#Tema1

url.eph.2020 = "https://www.ine.gov.py/datos/encuestas/eph/Poblacion/EPH-2020/data/55f07reg02_ephc2020.csv"
data.eph.2020 = read.csv(url.eph.2020,sep = ";",header = T)
# Visualizamos los nombres de las variables en data.eph.2020
names(data.eph.2020)
##   [1] "UPM"                       "NVIVI"                    
##   [3] "NHOGA"                     "DPTOREP"                  
##   [5] "AREA"                      "L02"                      
##   [7] "P02"                       "P03"                      
##   [9] "P04"                       "P04A"                     
##  [11] "P04B"                      "P05C"                     
##  [13] "P05P"                      "P05M"                     
##  [15] "P06"                       "P08D"                     
##  [17] "P08M"                      "P08A"                     
##  [19] "P09"                       "P10A"                     
##  [21] "P10AB"                     "P10Z"                     
##  [23] "P11A"                      "P11AB"                    
##  [25] "P11Z"                      "P12"                      
##  [27] "A01"                       "A01A"                     
##  [29] "A02"                       "A03"                      
##  [31] "A04"                       "A04B"                     
##  [33] "A04A"                      "A05"                      
##  [35] "A07"                       "A08"                      
##  [37] "A10"                       "A11A"                     
##  [39] "A11M"                      "A11S"                     
##  [41] "A12"                       "A13REC"                   
##  [43] "A14REC"                    "A15"                      
##  [45] "A16"                       "A17A"                     
##  [47] "A17M"                      "A17S"                     
##  [49] "A18"                       "A18A"                     
##  [51] "B01REC"                    "B02REC"                   
##  [53] "B03LU"                     "B03MA"                    
##  [55] "B03MI"                     "B03JU"                    
##  [57] "B03VI"                     "B03SA"                    
##  [59] "B03DO"                     "B04"                      
##  [61] "B05"                       "B05A"                     
##  [63] "B06"                       "B07A"                     
##  [65] "B07M"                      "B07S"                     
##  [67] "B08"                       "B09A"                     
##  [69] "B09M"                      "B09S"                     
##  [71] "B10"                       "B11"                      
##  [73] "B12"                       "B12A"                     
##  [75] "B12B"                      "B12C"                     
##  [77] "B13"                       "B14"                      
##  [79] "B15"                       "B16G"                     
##  [81] "B16U"                      "B16D"                     
##  [83] "B16T"                      "B17"                      
##  [85] "B18AG"                     "B18AU"                    
##  [87] "B18BG"                     "B18BU"                    
##  [89] "B19"                       "B20G"                     
##  [91] "B20U"                      "B20D"                     
##  [93] "B20T"                      "B21"                      
##  [95] "B22"                       "B23"                      
##  [97] "B24"                       "B25"                      
##  [99] "B26"                       "B271"                     
## [101] "B272"                      "B28"                      
## [103] "B29"                       "B30"                      
## [105] "B31"                       "C01REC"                   
## [107] "C02REC"                    "C03"                      
## [109] "C04"                       "C05"                      
## [111] "C06"                       "C07"                      
## [113] "C08"                       "C09"                      
## [115] "C101"                      "C102"                     
## [117] "C11G"                      "C11U"                     
## [119] "C11D"                      "C11T"                     
## [121] "C12"                       "C13AG"                    
## [123] "C13AU"                     "C13BG"                    
## [125] "C13BU"                     "C14"                      
## [127] "C14A"                      "C14B"                     
## [129] "C14C"                      "C15"                      
## [131] "C16REC"                    "C17REC"                   
## [133] "C18"                       "C18A"                     
## [135] "C18B"                      "C19"                      
## [137] "D01"                       "D02"                      
## [139] "D03"                       "D04"                      
## [141] "D05"                       "E01A"                     
## [143] "E01B"                      "E01C"                     
## [145] "E01D"                      "E01E"                     
## [147] "E01F"                      "E01G"                     
## [149] "E01H"                      "E01I"                     
## [151] "E01J"                      "E01K"                     
## [153] "E01L"                      "E01M"                     
## [155] "E02C1"                     "E02D1"                    
## [157] "E02D2"                     "E02B"                     
## [159] "E02G1"                     "E02G2"                    
## [161] "E02F"                      "ED01"                     
## [163] "ED02"                      "ED03"                     
## [165] "ED0504"                    "ED06C"                    
## [167] "ED08"                      "ED09"                     
## [169] "ED10"                      "ED11F1"                   
## [171] "ED11F1A"                   "ED11GH1"                  
## [173] "ED11GH1A"                  "ED12"                     
## [175] "ED13"                      "ED14"                     
## [177] "ED14A"                     "ED15"                     
## [179] "S01A"                      "S01B"                     
## [181] "S02"                       "S03"                      
## [183] "S03A"                      "S03B"                     
## [185] "S03C"                      "S04"                      
## [187] "S05"                       "S06"                      
## [189] "S07"                       "S08"                      
## [191] "S09"                       "CATE_PEA"                 
## [193] "TAMA_PEA"                  "OCUP_PEA"                 
## [195] "RAMA_PEA"                  "HORAB"                    
## [197] "HORABC"                    "HORABCO"                  
## [199] "PEAD"                      "PEAA"                     
## [201] "informalidad"              "TIPOHOGA"                 
## [203] "FEX"                       "NJEF"                     
## [205] "NCON"                      "NPAD"                     
## [207] "NMAD"                      "TIC01"                    
## [209] "TIC02"                     "TIC03"                    
## [211] "TIC0401"                   "TIC0402"                  
## [213] "TIC0403"                   "TIC0404"                  
## [215] "TIC0405"                   "TIC0406"                  
## [217] "TIC0407"                   "TIC0408"                  
## [219] "TIC0409"                   "TIC0501"                  
## [221] "TIC0502"                   "TIC0503"                  
## [223] "TIC0504"                   "TIC0505"                  
## [225] "TIC0506"                   "TIC0507"                  
## [227] "TIC0508"                   "TIC0509"                  
## [229] "TIC0510"                   "TIC0511"                  
## [231] "TIC0512"                   "TIC0513"                  
## [233] "TIC06"                     "TIC07"                    
## [235] "añoest"                    "ra06ya09"                 
## [237] "e01aimde"                  "e01bimde"                 
## [239] "e01cimde"                  "e01dde"                   
## [241] "e01ede"                    "e01fde"                   
## [243] "e01gde"                    "e01hde"                   
## [245] "e01ide"                    "e01jde"                   
## [247] "e01kde"                    "e01lde"                   
## [249] "e01mde"                    "e01kjde"                  
## [251] "e02bde"                    "ingrevasode"              
## [253] "ingreñangarekode"          "ingrepytyvõde"            
## [255] "ingresect_privadode"       "ingreadicional_tekoporãde"
## [257] "otroingre_subside"         "ipcm"                     
## [259] "pobrezai"                  "pobnopoi"                 
## [261] "quintili"                  "decili"                   
## [263] "quintiai"                  "decilai"
#P06 Sexo
data.eph.2020$P06=factor(data.eph.2020$P06,labels=c("Hombres","Mujeres"))
table(data.eph.2020$P06)
## 
## Hombres Mujeres 
##    8762    8820
#Enfermedad que tuvo en los últimos 90 días_A
table(data.eph.2020$S03A)
## 
##    1    2    3    4    5    6    9 
## 1388   25   17  286   41 1531    2
# explorar y codificar las variables de interes

data.eph.2020$S03A=factor(data.eph.2020$S03A,labels=c("Resfrio","Bronquitis","Neumonia","COVID19","Denguezikchik","otro","NR"))
table(data.eph.2020$S03A)
## 
##       Resfrio    Bronquitis      Neumonia       COVID19 Denguezikchik 
##          1388            25            17           286            41 
##          otro            NR 
##          1531             2
table(data.eph.2020$S03A,data.eph.2020$P06)
##                
##                 Hombres Mujeres
##   Resfrio           687     701
##   Bronquitis         14      11
##   Neumonia            8       9
##   COVID19           143     143
##   Denguezikchik      17      24
##   otro              591     940
##   NR                  1       1

Tema 2

Dado una poblacion de 2600 canicas que contienen una urna,los cuales son de color rojo y plata respectivamente;para estimar la proporcion de canicAs procedemos a tomar muestras aleatorias de tamaño 30 de los cuales hacemos el conteo de las canicas rojas obtenidas p(r):numero de canicas rojas/numero total de canicas de la muestra,teniedo 17 replicas obtuvimos que dicho valor es de p=0,30. Luego aumentamos el tamaño de las muestras a valores aleatorios distintos y el resultados de las proporciones obtenidas lo grafica en una tabla mediante el cual observamos que habia una suerte de concentracion aldedor del 30% incluso se tuvo en una de las muestras el valor de la proporcion esperada,porlo que podemos decir que a medida aumentamos el numeros de muestras nos acercamos al valor del parametro mediante la estadistica muestral.Luego se comprobo por el conteo de todas las canicas que la p=686/2600.

Tema 3

#a) La estadistica bayesiana utlizamos el teorema de bayes para describir la incertidumbre mediante una funcion a priori cuyos valores siguen una distribucion de probabilidad que describe el compartamiento de la variable de estudio para utilizarla con la distribucion a posterior.Lo que tambien menciono el Dr.Bernardo que la estadistica bayesiana no era una rama de la estadistica clasica,sino una alternativa completa para el analisis de las variables de estudio.

#b) Para el trabajo utice la EPH 2019 Y 2020 para realizar el contraste de la hipotesis de la proporcion de hombres que utilizo internet para transferencia bancarias no es igual a la proporcion de mujeres,con um nivel de significancia de 0,05 llegue a la conclusion de que la proporcion de hombres es mayor que al de las mujeres que utilizaron internet para transferencias bancarias.