCS 49 0.111  "  BC"
## 13 TCS 04 0.107  "  BC"
## 14 TCS 02 0.105  "  BC"
## 15 TCS 45 0.103  "  BC"
## 16 TCS 44 0.103  "  BC"
## 17 TCS 08 0.102  "  BC"
## 18 TCS 41 0.0933 "   C"
## 19 TCS 20 0.0896 "   C"
## 20 TCS 42 0.0861 "   C"
dt_gsw$cldgsw <- cld_gSw$.group
print(dt_gsw)
## # A tibble: 20 × 3
##    gen         w cldgsw     
##    <fct>   <dbl> <chr>      
##  1 TCS 03 0.368  " A       "
##  2 TCS 12 0.367  " A       "
##  3 TCS 10 0.354  " A       "
##  4 TCS 49 0.327  " AB      "
##  5 TCS 46 0.281  " ABC     "
##  6 TCS 47 0.264  "  BCD    "
##  7 TCS 04 0.262  "  BCD    "
##  8 TCS 48 0.225  "   CDE   "
##  9 TCS 05 0.219  "   CDEF  "
## 10 TCS 42 0.206  "   CDEFG "
## 11 TCS 20 0.192  "    DEFG "
## 12 TCS 45 0.191  "    DEFG "
## 13 TCS 44 0.175  "     EFG "
## 14 TCS 41 0.170  "     EFG "
## 15 TCS 11 0.165  "     EFGH"
## 16 TCS 02 0.159  "     EFGH"
## 17 TCS 40 0.158  "     EFGH"
## 18 TCS 01 0.133  "      FGH"
## 19 TCS 08 0.127  "       GH"
## 20 TCS 43 0.0825 "        H"
dt_cica$cldcica <- cld_cica$.group
print(dt_cica)
## # A tibble: 20 × 3
##    gen         w cldcica   
##    <fct>   <dbl> <chr>     
##  1 TCS 03 0.101  " A      "
##  2 TCS 05 0.0980 " AB     "
##  3 TCS 20 0.0969 " AB     "
##  4 TCS 42 0.0876 " ABC    "
##  5 TCS 45 0.0788 " ABCD   "
##  6 TCS 11 0.0787 " ABCD   "
##  7 TCS 41 0.0777 " ABCD   "
##  8 TCS 10 0.0737 "  BCDE  "
##  9 TCS 12 0.0663 "   CDEF "
## 10 TCS 47 0.0630 "   CDEFG"
## 11 TCS 48 0.0614 "    DEFG"
## 12 TCS 46 0.0592 "    DEFG"
## 13 TCS 04 0.0552 "    DEFG"
## 14 TCS 43 0.0519 "     EFG"
## 15 TCS 49 0.0494 "     EFG"
## 16 TCS 40 0.0487 "     EFG"
## 17 TCS 02 0.0471 "      FG"
## 18 TCS 44 0.0449 "      FG"
## 19 TCS 08 0.0439 "      FG"
## 20 TCS 01 0.0377 "       G"
### group total7 by gen and return some averages and estandar errors
total8 <- total7 %>%
  select(gen, Ardpi, Erdpi, WUErdpi, gswrdpi, cicardpi) %>%
  group_by(gen) %>%
  summarise(
    Ardpi_m = mean(Ardpi), 
    Erdpi_m = mean(Erdpi), 
    WUErdpi_m = mean(WUErdpi), 
    gswrdpi_m = mean(gswrdpi), 
    cicardpi_m = mean(cicardpi),
    n=n(),
    sd_A=sd(Ardpi),
    sd_E=sd(Erdpi),
    sd_WUE=sd(WUErdpi),
    sd_gsw=sd(gswrdpi),
    sd_cica=sd(cicardpi)
  ) %>%
  mutate(se_A=sd_A/sqrt(n)) %>%
  mutate(se_E=sd_E/sqrt(n)) %>%
  mutate(se_WUE=sd_WUE/sqrt(n)) %>%
  mutate(se_gsw=sd_gsw/sqrt(n)) %>%
  mutate(se_cica=sd_cica/sqrt(n))
## Adding Tukey letters to low
total8<-merge(dt_A, total8, by="gen")
total8<-merge(dt_E, total8, by="gen")
total8<-merge(dt_WUE, total8, by="gen")
total8<-merge(dt_gsw, total8, by="gen")
## Warning in merge.data.frame(dt_gsw, total8, by = "gen"): column names 'w.x',
## 'w.y' are duplicated in the result
total8<-merge(dt_cica, total8, by="gen")
## saving the data frames
write.csv(total8, "~/Library/CloudStorage/GoogleDrive-icarounam@gmail.com/Mi unidad/Agrosavia/Colaboraciones/Fabricio/data/total_8.csv")
totales <- read.table("total_8.csv", header=T, sep=",")
attach(totales)
## Own color palette
mycolors = c(brewer.pal(name="Dark2", n = 8), brewer.pal(name="Paired", n = 12))
##Barplots
Aplot=totales %>%
  arrange(Ardpi_m) %>%
  mutate(gen=factor(gen, levels = gen)) %>%
  ggplot( aes(x=gen, y=Ardpi_m, fill=cldA)) +
  geom_col(alpha=.9, width=.7, show.legend = FALSE) +
  scale_color_manual(values = mycolors) +
  geom_errorbar(aes(ymin=Ardpi_m-se_E, ymax=Ardpi_m+se_E), width=0.2)+
  geom_text(aes(label = cldA, y = Ardpi_m), nudge_x =0, nudge_y = 0.1, size = 3.5)+
  coord_flip() +
  xlab("") +
  ylab(expression(RDPI[A])) +
  theme_classic()
Aplot + theme(axis.text = element_text(size = 12))

ggsave("Aplot.tiff", plot= Aplot, width = 4, height = 3, dpi = 1000)

Eplot=totales %>%
  arrange(Erdpi_m) %>%
  mutate(gen=factor(gen, levels = gen)) %>%
  ggplot( aes(x=gen, y=Erdpi_m, fill=cldE)) +
  geom_col(alpha=.9, width=.7, show.legend = FALSE) +
  scale_fill_brewer(palette = "Paired") +
  geom_errorbar(aes(ymin=Erdpi_m-se_E, ymax=Erdpi_m+se_E), width=0.2)+
  geom_text(aes(label = cldE, y = Erdpi_m), nudge_x =0, nudge_y = 0.1, size = 3.5)+
  coord_flip() +
  xlab("") +
  ylab(expression(RDPI[E])) +
  theme_classic()
Eplot + theme(axis.text = element_text(size = 12))

ggsave("Eplot.tiff", plot= Eplot, width = 4, height = 3, dpi = 1000)

WUEplot=totales %>%
  arrange(WUErdpi_m) %>%
  mutate(gen=factor(gen, levels = gen)) %>%
  ggplot( aes(x=gen, y=WUErdpi_m, fill=cldWUE)) +
  geom_col(alpha=.9, width=.7, show.legend = FALSE) +
  scale_fill_brewer(palette = "Paired") +
  geom_errorbar(aes(ymin=WUErdpi_m-se_WUE, ymax=WUErdpi_m+se_WUE), width=0.2)+
  geom_text(aes(label = cldWUE, y = WUErdpi_m), nudge_x =0, nudge_y = 0.09, size = 3.5)+
  coord_flip() +
  xlab("") +
  ylab(expression(RDPI[WUE])) +
  theme_classic()
WUEplot + theme(axis.text = element_text(size = 12))

ggsave("WUEplot.tiff", plot= WUEplot, width = 4, height = 3, dpi = 1000)

gswplot=totales %>%
  arrange(gswrdpi_m) %>%
  mutate(gen=factor(gen, levels = gen)) %>%
  ggplot( aes(x=gen, y=gswrdpi_m, fill = cldgsw)) +
  geom_col(alpha=.9, width=.7, show.legend = FALSE) +
  scale_fill_brewer(palette = "Paired") +
  geom_errorbar(aes(ymin=gswrdpi_m-se_gsw, ymax=gswrdpi_m+se_gsw), width=0.2)+
  geom_text(aes(label = cldgsw, y = gswrdpi_m), nudge_x =0, nudge_y = 0.09, size = 3.5)+
  coord_flip() +
  xlab("") +
  ylab(expression(RDPI[gSw])) +
  theme_classic()
gswplot + theme(axis.text = element_text(size = 12))
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Paired is 12
## Returning the palette you asked for with that many colors

ggsave("gswplot.tiff", plot= gswplot, width = 4, height = 3, dpi = 1000)
## Warning in RColorBrewer::brewer.pal(n, pal): n too large, allowed maximum for palette Paired is 12
## Returning the palette you asked for with that many colors
cicaplot=totales %>%
  arrange(cicardpi_m) %>%
  mutate(gen=factor(gen, levels = gen)) %>%
  ggplot( aes(x=gen, y=cicardpi_m, fill = cldcica )) +
  geom_col(alpha=.9, width=.7, show.legend = FALSE) +
  scale_fill_brewer(palette = "Paired") +
  geom_errorbar(aes(ymin=cicardpi_m-se_cica, ymax=cicardpi_m+se_cica), width=0.2)+
  geom_text(aes(label = cldcica, y = cicardpi_m), nudge_x =0, nudge_y = 0.07, size = 3.5)+
  coord_flip() +
  xlab("") +
  ylab(expression(RDPI[Ci/Ca])) +
  theme_classic()
cicaplot + theme(axis.text = element_text(size = 12))

ggsave("cicaplot.tiff", plot= cicaplot, width = 4, height = 3, dpi = 1000)