Notes

Here I am using simple linear regression to predict z-ave using the full sample. Parcel centrality and within-network dispersion was re-calculated using Mahalanobis distance. The Mahalanobis distance was chosen since it measures the distance between a point and a distribution, accounting for the correlations among the variables (gradient dimensions).

Measures

Model 1: Using top 7 gradient/network features to predict z-ave

## 
## Call:
## lm(formula = z_ave ~ clear_129_md + clear_284_md + g1_clear_258 + 
##     g1_main_108 + g3_replace_82 + g3_suppress_44 + clear_fpcn_md, 
##     data = sub_nets)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.7737 -0.2982 -0.0353  0.2586  0.8778 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     -5.2817     1.6073  -3.286  0.00212 ** 
## clear_129_md     0.1699     0.1203   1.412  0.16563    
## clear_284_md     0.1302     0.1011   1.288  0.20510    
## g1_clear_258    24.6444     5.2856   4.663 3.45e-05 ***
## g1_main_108     17.9143     8.3063   2.157  0.03709 *  
## g3_replace_82    4.4796     2.8324   1.582  0.12163    
## g3_suppress_44   6.0478     3.1010   1.950  0.05818 .  
## clear_fpcn_md    3.5337     1.0841   3.259  0.00228 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4348 on 40 degrees of freedom
## Multiple R-squared:  0.6896, Adjusted R-squared:  0.6353 
## F-statistic:  12.7 on 7 and 40 DF,  p-value: 1.899e-08

Model 2: Using the 3 significant measures from Model 1 to predict z-ave

## 
## Call:
## lm(formula = z_ave ~ g1_clear_258 + g1_main_108 + clear_fpcn_md, 
##     data = sub_nets)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.99793 -0.37630  0.04637  0.31924  0.91738 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     -4.975      1.772  -2.808  0.00741 ** 
## g1_clear_258    31.404      5.457   5.754 7.74e-07 ***
## g1_main_108     26.242      8.951   2.932  0.00533 ** 
## clear_fpcn_md    4.073      1.193   3.413  0.00139 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4871 on 44 degrees of freedom
## Multiple R-squared:  0.5715, Adjusted R-squared:  0.5423 
## F-statistic: 19.56 on 3 and 44 DF,  p-value: 3.303e-08

Comparing Model 1 to Model 2 to determine if more complex model is better

Model 1, the more complex model is significantly better than Model 2 for predicting z-ave.