# Load packages
# Core
library(tidyverse)
library(tidyquant)
Calculate and visualize your portfolio’s beta.
Choose your stocks and the baseline market.
from 2012-12-31 to present
symbols <- c("NVDA", "AAPL", "NFLX", "MSFT", "TSLA")
prices <- tq_get (x = symbols,
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# Symbols
symbol <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "NVDA" "AAPL" "NFLX" "MSFT" "TSLA"
# Weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 NVDA 0.25
## 2 AAPL 0.25
## 3 NFLX 0.2
## 4 MSFT 0.2
## 5 TSLA 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0926
## 2 2013-02-28 0.0258
## 3 2013-03-28 0.0195
## 4 2013-04-30 0.109
## 5 2013-05-31 0.0998
## 6 2013-06-28 -0.0456
## 7 2013-07-31 0.0755
## 8 2013-08-30 0.0906
## 9 2013-09-30 0.0378
## 10 2013-10-31 0.0188
## # ℹ 50 more rows
market_returns_tbl <- tq_get (x = "SPY",
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31") %>%
#Convert Prices to Returns
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log",
col_rename = "returns") %>%
slice(-1)
portfolio_market_returns_tbl <- left_join(market_returns_tbl, portfolio_returns_tbl, by = "date") %>%
set_names("date", "market_returns", "portfolio_returns")
portfolio_market_returns_tbl %>%
tq_performance(Ra = portfolio_returns,
Rb = market_returns,
performance_fun = CAPM.beta)
## # A tibble: 1 × 1
## CAPM.beta.1
## <dbl>
## 1 1.10
portfolio_market_returns_tbl %>%
ggplot(aes(x = market_returns,
y = portfolio_returns)) +
geom_point(color = "violet") +
geom_smooth(method = "lm",
se = FALSE,
size = 1.5,
color = tidyquant::palette_light()[3]) +
labs(y = "Portfolio Returns",
x = "Market Returns")
How sensitive is your portfolio to the market? Discuss in terms of the beta coefficient. Does the plot confirm the beta coefficient you calculated?
My Beta is 1.10 when compared to SPY. My portfolio doesn’t have a strong correlation with the market. The purple dots would be closer to the green line if they had a strong correlation with the market, instead they are very scattered. The plot does confirm the beta coefficient I found. The upward 45 degree slope is a good indicator for that.