# Mindanao State University
# General Santos City

# Introduction to R base commands
# Submitted by: Kient Rey L. Zuyco
# Submitted to: Prof. Carlito O. Daarol
# Faculty
# Math Department
# April 11, 2023

# Processing of continuous data
# Using random number generators

# Exer1: generate data with mean 2 and standard deviation 1.5 using rnorm() command
data <- rnorm(1000,2,1.5) # 1 thousand values
length(data) # count number of elements
## [1] 1000
data[1:20] # display first 20 elements
##  [1]  2.4097335  0.3321920  0.7839341  1.7698435  2.4172169 -0.2880273
##  [7] -0.1029885  1.0024039  0.5887879  1.3810644  0.5575648  2.2708779
## [13]  4.8632841  1.2130398  3.6698344  3.9640466  2.5262743  2.7764387
## [19] -1.5893364  4.4308899
data[1:300] # display the first 300 elements
##   [1]  2.40973352  0.33219200  0.78393407  1.76984354  2.41721686 -0.28802732
##   [7] -0.10298852  1.00240386  0.58878792  1.38106439  0.55756481  2.27087793
##  [13]  4.86328407  1.21303975  3.66983437  3.96404662  2.52627426  2.77643870
##  [19] -1.58933636  4.43088985  2.70539843  4.11490596  0.55423969  3.81854372
##  [25]  2.13501940  0.44060387  2.57614930  2.73753837  1.88622227  4.07567355
##  [31]  1.31443493  3.42241306  1.91554767  1.88597213  0.37579372  2.09315034
##  [37]  4.85031285  2.19094999  1.19276263  0.78205487  3.10715388  2.08811621
##  [43]  2.27463934  0.49073262  1.68886682  2.47228362 -0.28708295  5.03260153
##  [49]  2.71576201  0.53660256  3.27843352  1.60913296 -0.21408686  0.96302116
##  [55] -2.20910709  0.70014730  3.75048372  4.10720703  2.58290317  3.99982367
##  [61]  3.82601325  2.21643961  2.98163771  3.60725514  0.77075585  0.22204339
##  [67]  2.27316225  1.88930333 -0.39535398 -1.79404308  1.53633868  1.97154402
##  [73]  2.12024565  2.02922629  1.08995854  2.59653596  0.38359317  3.08508110
##  [79]  2.17511274  2.74683258  1.10646209  2.23854513  1.91636368  1.13984340
##  [85]  1.27885906  3.55008695  0.26744308  2.78332195 -1.79579395  2.72485158
##  [91]  2.03788951  1.13597853  2.18824146  2.47900136  0.09230804  1.91661932
##  [97]  2.61878556  0.84205547  1.13402790  1.65865242 -0.64949936  1.53636122
## [103]  3.02789387  0.64293609  3.82902399  1.42439847  0.39072257  0.33662078
## [109]  2.13037046  2.41812421  4.02377921  0.73630013  0.69305132  2.21301483
## [115]  1.90143152  2.31949965  0.95057901  3.13857579  0.32386122  0.48007761
## [121]  1.69983878  2.43980368  2.44214484  3.23681878  3.73198787  0.42804902
## [127]  0.90855919 -2.33329467 -0.28312166  3.16753109  3.70421272  2.60758082
## [133]  0.10963556  4.40019464  1.03268648  4.10353477  6.62599965  2.72397381
## [139]  0.05799016  3.30032914  1.13228531  1.63592601  4.06770872  1.11826772
## [145]  0.31826391  1.16059822  5.04151796 -0.46877532  4.01389762  1.92081395
## [151]  4.98978920  3.34459206  1.89961037  0.05320513 -0.01343242  1.50419989
## [157]  0.91345601  0.49781205  3.52173026  3.37602527  1.19900211  1.25902808
## [163]  2.53621570  5.33208731  1.69242791  0.49600153  3.26678870  1.60459108
## [169]  2.32733740  4.05199921  1.47195047  1.00445020  1.13420029  0.76955293
## [175]  3.91596031  3.04593384  1.64726075  2.30520990 -0.63673946  1.44128147
## [181]  1.91640863  1.47094476  2.00034566  3.81085704  2.23196113  2.47385158
## [187] -1.65402798  1.92430390  1.38153280  1.81676417  5.93907279  2.03348994
## [193]  0.52282974  3.44522778  1.18562459 -0.27965306 -0.70613680  2.15910142
## [199] -0.01312405  6.32277186  2.76310243  3.37253123  0.71113640  2.77790704
## [205]  1.17721879  1.96794108  2.89704386  1.57743958  2.93909572  4.16929921
## [211]  2.73938845  2.24048065  3.45062909  3.22394848  3.28366377  0.76323903
## [217]  1.36451985  3.53475449  4.82968260  3.18304208  2.72585187  1.58033696
## [223]  2.00339522  1.99984109  2.03507217  1.67652090  1.75953312  4.59398357
## [229]  1.10646848  1.17397049  3.78613914  2.36637817  1.45924552  3.05084576
## [235]  2.85501805  2.75744429  4.01864906  4.62457605  0.87369293  1.40167939
## [241]  0.12606745  3.15379486  2.99983428 -0.34230926  3.06422320 -0.57095083
## [247]  2.41450089  4.30893768  3.12109108  1.20570038  3.18147660  3.09265860
## [253] -1.94630268  2.40303648 -0.15537265 -0.60965857  2.52576203  3.32349678
## [259]  3.49732666  2.97658172  3.06453192  2.42572039  3.02975007  2.76681790
## [265]  5.60963176 -0.33885413  1.85858326  0.42124402  1.45675994  0.66960938
## [271]  1.43341589  1.10203961  1.47786217  3.89582327 -0.52838169  2.71977974
## [277]  1.80062029  1.16961417  4.80219322  3.15392385  1.12101736  1.79628717
## [283] -0.12625739  3.15107621  3.25911726 -0.43574310  2.05372519  0.22535835
## [289]  3.09616174  2.66295094  1.97697518  2.47018151  1.64865122  1.65741510
## [295]  5.17096497  2.12749143  3.78485359  3.51386555  0.62395678  2.82464482
# Exer2: Draw histogram with one main title and different thickness
maintitle <- "Histogram and Density Plot"
hist(data, breaks=20,col="lightblue",main = maintitle)

hist(data, breaks=40,col="lightblue",main = maintitle)

hist(data, breaks=100,col="gray",main = maintitle)

hist(data, breaks=300,col="gray",main = maintitle)

# Exer3: Draw histogram with one main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)

hist(data, breaks=40,col="lightblue",main = maintitle)

hist(data, breaks=100,col="gray",main = maintitle)

# Question: What causes the subtitle to be in the second line?
# Exer4: Draw histogram with main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)
# Add density curve. We define the range of the density curve 
x = seq(from=min(data), to=max(data), length.out=100)
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/
  20*length(data)
lines(x, norm_dist, col='violet',lwd=4)

# Exer5: Draw histogram with main title and sub title
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)
# Add density curve and the location of the mean value 
(x = seq(from=min(data), to=max(data), length.out=100))
##   [1] -2.66714749 -2.56594350 -2.46473950 -2.36353551 -2.26233152 -2.16112752
##   [7] -2.05992353 -1.95871953 -1.85751554 -1.75631154 -1.65510755 -1.55390355
##  [13] -1.45269956 -1.35149556 -1.25029157 -1.14908757 -1.04788358 -0.94667958
##  [19] -0.84547559 -0.74427159 -0.64306760 -0.54186360 -0.44065961 -0.33945561
##  [25] -0.23825162 -0.13704762 -0.03584363  0.06536037  0.16656436  0.26776836
##  [31]  0.36897235  0.47017635  0.57138034  0.67258434  0.77378833  0.87499233
##  [37]  0.97619632  1.07740031  1.17860431  1.27980830  1.38101230  1.48221629
##  [43]  1.58342029  1.68462428  1.78582828  1.88703227  1.98823627  2.08944026
##  [49]  2.19064426  2.29184825  2.39305225  2.49425624  2.59546024  2.69666423
##  [55]  2.79786823  2.89907222  3.00027622  3.10148021  3.20268421  3.30388820
##  [61]  3.40509220  3.50629619  3.60750019  3.70870418  3.80990818  3.91111217
##  [67]  4.01231617  4.11352016  4.21472416  4.31592815  4.41713214  4.51833614
##  [73]  4.61954013  4.72074413  4.82194812  4.92315212  5.02435611  5.12556011
##  [79]  5.22676410  5.32796810  5.42917209  5.53037609  5.63158008  5.73278408
##  [85]  5.83398807  5.93519207  6.03639606  6.13760006  6.23880405  6.34000805
##  [91]  6.44121204  6.54241604  6.64362003  6.74482403  6.84602802  6.94723202
##  [97]  7.04843601  7.14964001  7.25084400  7.35204800
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/
  20*length(data)
lines(x, norm_dist, col='violet',lwd=4)
abline(v = mean(data), col="black", lwd=3, lty=2)
# Add legend to top right position
legend("topright",
       legend = c("Histogram", "density curve", "Average"),
       col = c("lightblue", "violet", "black"),
       lty = 1)

# Compute Quartile values Q1,Q2 and Q3
# These quantities divide the data into 4 equal parts 
hist(data, breaks=20,col="lightblue",main = maintitle)
Quantiles = quantile(data)
Quantiles
##         0%        25%        50%        75%       100% 
## -2.6671475  0.9608394  1.9163862  2.9658200  7.3520480
##         0%        25%        50%        75%       100% 
## -3.5754116  0.8513114  1.9366460  3.0049901  6.7950501
# locate the quartiles Q1, Q2, Q3
abline(v = Quantiles[2], col="black", lwd=3, lty=3)
abline(v = Quantiles[3], col="red", lwd=3, lty=3)
abline(v = Quantiles[4], col="blue", lwd=3, lty=3)

# Exer6: Locate the lowest 5% and the highest 5% of the distribution
data
##    [1]  2.409733521  0.332192001  0.783934071  1.769843542  2.417216859
##    [6] -0.288027316 -0.102988518  1.002403859  0.588787920  1.381064386
##   [11]  0.557564812  2.270877929  4.863284073  1.213039754  3.669834375
##   [16]  3.964046620  2.526274257  2.776438696 -1.589336363  4.430889851
##   [21]  2.705398434  4.114905961  0.554239689  3.818543718  2.135019403
##   [26]  0.440603866  2.576149296  2.737538375  1.886222275  4.075673550
##   [31]  1.314434930  3.422413061  1.915547671  1.885972127  0.375793720
##   [36]  2.093150344  4.850312848  2.190949987  1.192762631  0.782054869
##   [41]  3.107153883  2.088116214  2.274639339  0.490732615  1.688866819
##   [46]  2.472283624 -0.287082952  5.032601530  2.715762007  0.536602557
##   [51]  3.278433520  1.609132962 -0.214086863  0.963021164 -2.209107090
##   [56]  0.700147305  3.750483720  4.107207032  2.582903173  3.999823667
##   [61]  3.826013246  2.216439610  2.981637711  3.607255144  0.770755847
##   [66]  0.222043387  2.273162252  1.889303326 -0.395353985 -1.794043085
##   [71]  1.536338678  1.971544023  2.120245648  2.029226286  1.089958541
##   [76]  2.596535963  0.383593173  3.085081096  2.175112736  2.746832584
##   [81]  1.106462094  2.238545133  1.916363681  1.139843396  1.278859064
##   [86]  3.550086953  0.267443082  2.783321947 -1.795793950  2.724851582
##   [91]  2.037889513  1.135978532  2.188241458  2.479001363  0.092308045
##   [96]  1.916619315  2.618785563  0.842055469  1.134027903  1.658652418
##  [101] -0.649499361  1.536361215  3.027893871  0.642936090  3.829023993
##  [106]  1.424398474  0.390722571  0.336620785  2.130370458  2.418124206
##  [111]  4.023779207  0.736300128  0.693051324  2.213014827  1.901431517
##  [116]  2.319499647  0.950579006  3.138575794  0.323861222  0.480077610
##  [121]  1.699838780  2.439803678  2.442144841  3.236818783  3.731987871
##  [126]  0.428049021  0.908559190 -2.333294671 -0.283121664  3.167531089
##  [131]  3.704212720  2.607580822  0.109635563  4.400194644  1.032686485
##  [136]  4.103534773  6.625999651  2.723973811  0.057990159  3.300329142
##  [141]  1.132285308  1.635926006  4.067708721  1.118267724  0.318263913
##  [146]  1.160598216  5.041517962 -0.468775317  4.013897616  1.920813955
##  [151]  4.989789204  3.344592063  1.899610370  0.053205135 -0.013432420
##  [156]  1.504199891  0.913456008  0.497812046  3.521730259  3.376025274
##  [161]  1.199002112  1.259028078  2.536215695  5.332087306  1.692427910
##  [166]  0.496001529  3.266788704  1.604591079  2.327337396  4.051999210
##  [171]  1.471950472  1.004450198  1.134200295  0.769552927  3.915960308
##  [176]  3.045933836  1.647260748  2.305209899 -0.636739459  1.441281469
##  [181]  1.916408630  1.470944757  2.000345656  3.810857036  2.231961130
##  [186]  2.473851581 -1.654027981  1.924303899  1.381532804  1.816764174
##  [191]  5.939072791  2.033489937  0.522829735  3.445227784  1.185624595
##  [196] -0.279653064 -0.706136804  2.159101417 -0.013124046  6.322771857
##  [201]  2.763102430  3.372531232  0.711136401  2.777907043  1.177218792
##  [206]  1.967941082  2.897043864  1.577439580  2.939095717  4.169299208
##  [211]  2.739388448  2.240480652  3.450629092  3.223948478  3.283663770
##  [216]  0.763239028  1.364519850  3.534754486  4.829682602  3.183042078
##  [221]  2.725851872  1.580336961  2.003395219  1.999841094  2.035072165
##  [226]  1.676520903  1.759533117  4.593983574  1.106468477  1.173970492
##  [231]  3.786139138  2.366378175  1.459245520  3.050845760  2.855018053
##  [236]  2.757444289  4.018649062  4.624576050  0.873692933  1.401679391
##  [241]  0.126067451  3.153794862  2.999834278 -0.342309263  3.064223199
##  [246] -0.570950832  2.414500891  4.308937684  3.121091075  1.205700378
##  [251]  3.181476604  3.092658601 -1.946302680  2.403036479 -0.155372650
##  [256] -0.609658565  2.525762027  3.323496780  3.497326659  2.976581717
##  [261]  3.064531923  2.425720389  3.029750068  2.766817900  5.609631762
##  [266] -0.338854129  1.858583257  0.421244024  1.456759944  0.669609377
##  [271]  1.433415887  1.102039611  1.477862171  3.895823270 -0.528381690
##  [276]  2.719779738  1.800620295  1.169614174  4.802193223  3.153923846
##  [281]  1.121017364  1.796287167 -0.126257389  3.151076210  3.259117262
##  [286] -0.435743098  2.053725190  0.225358352  3.096161743  2.662950940
##  [291]  1.976975183  2.470181511  1.648651217  1.657415104  5.170964967
##  [296]  2.127491425  3.784853593  3.513865553  0.623956784  2.824644825
##  [301]  3.807542135  1.585239881  2.850672391  4.501696149  1.299937741
##  [306] -0.204466314  3.393553892  0.882177935  3.173465155  1.854532698
##  [311]  0.460125677  1.200523253  2.169282451  2.137338939  2.372392263
##  [316]  3.461977090  0.086125773  3.602836274  1.819019434  3.798271129
##  [321]  0.839160245  2.267737785  2.841513768 -0.381956628 -0.956130416
##  [326] -0.747238603  3.969736125  0.192750375  1.811165049  2.966022536
##  [331]  0.710969254  1.746685543  1.745228699  0.595021237  0.639745778
##  [336]  1.313775120  1.564341473  0.491480089  2.185345325  3.033729290
##  [341]  1.914886643  0.695696431  3.611574573  3.099062731  2.462030285
##  [346]  3.174250822  2.720116655  3.296723600  4.087920705  2.147611899
##  [351]  2.497317402  2.281712878  0.053296638  2.634476101  2.665619957
##  [356]  0.895959521  4.335791004  2.463786916  1.256191372  3.253500388
##  [361]  1.120717694  3.976659456  5.084484722  3.840856417  1.938072718
##  [366]  1.261562060  5.397735041 -1.629521605  1.863675112  2.544003603
##  [371]  1.941516827  2.756042132 -0.491227225  2.192622034  1.959663920
##  [376] -0.346661728  1.170204855  4.024087749  3.672445839  4.121382348
##  [381]  1.187145058  2.592879995  0.969146512  1.736872918  0.306057680
##  [386]  1.120199401  2.691857452  4.880325109  1.807489301  3.958792926
##  [391] -0.968405812  2.192349565  0.121587941  2.943978515  3.088592669
##  [396] -0.117798513  1.412370767 -0.850454975  2.610281659  1.323175092
##  [401]  2.601527332  2.492896113  3.653891258  1.615218408  4.078472765
##  [406]  2.421278777  3.332591014  1.865228729  2.986546262  0.417754429
##  [411]  4.885423222  2.558474593  1.222472193  4.193817501  0.657374322
##  [416]  3.469189316 -0.529670186  1.924592915  2.193368299  4.568320495
##  [421]  0.767299391  2.545446694  1.948578235  1.730199310  1.409214021
##  [426]  2.263169268  1.725964961  2.939728866  2.629501848  2.108960169
##  [431]  0.676759970  2.289559233  2.315942837  2.524292023  0.474493304
##  [436]  2.343776424  4.729965905 -0.216186396  1.778286041  1.513905532
##  [441]  4.185337749  3.268688245  0.138315576  2.269392473  0.966694299
##  [446]  0.443587450  1.361343832 -0.879784057  2.124044066  2.627198247
##  [451]  1.898591058  3.798074357  3.355693276 -0.193597000  1.018479010
##  [456]  0.317948044  1.557396318  2.837198129 -0.037302489  3.015942472
##  [461]  1.898461213  3.743415057  2.187388109  1.823430740  2.178068619
##  [466]  3.764937688  2.746205197 -0.169461671  2.969541432  3.129681816
##  [471]  2.928387610  0.173687639  0.104813486  2.119531712  1.196981880
##  [476]  1.947308934  4.129008241  4.743045019  1.837168565  2.553593445
##  [481]  3.887727150  1.671046627  4.142732194  1.162233860 -0.037321599
##  [486]  4.195952106  2.302880186  1.745756807  3.016762361 -0.790424460
##  [491]  3.082487175  1.894341430  0.886851894  0.769061777  1.860318260
##  [496]  0.434682887  0.914526231  0.276596349  1.583937108  2.962635339
##  [501]  2.018069622  0.409438528  2.629436714  2.727238500  2.609397313
##  [506] -1.398907420  4.627010951  2.659537579  2.400231662  0.424480324
##  [511]  1.653363474  2.820303981  7.352047996  1.282337830  1.976281919
##  [516]  0.670466533  3.644619967  0.628037658  0.372887460  4.211464916
##  [521]  1.792137918  1.434659847 -1.064926986  0.859999365  2.734146259
##  [526]  3.366507646  1.802268080  2.543546707  1.461469410  4.550971090
##  [531]  2.122421396  2.823885268  1.178875204  3.758271557  0.203754987
##  [536]  0.828663789  0.319625554 -0.097740299  3.946675232  2.049099183
##  [541] -0.668478589 -0.175295958  0.533915193  2.175968344  1.663640269
##  [546] -0.022780134  0.609037656  1.171879013  2.428704761  2.478493855
##  [551]  1.220901539  2.323096951  0.310942927  1.689482258  0.837180792
##  [556]  0.012609115  2.357004754  1.387602166  0.812009364  2.102181488
##  [561]  3.080948992  0.073698799  3.145811033 -1.822458894  1.550250976
##  [566]  1.204726068  0.933677805  4.215771294  0.730323127  4.315148632
##  [571]  2.380057700  1.524682572  1.457443021  3.461455240  2.238028018
##  [576]  3.497873688  1.326625604  2.381988879  0.713532167  3.721304297
##  [581]  1.722217072  1.151380954 -0.859868522  2.646299444  2.870877815
##  [586] -0.523877781  2.778781360  4.329833174  0.386087566  3.450143368
##  [591]  1.336037454  1.646520657  1.619911420  0.164920824  2.807511935
##  [596]  3.091148002  0.540970797  4.354028211  3.646536213  0.049990845
##  [601]  1.531586773  2.376080435  3.908052936  0.309892425  0.842974088
##  [606]  0.972060215  0.360823303  0.919925529  1.176239286  1.403384361
##  [611]  3.793190587  1.799083770  2.255889924  3.360574939  1.741975161
##  [616]  0.440170579 -0.204148601  3.363022115  1.532607288  1.176298259
##  [621]  0.954294203 -0.219363991  2.691842603 -0.265611453  3.372295086
##  [626]  0.141681596  1.087404630 -0.365594543  1.967651786  3.318308424
##  [631]  3.357705013  1.125610987  2.263308623  2.775177703  0.572128971
##  [636]  1.175739308  2.791749918  3.127476161  2.666336082  0.075259310
##  [641]  2.154946046  2.733062512  4.951143789  0.992407340  4.065740207
##  [646]  0.358812814  1.637703697  3.038259402 -0.339855691 -2.667147495
##  [651]  2.594522186  0.931946244  2.760251594 -0.246816545  0.308260532
##  [656]  4.331462767  1.305879288  2.155599181  1.102820194 -0.424433115
##  [661]  2.922212286  3.071583831  2.529265212 -1.842525945 -0.839174116
##  [666]  1.800248358  3.018263277  0.749151499  2.460490385  0.229984383
##  [671]  2.251645607  2.060415320  1.784831107  4.214944839  3.164888015
##  [676]  2.706703336  2.276605316  3.014252873  1.484981855  1.542377006
##  [681]  4.037660679  1.759346547  3.442674004  0.942056094  2.562422621
##  [686]  2.354122937  1.543031835  0.628348638  0.595078256  0.797917815
##  [691] -0.559577947  3.915066047  2.040351221  1.601901033  1.730278235
##  [696]  0.314417235  1.405566479  2.913124519  1.594214510  3.799069128
##  [701]  1.770785038  0.166474421  1.417558047  1.222017908  3.929795568
##  [706]  6.248222254  3.933360832  3.459840629  3.002576721  4.730841922
##  [711]  2.413776751  3.933345826  1.267367486 -1.253551894  0.129121559
##  [716]  4.134829892  1.052129022  0.413382950  4.066262833  1.952051904
##  [721]  0.300575747  1.907849657  1.578645052  2.629283105  3.845566699
##  [726] -0.546487776  1.471025710 -0.125948011  3.670348226  0.754660902
##  [731]  1.377047832  2.510275405  1.803785183  3.148740225  3.020821429
##  [736]  4.057875190  0.314970309  1.331940623  2.352994585  4.649430941
##  [741]  3.651103348  1.623553432  3.852033570 -0.295358694 -0.469742099
##  [746]  1.352464563  0.568990552  1.575824543  1.824051867 -0.367747904
##  [751]  2.860429703  1.775406242 -0.853645457  1.033335522  1.797515604
##  [756]  2.384119150  6.279854017  2.490109509  1.558242872  2.159808061
##  [761]  2.489147675  3.147709633 -0.320554496  1.763080598  4.056590173
##  [766]  3.058868234  1.620563375  2.329638307  4.245282547  2.236548897
##  [771]  1.397926952  3.002485749  2.852427991  1.840481958 -0.823422027
##  [776]  1.806697192  3.017448128  0.255350886  2.943840624  0.667563717
##  [781]  1.009214529  2.350264811  1.448513790  2.300297762  2.490319379
##  [786]  2.185886327  3.554900561  1.564868234  2.435716031  1.165630766
##  [791]  0.923608795  2.776214538  1.361506922 -0.030554378  0.631627370
##  [796]  0.194498028  4.121806042  5.065959775  1.050694726  1.110820798
##  [801]  1.836774610  2.001974939  1.580240253  1.475924826  1.551370454
##  [806]  0.826127472  0.107900238  2.382205145  3.253804910  4.278012317
##  [811]  2.511760951  2.899370336  2.470717647  4.160769381  1.646553800
##  [816]  2.314528127 -0.019617632  0.359688895  1.682506824  2.176066464
##  [821]  1.390299152  1.552846597  2.238004999  4.121752916  4.830082767
##  [826]  1.814893297  1.201752564  2.210027506  3.858659346  0.864838495
##  [831]  3.793577046  0.427260932  3.531144835  0.009382786  3.773720946
##  [836]  2.387664951  2.434169233 -0.732110570  1.180064459  1.040549633
##  [841]  1.187950849  2.965752456 -0.425230054  1.831740338  0.035888723
##  [846]  5.186935661  0.143727153  2.637797895  0.471220822  3.264526346
##  [851]  4.984076353  0.707310507  2.599645202  1.314807901  4.145517259
##  [856]  0.650541420  1.422609471  1.320522699  2.351754763  2.307503654
##  [861]  0.786982576 -0.327364169  1.608751342  1.216237985  1.609971354
##  [866]  4.452384191  2.249949434  1.444434340  3.386695051  4.963511494
##  [871]  3.230146657  1.403565733  1.515544291  2.347481492  1.505700597
##  [876]  2.532635690  1.363649305  1.458275142  2.391654127  3.199851201
##  [881]  3.501038299 -0.685885710  2.036561070  1.878566323  2.167331605
##  [886]  2.244693718  0.895158833 -0.121368186  0.551141908  3.410643846
##  [891] -0.509951446  1.107221271  0.883849961  1.969698341  2.576266542
##  [896]  3.926029443  3.460743910  3.071174799  1.796422896  1.667648712
##  [901]  4.081755955  1.143708460  1.798462606  3.549371316  5.600434657
##  [906]  4.847032345 -0.460871857  0.399146341  4.730911855  0.760972057
##  [911]  2.244972440  1.602781876 -0.312907093  4.066040681  2.189980804
##  [916]  1.546072628 -0.114025145  0.218848542  2.271857556  2.748676834
##  [921]  4.994913708  0.857591667 -1.196567828  0.744922179  0.429175052
##  [926]  0.102581843  1.828601841  3.715699350 -0.499449527  1.625529381
##  [931]  4.346394412  2.355968365  1.152101314  1.522269654  2.243115511
##  [936]  1.563911707  3.031550420  0.165552610  1.339480321  2.429264696
##  [941]  1.580868016  0.699102827  4.266348712  0.991841735  1.195551672
##  [946]  1.883251938  3.292292401  2.335756576  2.738239665  0.979734693
##  [951]  2.059551679  0.886836882  3.896710708 -0.112625895  2.711203648
##  [956]  2.290331214  2.534216945  3.991794791 -1.629233386  3.411162963
##  [961]  1.040816286  2.868239964  3.638714819  1.137183260  3.621515952
##  [966]  0.160396104  3.553410866  3.126999901  4.044167855  2.181877167
##  [971]  1.757206186  1.797851640  1.106853095  2.302110284  1.682208566
##  [976]  2.487865460  1.094877855  1.075846191 -0.078747936  3.994978554
##  [981]  2.397999509  2.431656141  2.469277651  0.304212752  2.445496183
##  [986]  4.845357501  4.017150074 -0.576732779  1.467422640  0.583444025
##  [991]  2.330948658  0.096892598  0.637135238  1.781248898  1.928767398
##  [996]  0.614571757  3.356406328  1.606145754  1.829028550  1.760010146
summary(data)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -2.6671  0.9608  1.9164  1.9574  2.9658  7.3520
subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)
# Add density curve (define the range of the density curve) 
x = seq(from=min(data), to=max(data), length.out=100)
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/
  20*length(data)
lines(x, norm_dist, col='violet',lwd=4)
abline(v = mean(data), col="black", lwd=3, lty=2)
# Add legend
legend("topright", # Add legend to plot
       legend = c("Histogram", "density curve", "Average"),
       col = c("lightblue", "violet", "black"),
       lty = 1)
# Locate lowest 5% and highest 5% of the data
quantile(data,prob = 0.05)
##         5% 
## -0.3826265
abline(v = quantile(data,prob = 0.05), col="red", lwd=3, lty=3)
# Area to the left of the red line is lowest 5% of the data
quantile(data,prob = 0.95)
##      95% 
## 4.309248
abline(v = quantile(data,prob = 0.95), col="blue", lwd=3, lty=3)

# Area to the right of the blue line is top 5% of the data
# Area in between the red line and the blue line is 90%
# of the data
# How to get the values (lowest 5%)
(Cutoff <- quantile(data,prob = 0.05))
##         5% 
## -0.3826265
# mark those values that is lower than -.42 as true
# and higher than -.42 as false
(Low5Percent <- (data < Cutoff))
##    [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [13] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##   [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [49] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##   [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE
##   [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [85] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [97] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [145] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [181] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [193] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [241] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [253]  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [277] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [325]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [337] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [373]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [385] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [397] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [445] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [469] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [505] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [517] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [541]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [553] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [577] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
##  [589] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [649] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [661] FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [673] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [685] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [697] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [709] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [721] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [733] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [745]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [769] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [817] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [841] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [877] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [889] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [901] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [913] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [925] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [961] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [985] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [997] FALSE FALSE FALSE FALSE
# How to get the top 5%
(Cutoff <- quantile(data,prob = 0.95))
##      95% 
## 4.309248
(Top5Percent <- (data >= Cutoff))
##    [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [13]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##   [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [37]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##   [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [133] FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [145] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [217] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [253] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [265]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [277] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [289] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [301] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [325] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [337] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [361] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [385] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [397] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [409] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [433] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [445] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [469] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [505] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [529] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [553] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [565] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [577] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [589] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [601] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [637] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [673] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [685] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [697] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [709] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [733] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [745] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [757]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [793] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [817] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [841] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [865] FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [877] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [901] FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [913] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [925] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [961] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [985] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [997] FALSE FALSE FALSE FALSE
sum(Top5Percent[TRUE]) # counts all the true values
## [1] 50
data[Top5Percent==TRUE]
##  [1] 4.863284 4.430890 4.850313 5.032602 4.400195 6.626000 5.041518 4.989789
##  [9] 5.332087 5.939073 6.322772 4.829683 4.593984 4.624576 5.609632 4.802193
## [17] 5.170965 4.501696 4.335791 5.084485 5.397735 4.880325 4.885423 4.568320
## [25] 4.729966 4.743045 4.627011 7.352048 4.550971 4.315149 4.329833 4.354028
## [33] 4.951144 4.331463 6.248222 4.730842 4.649431 6.279854 5.065960 4.830083
## [41] 5.186936 4.984076 4.452384 4.963511 5.600435 4.847032 4.730912 4.994914
## [49] 4.346394 4.845358