library(readxl)
Non_Parametric <- read_excel("Bases/Bases de datos/Non_Parametric.xlsx")
View(Non_Parametric)
library("RColorBrewer")Ejercicios 13.8-13.14
Bases utilizadas
Resolución de ejercicio 13.8
#prueba de U-mann whitney
wilcox.test(Non_Parametric$BiomarkerA~Non_Parametric$Patients, paired=F)
Wilcoxon rank sum test with continuity correction
data: Non_Parametric$BiomarkerA by Non_Parametric$Patients
W = 4901.5, p-value = 0.08608
alternative hypothesis: true location shift is not equal to 0
#comparación entre casos y controles biomarcadoa A
boxplot(Non_Parametric$BiomarkerA~Non_Parametric$Patients,
main= "Comparación biomarcador A entre casos y controles",
col= brewer.pal(n = 3, name = "Accent"),
xlab = "Grupos",
ylab = "Concentracioens de biomarcadorA",
frame=F)#prueba de U-mann whitney
wilcox.test(Non_Parametric$BiomarkerB~Non_Parametric$Patients, paired=F)
Wilcoxon rank sum test with continuity correction
data: Non_Parametric$BiomarkerB by Non_Parametric$Patients
W = 5826, p-value = 2.144e-05
alternative hypothesis: true location shift is not equal to 0
#comparación entre casos y controles biomarcador B
boxplot(Non_Parametric$BiomarkerB~Non_Parametric$Patients,
main= "Comparación biomarcador A entre casos y controles",
col= brewer.pal(n = 3, name = "Accent"),
xlab = "Grupos",
ylab = "Concentracioens de biomarcadorB",
frame=F)#prueba de U-mann whitney
wilcox.test(Non_Parametric$Biomarcador1~Non_Parametric$Patients, paired=F)
Wilcoxon rank sum test with continuity correction
data: Non_Parametric$Biomarcador1 by Non_Parametric$Patients
W = 2117, p-value = 8.644e-06
alternative hypothesis: true location shift is not equal to 0
#comparación entre casos y controles biomarcador 1
boxplot(Non_Parametric$Biomarcador1~Non_Parametric$Patients,
main= "Comparación biomarcador 1 entre casos y controles",
col= brewer.pal(n = 3, name = "Accent"),
xlab = "Grupos",
ylab = "Concentracioens de biomarcador1",
frame=F)#prueba de U-mann whitney
wilcox.test(Non_Parametric$Biomarcador2~Non_Parametric$Patients, paired=F)
Wilcoxon rank sum test with continuity correction
data: Non_Parametric$Biomarcador2 by Non_Parametric$Patients
W = 689, p-value = 0.2694
alternative hypothesis: true location shift is not equal to 0
#comparación entre casos y controles biomarcador 2
boxplot(Non_Parametric$Biomarcador2~Non_Parametric$Patients,
main= "Comparación biomarcador 2 entre casos y controles",
col= brewer.pal(n = 3, name = "Accent"),
xlab = "Grupos",
ylab = "Concentracioens de biomarcador2",
frame=F)#prueba de U-mann whitney
wilcox.test(Non_Parametric$Biomarcador3~Non_Parametric$Patients, paired=F)
Wilcoxon rank sum test with continuity correction
data: Non_Parametric$Biomarcador3 by Non_Parametric$Patients
W = 4355, p-value = 0.8265
alternative hypothesis: true location shift is not equal to 0
#comparación entre casos y controles biomarcador 1
boxplot(Non_Parametric$Biomarcador3~Non_Parametric$Patients,
main= "Comparación biomarcador 3 entre casos y controles",
col= brewer.pal(n = 3, name = "Accent"),
xlab = "Grupos",
ylab = "Concentracioens de biomarcador3",
frame=F)Resolución ejercicio 13.9
Umannwhit4 <- function(x, y) {
print(y)
par(mfrow = c(1,1))
boxplot(x, main = "", ylab = "", xlab = "Grupos experimentales")
#U-Mann Whitney test
wilcox.test(x, paired=F)
}
#Biomarcador A y pacientes
Umannwhit4(Non_Parametric$BiomarkerA~Non_Parametric$Patients, Non_Parametric$BiomarkerA~Non_Parametric$Patients) Non_Parametric$BiomarkerA ~ Non_Parametric$Patients
Wilcoxon rank sum test with continuity correction
data: Non_Parametric$BiomarkerA by Non_Parametric$Patients
W = 4901.5, p-value = 0.08608
alternative hypothesis: true location shift is not equal to 0
#Biomarcador B y pacientes
Umannwhit4(Non_Parametric$BiomarkerB~Non_Parametric$Patients, Non_Parametric$BiomarkerB~Non_Parametric$Patients) Non_Parametric$BiomarkerB ~ Non_Parametric$Patients
Wilcoxon rank sum test with continuity correction
data: Non_Parametric$BiomarkerB by Non_Parametric$Patients
W = 5826, p-value = 2.144e-05
alternative hypothesis: true location shift is not equal to 0
#biomarcador1 y pacientes
Umannwhit4(Non_Parametric$Biomarcador1~Non_Parametric$Patients, Non_Parametric$Biomarcador1~Non_Parametric$Patients) Non_Parametric$Biomarcador1 ~ Non_Parametric$Patients
Wilcoxon rank sum test with continuity correction
data: Non_Parametric$Biomarcador1 by Non_Parametric$Patients
W = 2117, p-value = 8.644e-06
alternative hypothesis: true location shift is not equal to 0
#biomarcador2 y pacientes
Umannwhit4(Non_Parametric$Biomarcador2~Non_Parametric$Patients, Non_Parametric$Biomarcador2~Non_Parametric$Patients) Non_Parametric$Biomarcador2 ~ Non_Parametric$Patients
Wilcoxon rank sum test with continuity correction
data: Non_Parametric$Biomarcador2 by Non_Parametric$Patients
W = 689, p-value = 0.2694
alternative hypothesis: true location shift is not equal to 0
#biomarcador3 y pacientes
Umannwhit4(Non_Parametric$Biomarcador3~Non_Parametric$Patients, Non_Parametric$Biomarcador3~Non_Parametric$Patients) Non_Parametric$Biomarcador3 ~ Non_Parametric$Patients
Wilcoxon rank sum test with continuity correction
data: Non_Parametric$Biomarcador3 by Non_Parametric$Patients
W = 4355, p-value = 0.8265
alternative hypothesis: true location shift is not equal to 0
#weight y pacientes
Umannwhit4(Non_Parametric$Weight~Non_Parametric$Patients, Non_Parametric$Weight~Non_Parametric$Patients) Non_Parametric$Weight ~ Non_Parametric$Patients
Wilcoxon rank sum test with continuity correction
data: Non_Parametric$Weight by Non_Parametric$Patients
W = 4282.5, p-value = 0.9836
alternative hypothesis: true location shift is not equal to 0
#weight y pacientes
Umannwhit4(Non_Parametric$Weight~Non_Parametric$Patients, Non_Parametric$Weight~Non_Parametric$Patients)Non_Parametric$Weight ~ Non_Parametric$Patients
Wilcoxon rank sum test with continuity correction
data: Non_Parametric$Weight by Non_Parametric$Patients
W = 4282.5, p-value = 0.9836
alternative hypothesis: true location shift is not equal to 0
#height y pacientes
Umannwhit4(Non_Parametric$Height~Non_Parametric$Patients, Non_Parametric$Height~Non_Parametric$Patients)Non_Parametric$Height ~ Non_Parametric$Patients
Wilcoxon rank sum test with continuity correction
data: Non_Parametric$Height by Non_Parametric$Patients
W = 4005.5, p-value = 0.4613
alternative hypothesis: true location shift is not equal to 0
#bmi y pacientes
Umannwhit4(Non_Parametric$BMI~Non_Parametric$Patients, Non_Parametric$BMI~Non_Parametric$Patients)Non_Parametric$BMI ~ Non_Parametric$Patients
Wilcoxon rank sum test with continuity correction
data: Non_Parametric$BMI by Non_Parametric$Patients
W = 4295, p-value = 0.9563
alternative hypothesis: true location shift is not equal to 0
#age y pacientes
Umannwhit4(Non_Parametric$Age~Non_Parametric$Patients, Non_Parametric$Age~Non_Parametric$Patients)Non_Parametric$Age ~ Non_Parametric$Patients
Wilcoxon rank sum test with continuity correction
data: Non_Parametric$Age by Non_Parametric$Patients
W = 3901, p-value = 0.3066
alternative hypothesis: true location shift is not equal to 0
Resolución de ejercicio 13.10
BioMB_antess <- (Non_Parametric$BiomarkerB_3M)
BioMB_despuess <- (Non_Parametric$BiomarkerB_6M)
#U-Mann Whitney test
wilcox.test(BioMB_antess, BioMB_despuess, paired=T, conf.int = T)
Wilcoxon signed rank test with continuity correction
data: BioMB_antess and BioMB_despuess
V = 0, p-value < 2.2e-16
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-0.01497391 -0.01009440
sample estimates:
(pseudo)median
-0.01008769
boxplot(BioMB_antess, BioMB_despuess, main = "Comparacion de biomarcador B antes y despues", ylab = "", xlab = c("antes","despues"),col= brewer.pal(n = 3, name = "Accent"))Resolución ejercicio 13.11
BioMB_despues12 <- (Non_Parametric$BiomarkerB_12M)
#U-Mann Whitney test
wilcox.test(BioMB_despuess, BioMB_despues12, paired=T, conf.int = T)
Wilcoxon signed rank test with continuity correction
data: BioMB_despuess and BioMB_despues12
V = 15225, p-value < 2.2e-16
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
0.01500467 0.01998204
sample estimates:
(pseudo)median
0.01993708
boxplot(BioMB_despuess, BioMB_despues12, main = "Comparacion de biomarcador B 6 meses y 12 despues", ylab = "", xlab = c("antes","despues"),col= brewer.pal(n = 3, name = "Accent"))Resolución de ejercicio 13.12 y 13.13
Kruskal wallis
Umannwhit6 <- function(x, y) {
print(y)
par(mfrow = c(1,1))
boxplot(x, main = "Comparación de biomarcador A ", ylab = "", xlab = "Grupos experimentales")
#Kruskal wallis
kruskal.test(x, )
}
#Biomarcador A y pacientes
Umannwhit6(Non_Parametric$BiomarkerA~Non_Parametric$Groups, Non_Parametric$BiomarkerA~Non_Parametric$Groups) Non_Parametric$BiomarkerA ~ Non_Parametric$Groups
Kruskal-Wallis rank sum test
data: Non_Parametric$BiomarkerA by Non_Parametric$Groups
Kruskal-Wallis chi-squared = 5.5597, df = 2, p-value = 0.06205
#Biomarcador B y pacientes
Umannwhit6(Non_Parametric$BiomarkerB~Non_Parametric$Groups, Non_Parametric$BiomarkerB~Non_Parametric$Groups) Non_Parametric$BiomarkerB ~ Non_Parametric$Groups
Kruskal-Wallis rank sum test
data: Non_Parametric$BiomarkerB by Non_Parametric$Groups
Kruskal-Wallis chi-squared = 19.964, df = 2, p-value = 4.622e-05
#BMI y pacientes
Umannwhit6(Non_Parametric$BMI~Non_Parametric$Groups, Non_Parametric$BMI~Non_Parametric$Groups) Non_Parametric$BMI ~ Non_Parametric$Groups
Kruskal-Wallis rank sum test
data: Non_Parametric$BMI by Non_Parametric$Groups
Kruskal-Wallis chi-squared = 0.35034, df = 2, p-value = 0.8393
#EDAD y pacientes
Umannwhit6(Non_Parametric$Age~Non_Parametric$Groups, Non_Parametric$Age~Non_Parametric$Groups) Non_Parametric$Age ~ Non_Parametric$Groups
Kruskal-Wallis rank sum test
data: Non_Parametric$Age by Non_Parametric$Groups
Kruskal-Wallis chi-squared = 4.1703, df = 2, p-value = 0.1243
Resolucion 13.14
# Datos de librería
library(MASS)
data("Pima.tr")
library(ggstatsplot)Warning: package 'ggstatsplot' was built under R version 4.2.3
You can cite this package as:
Patil, I. (2021). Visualizations with statistical details: The 'ggstatsplot' approach.
Journal of Open Source Software, 6(61), 3167, doi:10.21105/joss.03167
library(ggplot2)Warning: package 'ggplot2' was built under R version 4.2.3
library(gplots)Warning: package 'gplots' was built under R version 4.2.3
Attaching package: 'gplots'
The following object is masked from 'package:stats':
lowess
Resolución ejemplo 13.1 al 13.13
FunciónTT14 <- function(x, y){
print(y)
par(mfrow = c(1,3))
boxplot(x, main = "", ylab = "", xlab = "Grupos experimentales")
vioplot::vioplot(x, main= "Grafico de violin", ylab="", xlab="")
t.test(x, var.equal=T)
}
FunciónTT14(Pima.tr$bp~Pima.tr$type, Pima.tr$bp~Pima.tr$type) Pima.tr$bp ~ Pima.tr$type
Two Sample t-test
data: Pima.tr$bp by Pima.tr$type
t = -3.0015, df = 198, p-value = 0.003032
alternative hypothesis: true difference in means between group No and group Yes is not equal to 0
95 percent confidence interval:
-8.355947 -1.729615
sample estimates:
mean in group No mean in group Yes
69.54545 74.58824
#ggstatplot
ggbetweenstats(
data=Pima.tr,
x= type,
y= bp,
title = "Comparación de bp entre paciente con y sin diabetes"
)
#glu y diabetes
FunciónTT14(Pima.tr$glu~Pima.tr$type, Pima.tr$glu~Pima.tr$type) Pima.tr$glu ~ Pima.tr$type
Two Sample t-test
data: Pima.tr$glu by Pima.tr$type
t = -7.682, df = 198, p-value = 7.075e-13
alternative hypothesis: true difference in means between group No and group Yes is not equal to 0
95 percent confidence interval:
-40.15520 -23.75033
sample estimates:
mean in group No mean in group Yes
113.1061 145.0588
#ggstatplot
ggbetweenstats(
data=Pima.tr,
x= type,
y= glu,
title = "Comparación de glu entre paciente con y sin diabetes"
)
#skin y diabetes
FunciónTT14(Pima.tr$skin~Pima.tr$type, Pima.tr$skin~Pima.tr$type) Pima.tr$skin ~ Pima.tr$type
Two Sample t-test
data: Pima.tr$skin by Pima.tr$type
t = -3.4712, df = 198, p-value = 0.0006361
alternative hypothesis: true difference in means between group No and group Yes is not equal to 0
95 percent confidence interval:
-9.272397 -2.553806
sample estimates:
mean in group No mean in group Yes
27.20455 33.11765
#ggstatplot
ggbetweenstats(
data=Pima.tr,
x= type,
y= skin,
title = "Comparación de skin entre paciente con y sin diabetes"
)
#bmi y diabetes
FunciónTT14(Pima.tr$bmi~Pima.tr$type, Pima.tr$bmi~Pima.tr$type) Pima.tr$bmi ~ Pima.tr$type
Two Sample t-test
data: Pima.tr$bmi by Pima.tr$type
t = -4.129, df = 198, p-value = 5.368e-05
alternative hypothesis: true difference in means between group No and group Yes is not equal to 0
95 percent confidence interval:
-5.370454 -1.898709
sample estimates:
mean in group No mean in group Yes
31.07424 34.70882
#ggstatplot
ggbetweenstats(
data=Pima.tr,
x= type,
y= bmi,
title = "Comparación de glu entre paciente con y sin diabetes"
)
#ped y diabtes
FunciónTT14(Pima.tr$ped~Pima.tr$type, Pima.tr$ped~Pima.tr$type) Pima.tr$ped ~ Pima.tr$type
Two Sample t-test
data: Pima.tr$ped by Pima.tr$type
t = -2.9601, df = 198, p-value = 0.003451
alternative hypothesis: true difference in means between group No and group Yes is not equal to 0
95 percent confidence interval:
-0.22189897 -0.04445487
sample estimates:
mean in group No mean in group Yes
0.4154848 0.5486618
#ggstatplot
ggbetweenstats(
data=Pima.tr,
x= type,
y= ped,
title = "Comparación de glu entre paciente con y sin diabetes"
)
#ejercicio 13.2
Pima.tr$edad1.1 <- cut(Pima.tr$age,
breaks = c(0, 40, 90),
labels = c("0-40", "40-90"),
right = F, na.rm= TRUE)
Pima.tr$edad1.1 <- factor(Pima.tr$edad1.1)
#Niveles de glucosa y relación con edad (menor a 40 y mayor a 40)
ggbetweenstats(
data=Pima.tr,
x= edad1.1,
y= bmi,
title = "Comparación de edad y BMI"
)Resolución ejercicio 13.3
#librería
library(readxl)
SLE_dataset1 <- read_excel("C:/Users/David/Downloads/SLE dataset1.xlsx")
View(SLE_dataset1)
#resolución
ggbetweenstats(
data=SLE_dataset1,
x= Groups_NLSLEvsSLE,
y= Leptin,
title = "Comparación de leptina y grupos"
)ggbetweenstats(
data=SLE_dataset1,
x= Groups_NLSLEvsSLE,
y= Leptin_BMI,
title = "Comparación de leptina_BMI y grupos"
)ggbetweenstats(
data=SLE_dataset1,
x= Groups_NLSLEvsSLE,
y= Adiponectin,
title = "Comparación de leptina y grupos"
)ggbetweenstats(
data=SLE_dataset1,
x= Groups_NLSLEvsSLE,
y= Adiponectin_BMI,
title = "Comparación de leptina y grupos"
)Resolución ejercicios 13.4 y 13.5
#datos de base
library(readxl)
Base_Prueba_t_pareada_Nueva <- read_excel("C:/Users/David/Downloads/Base_Prueba_t_pareada_Nueva.xlsx")
View(Base_Prueba_t_pareada_Nueva)
#resolucion 13.4
ggwithinstats(
data=Base_Prueba_t_pareada_Nueva[Base_Prueba_t_pareada_Nueva$Time!="6M",],
x=Time,
y=Leptin,
title = "Comparación de leptina a la basal y a los 6M"
)#resolucion 13.5
ggwithinstats(
data=Base_Prueba_t_pareada_Nueva[Base_Prueba_t_pareada_Nueva$Time!="12M",],
x=Time,
y=Leptin,
title = "Comparación de leptina a la basal y a los 12M"
)Resolcion 13.6
#bases empleadas
library(MASS)
data("Cushings")
attach(Cushings)
library(gplots)
#resolucion
ggbetweenstats(
data= Cushings,
x= Type,
y= Pregnanetriol,
title = "Comparación de leptina_BMI y grupos"
)Resolucion 13.7
ggbetweenstats(
data=SLE_dataset1,
x= Groups_NLSLEvsSLE,
y= Leptin,
title = "Comparación de leptina y grupos"
)ggbetweenstats(
data=SLE_dataset1,
x= Groups_NLSLEvsSLE,
y= Leptin_BMI,
title = "Comparación de leptina_BMI y grupos"
)ggbetweenstats(
data=SLE_dataset1,
x= Groups_NLSLEvsSLE,
y= Adiponectin,
title = "Comparación de leptina y grupos"
)ggbetweenstats(
data=SLE_dataset1,
x= Groups_NLSLEvsSLE,
y= Adiponectin_BMI,
title = "Comparación de leptina y grupos"
)Resolución 13.8
#resolucion
ggbetweenstats(
data=Non_Parametric,
x= Patients,
y= BiomarkerA,
title = "Comparación de biomarcadorA y pacientes"
)ggbetweenstats(
data=Non_Parametric,
x= Patients,
y= BiomarkerB,
title = "Comparación de biomarcadorB y pacientes"
)ggbetweenstats(
data=Non_Parametric,
x= Patients,
y= Biomarcador1,
title = "Comparación de biomarcador1 y pacientes"
)ggbetweenstats(
data=Non_Parametric,
x= Patients,
y= Biomarcador2,
title = "Comparación de biomarcador2 y pacientes"
)ggbetweenstats(
data=Non_Parametric,
x= Patients,
y= Biomarcador3,
title = "Comparación de biomarcador3 y pacientes"
)Ejericicio 13.9
ggbetweenstats(
data=Non_Parametric,
x= Patients,
y= Age,
title = "Comparación de edad y pacientes"
)ggbetweenstats(
data=Non_Parametric,
x= Patients,
y= Weight,
title = "Comparación de peso y pacientes"
)ggbetweenstats(
data=Non_Parametric,
x= Patients,
y= Height,
title = "Comparación de altura y pacientes"
)