Import Data
stats <- read_csv("../00_data/myData.csv")
## New names:
## Rows: 39 Columns: 8
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," chr
## (2): Country, ...8 dbl (5): Kill/Death Ratio, Player Rating, Headshot
## Percentage, Kills Per Rou... lgl (1): ...7
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...7`
## • `` -> `...8`
stats <- stats %>%
janitor::clean_names()
Introduction
Questions
Variation
Visualizing distributions
stats %>%
ggplot(aes(x = player_impact)) +
geom_bar()

stats %>%
ggplot(aes(x = player_rating)) +
geom_bar()

Typical values
stats %>%
# Filter out higher player impact
filter(player_impact < 1.06) %>%
# Plot
ggplot(aes(x = player_impact)) +
geom_histogram(binwidth = 0.005)

stats %>%
# Filter out higher player rating
filter(player_rating < 1.05) %>%
# Plot
ggplot(aes(x = player_rating)) +
geom_histogram(binwidth = 0.005)

Unusual values
Missing Values
Covariation
stats %>%
ggplot(aes(x = player_impact, y = country)) +
geom_boxplot()

stats %>%
ggplot(aes(x = player_rating, y = country)) +
geom_boxplot()

A categorical and continuous variable
Two categorical variables
Two continous variables
Patterns and models