library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.4.1     ✔ purrr   1.0.1
## ✔ tibble  3.1.8     ✔ dplyr   1.1.0
## ✔ tidyr   1.3.0     ✔ stringr 1.5.0
## ✔ readr   2.1.4     ✔ forcats 1.0.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()

Import Data

stats <- read_csv("../00_data/myData.csv")
## New names:
## Rows: 39 Columns: 8
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," chr
## (2): Country, ...8 dbl (5): Kill/Death Ratio, Player Rating, Headshot
## Percentage, Kills Per Rou... lgl (1): ...7
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...7`
## • `` -> `...8`
stats <- stats %>%
    janitor::clean_names()

Filter

filter(stats, player_impact == 1.05)
## # A tibble: 7 × 8
##   country    kill_death_ratio player_rating headsh…¹ kills…² playe…³ x7    x8   
##   <chr>                 <dbl>         <dbl>    <dbl>   <dbl>   <dbl> <lgl> <chr>
## 1 Belgium                1.03          1.01     46.9    0.68    1.05 NA    <NA> 
## 2 Bulgaria               1.03          1.01     45.6    0.69    1.05 NA    <NA> 
## 3 Finland                1.02          1        43.2    0.68    1.05 NA    <NA> 
## 4 Kazakhstan             1.02          1        48.2    0.68    1.05 NA    <NA> 
## 5 Norway                 1             0.99     49.2    0.68    1.05 NA    <NA> 
## 6 Russia                 1.04          1.01     45.3    0.68    1.05 NA    <NA> 
## 7 Slovakia               1.07          1.04     47.8    0.7     1.05 NA    <NA> 
## # … with abbreviated variable names ¹​headshot_percentage, ²​kills_per_round,
## #   ³​player_impact
filter(stats, player_impact == 1.05 & player_rating == 1)
## # A tibble: 2 × 8
##   country    kill_death_ratio player_rating headsh…¹ kills…² playe…³ x7    x8   
##   <chr>                 <dbl>         <dbl>    <dbl>   <dbl>   <dbl> <lgl> <chr>
## 1 Finland                1.02             1     43.2    0.68    1.05 NA    <NA> 
## 2 Kazakhstan             1.02             1     48.2    0.68    1.05 NA    <NA> 
## # … with abbreviated variable names ¹​headshot_percentage, ²​kills_per_round,
## #   ³​player_impact

Arrange

arrange(stats, player_impact)
## # A tibble: 39 × 8
##    country kill_death_ratio player_rating headshot…¹ kills…² playe…³ x7    x8   
##    <chr>              <dbl>         <dbl>      <dbl>   <dbl>   <dbl> <lgl> <chr>
##  1 Belarus             0.99          0.98       48.2    0.67    1.01 NA    <NA> 
##  2 Germany             1             0.99       45.9    0.67    1.02 NA    <NA> 
##  3 Ukraine             1.02          1          46.2    0.68    1.02 NA    <NA> 
##  4 France              1.03          1.01       47.3    0.68    1.03 NA    <NA> 
##  5 Serbia              1.03          1          43.8    0.68    1.03 NA    <NA> 
##  6 Canada              1.01          1          47.1    0.68    1.04 NA    <NA> 
##  7 Denmark             1.03          1          45.8    0.68    1.04 NA    <NA> 
##  8 Latvia              1.07          1.03       50.4    0.7     1.04 NA    <NA> 
##  9 Poland              1.01          1          44.2    0.68    1.04 NA    <NA> 
## 10 Spain               1.02          1          43.7    0.68    1.04 NA    <NA> 
## # … with 29 more rows, and abbreviated variable names ¹​headshot_percentage,
## #   ²​kills_per_round, ³​player_impact
arrange(stats, desc(player_impact))
## # A tibble: 39 × 8
##    country        kill_death_ratio player_…¹ heads…² kills…³ playe…⁴ x7    x8   
##    <chr>                     <dbl>     <dbl>   <dbl>   <dbl>   <dbl> <lgl> <chr>
##  1 Singapore                  1.08      1.05    45.0    0.73    1.16 NA    <NA> 
##  2 New Zealand                1.14      1.08    37.4    0.73    1.15 NA    <NA> 
##  3 Indonesia                  1.12      1.07    38.3    0.74    1.12 NA    <NA> 
##  4 Turkey                     1.08      1.05    46.1    0.71    1.11 NA    <NA> 
##  5 Netherlands                1.07      1.04    39.8    0.71    1.1  NA    <NA> 
##  6 China                      1.05      1.03    48.0    0.71    1.09 NA    <NA> 
##  7 Korea                      1.07      1.04    44.3    0.71    1.09 NA    <NA> 
##  8 Mongolia                   1.06      1.03    50.4    0.71    1.09 NA    <NA> 
##  9 Australia                  1.05      1.02    44.7    0.7     1.08 NA    <NA> 
## 10 Czech Republic             1.06      1.03    46.2    0.7     1.08 NA    <NA> 
## # … with 29 more rows, and abbreviated variable names ¹​player_rating,
## #   ²​headshot_percentage, ³​kills_per_round, ⁴​player_impact

Select

select(stats, country, player_rating)
## # A tibble: 39 × 2
##    country        player_rating
##    <chr>                  <dbl>
##  1 Argentina               1.01
##  2 Australia               1.02
##  3 Belarus                 0.98
##  4 Belgium                 1.01
##  5 Brazil                  1.03
##  6 Bulgaria                1.01
##  7 Canada                  1   
##  8 China                   1.03
##  9 Czech Republic          1.03
## 10 Denmark                 1   
## # … with 29 more rows

Mutate

mutate(stats,
       gain = player_rating - player_impact)
## # A tibble: 39 × 9
##    country        kill_dea…¹ playe…² heads…³ kills…⁴ playe…⁵ x7    x8       gain
##    <chr>               <dbl>   <dbl>   <dbl>   <dbl>   <dbl> <lgl> <chr>   <dbl>
##  1 Argentina            1.03    1.01    46.2    0.69    1.07 NA    Filt… -0.0600
##  2 Australia            1.05    1.02    44.7    0.7     1.08 NA    <NA>  -0.0600
##  3 Belarus              0.99    0.98    48.2    0.67    1.01 NA    <NA>  -0.0300
##  4 Belgium              1.03    1.01    46.9    0.68    1.05 NA    <NA>  -0.0400
##  5 Brazil               1.07    1.03    44.0    0.7     1.07 NA    <NA>  -0.0400
##  6 Bulgaria             1.03    1.01    45.6    0.69    1.05 NA    <NA>  -0.0400
##  7 Canada               1.01    1       47.1    0.68    1.04 NA    <NA>  -0.0400
##  8 China                1.05    1.03    48.0    0.71    1.09 NA    <NA>  -0.0600
##  9 Czech Republic       1.06    1.03    46.2    0.7     1.08 NA    <NA>  -0.0500
## 10 Denmark              1.03    1       45.8    0.68    1.04 NA    <NA>  -0.0400
## # … with 29 more rows, and abbreviated variable names ¹​kill_death_ratio,
## #   ²​player_rating, ³​headshot_percentage, ⁴​kills_per_round, ⁵​player_impact

Summarize

stats
## # A tibble: 39 × 8
##    country        kill_death_ratio player_…¹ heads…² kills…³ playe…⁴ x7    x8   
##    <chr>                     <dbl>     <dbl>   <dbl>   <dbl>   <dbl> <lgl> <chr>
##  1 Argentina                  1.03      1.01    46.2    0.69    1.07 NA    Filt…
##  2 Australia                  1.05      1.02    44.7    0.7     1.08 NA    <NA> 
##  3 Belarus                    0.99      0.98    48.2    0.67    1.01 NA    <NA> 
##  4 Belgium                    1.03      1.01    46.9    0.68    1.05 NA    <NA> 
##  5 Brazil                     1.07      1.03    44.0    0.7     1.07 NA    <NA> 
##  6 Bulgaria                   1.03      1.01    45.6    0.69    1.05 NA    <NA> 
##  7 Canada                     1.01      1       47.1    0.68    1.04 NA    <NA> 
##  8 China                      1.05      1.03    48.0    0.71    1.09 NA    <NA> 
##  9 Czech Republic             1.06      1.03    46.2    0.7     1.08 NA    <NA> 
## 10 Denmark                    1.03      1       45.8    0.68    1.04 NA    <NA> 
## # … with 29 more rows, and abbreviated variable names ¹​player_rating,
## #   ²​headshot_percentage, ³​kills_per_round, ⁴​player_impact

Average Player Rating

summarise(stats, rating = mean(player_rating, na.rm = TRUE))
## # A tibble: 1 × 1
##   rating
##    <dbl>
## 1   1.02