Setting up RMarkdown when opening it enables you to create dynamic, reproducible, and visually appealing reports, presentations, and documents, that can help you communicate your data analysis and research findings more effectively.
A heatmap is a graphical representation of data that displays the relative intensity of values in a matrix as colors. It is commonly used to visualize complex data sets and identify patterns, correlations, and outliers. Heatmaps are especially useful when dealing with large data sets or data with high dimensionality, as they can provide an overview of the data at a glance.
Heatmaps consist of a grid of cells, where each cell represents a data point in the matrix. The color of each cell represents the value of the data point, with a gradient of colors used to indicate increasing or decreasing values. Typically, a color scale is used to map values to colors, with low values mapped to cool colors like blue, and high values mapped to warm colors like red.
Heatmaps can be used to visualize a wide range of data types, including gene expression, demographic data, financial data, and more. They can also be customized in various ways, such as by adding row and column labels, changing the color scale or color scheme, and adjusting the layout and size of the plot.
In R, heatmaps can be created using the heatmap() function, which takes a matrix or data frame as input, and produces a plot with the relative intensity of values displayed as colors. Heatmaps are a powerful tool for exploring and visualizing complex data sets, and are widely used in data analysis and research.
##### Example data
set.seed(123) # Set seed for reproducibility
data<- matrix(rnorm(100, 0, 10), nrow = 10, ncol = 10) # Create example data # Apply heatmap function
The code above creates a 10x10 matrix named data with random values generated from a normal distribution with a mean of 0 and a standard deviation of 10.
Here’s a breakdown of the code:
colnames(data)<- paste0("col", 1:10) # Column names
rownames(data)<- paste0("row", 1:10) # Row names
head(data,5)
col1 col2 col3 col4 col5 col6 col7
row1 -5.6047565 12.240818 -10.678237 4.264642 -6.947070 2.5331851 3.796395
row2 -2.3017749 3.598138 -2.179749 -2.950715 -2.079173 -0.2854676 -5.023235
row3 15.5870831 4.007715 -10.260044 8.951257 -12.653964 -0.4287046 -3.332074
row4 0.7050839 1.106827 -7.288912 8.781335 21.689560 13.6860228 -10.185754
row5 1.2928774 -5.558411 -6.250393 8.215811 12.079620 -2.2577099 -10.717912
col8 col9 col10
row1 -4.910312 0.05764186 9.935039
row2 -23.091689 3.85280401 5.483970
row3 10.057385 -3.70660032 2.387317
row4 -7.092008 6.44376549 -6.279061
row5 -6.880086 -2.20486562 13.606524
##### Example 1
heatmap(data)
##### Example 2
heatmap(data, Rowv = NA, Colv = NA) # Remove dendogram
##### Example 3
my_colors<- colorRampPalette(c("cyan", "deeppink3")) # Manual color range
heatmap(data, col = my_colors(100)) # Heatmap with manual colors
##### Example 4 # Install reshape package
library(reshape) # Load reshape package
data_melt <- melt(data) # Reorder data
library(ggplot2) # Load ggplot2 package
ggp <- ggplot(data_melt, aes(X1, X2)) + # Create heatmap with ggplot2
geom_tile(aes(fill = value))
ggp # Print heatmap
##### Example 5
ggp + scale_fill_gradient(low = "green", high = "black") # Manual colors of heatmap
##### Example 6
library(plotly) # Load plotly package
plot_ly(z = data, type = "heatmap") # Apply plot_ly function
##### Example 7
plot_ly(z = data, colorscale = "Greys", type = "heatmap") # Manual colors
# load required packages
library(ggplot2)
library(reshape2)
# create example data
example_data <- matrix(rnorm(100), nrow = 10)
head(example_data,10)
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] -0.71040656 -0.57534696 0.11764660 1.44455086 0.7017843 0.7877388
[2,] 0.25688371 0.60796432 -0.94747461 0.45150405 -0.2621975 0.7690422
[3,] -0.24669188 -1.61788271 -0.49055744 0.04123292 -1.5721442 0.3322026
[4,] -0.34754260 -0.05556197 -0.25609219 -0.42249683 -1.5146677 -1.0083766
[5,] -0.95161857 0.51940720 1.84386201 -2.05324722 -1.6015362 -0.1194526
[6,] -0.04502772 0.30115336 -0.65194990 1.13133721 -0.5309065 -0.2803953
[7,] -0.78490447 0.10567619 0.23538657 -1.46064007 -1.4617556 0.5629895
[8,] -1.66794194 -0.64070601 0.07796085 0.73994751 0.6879168 -0.3724388
[9,] -0.38022652 -0.84970435 -0.96185663 1.90910357 2.1001089 0.9769734
[10,] 0.91899661 -1.02412879 -0.07130809 -1.44389316 -1.2870305 -0.3745809
[,7] [,8] [,9] [,10]
[1,] 1.0527115 -0.21538051 -1.06332613 0.21444531
[2,] -1.0491770 0.06529303 1.26318518 -0.32468591
[3,] -1.2601552 -0.03406725 -0.34965039 0.09458353
[4,] 3.2410399 2.12845190 -0.86551286 -0.89536336
[5,] -0.4168576 -0.74133610 -0.23627957 -1.31080153
[6,] 0.2982276 -1.09599627 -0.19717589 1.99721338
[7,] 0.6365697 0.03778840 1.10992029 0.60070882
[8,] -0.4837806 0.31048075 0.08473729 -1.25127136
[9,] 0.5168620 0.43652348 0.75405379 -0.61116592
[10,] 0.3689645 -0.45836533 -0.49929202 -1.18548008
# convert data to long format
melted_data <- melt(example_data)
head(melted_data)
Var1 Var2 value
1 1 1 -0.71040656
2 2 1 0.25688371
3 3 1 -0.24669188
4 4 1 -0.34754260
5 5 1 -0.95161857
6 6 1 -0.04502772
attach(melted_data)
# create heatmap using ggplot2
ggplot(melted_data, aes(x = Var1, y = Var2, fill = value)) +
geom_tile() +
scale_fill_gradient(low = "white", high = "red") +
labs(x = "Column", y = "Row", title = "Example Heatmap")
# load required packages
library(plotly)
library(reshape2)
# create example data
example_data1 <- matrix(rnorm(100), nrow = 10)
head(example_data1,5)
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 2.1988103 0.1192452 -0.5739735 1.95529397 -0.7886220 -0.37560287
[2,] 1.3124130 0.2436874 0.6179858 -0.09031959 -0.5021987 -0.56187636
[3,] -0.2651451 1.2324759 1.1098481 0.21453883 1.4960607 -0.34391723
[4,] 0.5431941 -0.5160638 0.7075884 -0.73852770 -1.1373036 0.09049665
[5,] -0.4143399 -0.9925072 -0.3636573 -0.57438869 -0.1790516 1.59850877
[,7] [,8] [,9] [,10]
[1,] -0.52111732 0.8450130 -1.6674751 1.168384
[2,] -0.48987045 0.9625280 0.7364960 1.054181
[3,] 0.04715443 0.6843094 0.3860266 1.145263
[4,] 1.30019868 -1.3952743 -0.2656516 -0.577468
[5,] 2.29307897 0.8496430 0.1181445 2.002483
# convert data to long format
melted_data1 <- melt(example_data1)
head(melted_data1,5)
Var1 Var2 value
1 1 1 2.1988103
2 2 1 1.3124130
3 3 1 -0.2651451
4 4 1 0.5431941
5 5 1 -0.4143399
# create heatmap using plotly
plot_ly(melted_data1, x = ~Var1, y = ~Var2, z = ~value, type = "heatmap") %>%
layout(title = "Example Heatmap", xaxis = list(title = "Column"), yaxis = list(title = "Row"))
Overall, each method has its own pros and cons. For instance, the heatmap() function is simple to use but has limited customization options, while ggplot2 and plotly offer more flexibility but require more code. Additionally, the ggplot2 and plotly methods require the data to be in a long format, which may require additional data manipulation steps.
To create a heat map in R using coordinates, we can use the ggplot2 package. Here is a step-by-step guide on how to create a heat map using coordinates:
# load required packages
library(ggplot2)
library(reshape2)
# create example data with coordinates and values
x_coord <- c(1, 2, 3, 4)
y_coord <- c(1, 2, 3, 4)
value <- c(12, 15, 19, 30)
foo <- data.frame(x_coord, y_coord, value)
foo
x_coord y_coord value
1 1 1 12
2 2 2 15
3 3 3 19
4 4 4 30
# convert data frame to matrix
matrix_data1 <- acast(foo, y_coord ~ x_coord, value.var = "value")
matrix_data1
1 2 3 4
1 12 NA NA NA
2 NA 15 NA NA
3 NA NA 19 NA
4 NA NA NA 30
# create heat map using ggplot2
ggplot(melt(matrix_data1), aes(Var2, Var1, fill = value)) +
geom_tile() +
scale_fill_gradient(low = "white", high = "red") +
labs(x = "X Coordinate", y = "Y Coordinate", title = "Example Heat Map")
Heatmaps are a graphical representation of data where values are depicted by color. Heatmaps are used to visualize complex data and understand it at a glance. Heatmaps are essential in detecting what does or doesn’t work on a website or product page. Heatmaps are widely used in web analytics to track user behavior visually and to make data-driven changes. Heatmaps can be created by hand, using Excel spreadsheets, or with product experience insights tools like Hotjar. The following are some of the use cases of heatmaps:
Heatmaps give product teams, marketers, digital and data analysts, UX designers, social media specialists, and anyone who sells anything online deep insights into people’s behavior on their site. Heatmaps facilitate data analysis by combining quantitative and qualitative data, and give a snapshot understanding of how your target audience interacts with an individual website or product page—what they click on, scroll through, or ignore—which helps you identify trends and optimize your product and site to increase user engagement and sales. Heatmaps also usually display the average fold, which is the portion of the page people see on their screen without scrolling as soon as they land on it.
Heatmaps can be used to visualize 2D data, such as 2D density plots. 2D density plots show the density of points in a 2D space. They are useful for visualizing the distribution of data points in a scatterplot and can be used to identify clusters and patterns in the data.
Heatmaps show which elements of a website users engage with more frequently, giving an idea of what elements users like, dislike, ignore or don’t ignore. With these insights, you can make data-driven decisions to improve your site’s design or content, helping your site serve visitors better.
Website heatmaps are part of larger conversion rate optimization (CRO) efforts, since they’re mainly used to improve conversion rates. Heatmaps help identify areas where visitors are engaging with important content, experiencing issues based on device type or browser, or where non-clickable elements are creating distractions that harm conversion.
Overall, heatmaps are an effective tool to visualize complex data and understand it at a glance. Heatmaps are essential in detecting what does or doesn’t work on a website or product page, and can be used to optimize user engagement, retention, and sales. Heatmaps can also be used to visualize 2D data and identify popular and unpopular areas on a website, and are a key component of conversion rate optimization efforts.
To create a heatmap using global coordinates in RStudio, we can use the ggplot2 package. Here is a step-by-step guide on how to create a heatmap using global coordinates:
# load required packages
library(ggplot2)
library(mapdata)
# create example data with coordinates and values
lon <- c(9.481544, 2.352222, -74.005973, 139.650312)
lat <- c(51.312801, 48.856613, 40.712776, 35.676191)
value <- c(12, 15, 19, 30)
foo1 <- data.frame(lon, lat, value)
foo1
lon lat value
1 9.481544 51.31280 12
2 2.352222 48.85661 15
3 -74.005973 40.71278 19
4 139.650312 35.67619 30
# get world map data
world_map <- map_data("world")
head(world_map,10)
long lat group order region subregion
1 -69.89912 12.45200 1 1 Aruba <NA>
2 -69.89571 12.42300 1 2 Aruba <NA>
3 -69.94219 12.43853 1 3 Aruba <NA>
4 -70.00415 12.50049 1 4 Aruba <NA>
5 -70.06612 12.54697 1 5 Aruba <NA>
6 -70.05088 12.59707 1 6 Aruba <NA>
7 -70.03511 12.61411 1 7 Aruba <NA>
8 -69.97314 12.56763 1 8 Aruba <NA>
9 -69.91181 12.48047 1 9 Aruba <NA>
10 -69.89912 12.45200 1 10 Aruba <NA>
# create heat map using ggplot2
ggplot() +
geom_polygon(data = world_map, aes(x = long, y = lat, group = group), fill = "white", color = "grey") +
geom_point(data = foo1, aes(x = lon, y = lat, fill = value), size = 5, shape = 21) +
scale_fill_gradient(low = "white", high = "red") +
labs(x = "Longitude", y = "Latitude", title = "Example Heat Map")
In the example code, we first created a data frame foo with the coordinates and values. Next, we used the map_data() function to get a map of the world. Then, we used the ggplot() function to create the plot and added the map layer using the geom_polygon() function, specifying the world map data. We also added the heat map layer using the geom_point() function, specifying the values from the data frame as the fill aesthetic. We also customized the heat map using scale_fill_gradient() to change the color scheme and labs() to add axis labels and a title to the plot. Overall, creating a heat map using global coordinates in RStudio is similar to creating a heat map with other types of data. The main difference is that we need to use a map of the world as a layer and specify the lon and lat aesthetics in the ggplot() function.
To create a heatmap of population density of the US, we can use the ggplot2 and tidycensus packages in R. Here is a step-by-step guide on how to create a heatmap of population density:
# load required packages
library(ggplot2)
library(reshape2)
# create a dataframe with county, population and area data
county_data <- data.frame(
County = c("County1", "County2", "County3", "County4", "County5", "County6"),
Population = c(100000, 50000, 75000, 25000, 125000, 10000),
Area = c(150, 100, 200, 50, 300, 25)
)
head(county_data,5)
County Population Area
1 County1 100000 150
2 County2 50000 100
3 County3 75000 200
4 County4 25000 50
5 County5 125000 300
# calculate the population density
county_data$Density <- county_data$Population / county_data$Area
county_data
County Population Area Density
1 County1 100000 150 666.6667
2 County2 50000 100 500.0000
3 County3 75000 200 375.0000
4 County4 25000 50 500.0000
5 County5 125000 300 416.6667
6 County6 10000 25 400.0000
# melt the data for use in ggplot2
county_data_melted <- melt(county_data, id.vars = "County")
county_data_melted
County variable value
1 County1 Population 100000.0000
2 County2 Population 50000.0000
3 County3 Population 75000.0000
4 County4 Population 25000.0000
5 County5 Population 125000.0000
6 County6 Population 10000.0000
7 County1 Area 150.0000
8 County2 Area 100.0000
9 County3 Area 200.0000
10 County4 Area 50.0000
11 County5 Area 300.0000
12 County6 Area 25.0000
13 County1 Density 666.6667
14 County2 Density 500.0000
15 County3 Density 375.0000
16 County4 Density 500.0000
17 County5 Density 416.6667
18 County6 Density 400.0000
# create the heatmap
ggplot(county_data_melted, aes(x = variable, y = County)) +
geom_tile(aes(fill = value), colour = "white") +
scale_fill_gradient(low = "white", high = "red") +
theme_minimal()
state <- c("Alabama", "Alaska", "Arizona", "Arkansas", "California")
population <- c(4903185, 731545, 7278717, 3017825, 39538223)
area <- c(52420, 665384, 113990, 53179, 163696)
density <- population / area
data <- data.frame(state, population, area, density)
head(data,5)
state population area density
1 Alabama 4903185 52420 93.536532
2 Alaska 731545 665384 1.099433
3 Arizona 7278717 113990 63.853996
4 Arkansas 3017825 53179 56.748435
5 California 39538223 163696 241.534448
To create a heatmap of population density for the US in R, there are several approaches that can be used.
This approach is explained in stats.stackexchange.com. Here are the steps to follow:
This approach is explained in stackoverflow.com. Here are the steps to follow:
If the data is sparse, you can increase the smoothing parameter of the kernel density estimator. This is explained in stackoverflow.com. Here is the code to increase the smoothing parameter:
Here are the steps to follow: