Unordered factor levels
# Transform data: calculate average tv hours by religion
tvhours_by_relig <- gss_cat %>%
group_by(relig) %>%
summarise(
avg_tvhours = mean(tvhours, na.rm = TRUE)
)
tvhours_by_relig
## # A tibble: 15 × 2
## relig avg_tvhours
## <fct> <dbl>
## 1 No answer 2.72
## 2 Don't know 4.62
## 3 Inter-nondenominational 2.87
## 4 Native american 3.46
## 5 Christian 2.79
## 6 Orthodox-christian 2.42
## 7 Moslem/islam 2.44
## 8 Other eastern 1.67
## 9 Hinduism 1.89
## 10 Buddhism 2.38
## 11 Other 2.73
## 12 None 2.71
## 13 Jewish 2.52
## 14 Catholic 2.96
## 15 Protestant 3.15
# Plot
tvhours_by_relig %>%
ggplot(aes(x = avg_tvhours, y = relig)) +
geom_point()
Ordered factor levels
tvhours_by_relig %>%
ggplot(aes(x = avg_tvhours, y = fct_reorder(.f = relig, .x = avg_tvhours))) +
geom_point() +
# Labeling
labs(y = NULL, x = "Mean Daily Hours Watching TV")
# From strings
"2022/10/28" %>% ymd()
## [1] "2022-10-28"
# From numbers
20221028 %>% ymd()
## [1] "2022-10-28"
"2022-10-28 4-41-30" %>% ymd_hms()
## [1] "2022-10-28 04:41:30 UTC"
flights %>%
select(year:day, hour, minute) %>%
mutate(departure = make_datetime(year = year, month = month,
day = day, hour = hour, min = minute))
## # A tibble: 336,776 × 6
## year month day hour minute departure
## <int> <int> <int> <dbl> <dbl> <dttm>
## 1 2013 1 1 5 15 2013-01-01 05:15:00
## 2 2013 1 1 5 29 2013-01-01 05:29:00
## 3 2013 1 1 5 40 2013-01-01 05:40:00
## 4 2013 1 1 5 45 2013-01-01 05:45:00
## 5 2013 1 1 6 0 2013-01-01 06:00:00
## 6 2013 1 1 5 58 2013-01-01 05:58:00
## 7 2013 1 1 6 0 2013-01-01 06:00:00
## 8 2013 1 1 6 0 2013-01-01 06:00:00
## 9 2013 1 1 6 0 2013-01-01 06:00:00
## 10 2013 1 1 6 0 2013-01-01 06:00:00
## # … with 336,766 more rows
# From date to date-time
today() %>% as_datetime()
## [1] "2023-04-11 UTC"
# From date-time to date
now() %>% as_date()
## [1] "2023-04-11"
date_time <- ymd_hms("2022-10-28 18-18-18")
date_time
## [1] "2022-10-28 18:18:18 UTC"
year(date_time)
## [1] 2022
month(date_time, label = TRUE, abbr = FALSE)
## [1] October
## 12 Levels: January < February < March < April < May < June < ... < December
yday(date_time)
## [1] 301
mday(date_time)
## [1] 28
wday(date_time, label = TRUE, abbr = FALSE)
## [1] Friday
## 7 Levels: Sunday < Monday < Tuesday < Wednesday < Thursday < ... < Saturday
# Create flights_dt
make_datetime_100 <- function(year, month, day, time) {
make_datetime(year, month, day, time %/% 100, time %% 100)
}
flights_dt <- flights %>%
filter(!is.na(dep_time), !is.na(arr_time)) %>%
mutate(
dep_time = make_datetime_100(year, month, day, dep_time),
arr_time = make_datetime_100(year, month, day, arr_time),
sched_dep_time = make_datetime_100(year, month, day, sched_dep_time),
sched_arr_time = make_datetime_100(year, month, day, sched_arr_time)
) %>%
select(origin, dest, ends_with("delay"), ends_with("time"))
flights_dt %>%
transmute(wday = wday(dep_time, label = TRUE)) %>%
ggplot(aes(wday)) +
geom_bar()
# floor_date for rounding down
flights_dt %>%
mutate(week = floor_date(dep_time, "month")) %>%
select(dep_time, week) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time week
## <dttm> <dttm>
## 1 2013-08-19 20:52:00 2013-08-01 00:00:00
## 2 2013-09-03 18:33:00 2013-09-01 00:00:00
## 3 2013-02-05 10:27:00 2013-02-01 00:00:00
## 4 2013-04-16 07:43:00 2013-04-01 00:00:00
## 5 2013-05-29 16:56:00 2013-05-01 00:00:00
## 6 2013-05-11 20:38:00 2013-05-01 00:00:00
## 7 2013-02-22 09:06:00 2013-02-01 00:00:00
## 8 2013-01-13 15:00:00 2013-01-01 00:00:00
## 9 2013-11-11 13:24:00 2013-11-01 00:00:00
## 10 2013-05-25 20:06:00 2013-05-01 00:00:00
# ceiling_date for rounding up
flights_dt %>%
mutate(week = ceiling_date(dep_time, "month")) %>%
select(dep_time, week) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time week
## <dttm> <dttm>
## 1 2013-05-29 19:31:00 2013-06-01 00:00:00
## 2 2013-10-05 09:27:00 2013-11-01 00:00:00
## 3 2013-08-15 21:18:00 2013-09-01 00:00:00
## 4 2013-04-14 06:55:00 2013-05-01 00:00:00
## 5 2013-03-09 08:30:00 2013-04-01 00:00:00
## 6 2013-10-07 18:55:00 2013-11-01 00:00:00
## 7 2013-10-05 08:25:00 2013-11-01 00:00:00
## 8 2013-07-02 07:29:00 2013-08-01 00:00:00
## 9 2013-01-05 08:03:00 2013-02-01 00:00:00
## 10 2013-09-25 19:33:00 2013-10-01 00:00:00
flights_dt %>%
mutate(dep_hour = update(dep_time, yday = 1)) %>%
select(dep_time, dep_hour) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time dep_hour
## <dttm> <dttm>
## 1 2013-10-14 10:54:00 2013-01-01 10:54:00
## 2 2013-08-09 13:04:00 2013-01-01 13:04:00
## 3 2013-04-08 20:11:00 2013-01-01 20:11:00
## 4 2013-04-02 15:40:00 2013-01-01 15:40:00
## 5 2013-07-14 19:59:00 2013-01-01 19:59:00
## 6 2013-07-31 16:16:00 2013-01-01 16:16:00
## 7 2013-12-16 17:04:00 2013-01-01 17:04:00
## 8 2013-06-28 08:20:00 2013-01-01 08:20:00
## 9 2013-08-02 15:57:00 2013-01-01 15:57:00
## 10 2013-07-07 08:24:00 2013-01-01 08:24:00