# Load packages
# Core
library(tidyverse)
library(tidyquant)
Calculate and visualize your portfolio’s beta.
Choose your stocks and the baseline market.
from 2012-12-31 to present
symbols <- c("AAPL", "META", "MSFT", "TSLA", "AMZN")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "AMZN" "META" "MSFT" "TSLA"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.25
## 2 AMZN 0.25
## 3 META 0.2
## 4 MSFT 0.2
## 5 TSLA 0.1
# tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "Portfolio Returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date `Portfolio Returns`
## <date> <dbl>
## 1 2013-01-31 0.0213
## 2 2013-02-28 -0.0365
## 3 2013-03-28 0.00432
## 4 2013-04-30 0.0689
## 5 2013-05-31 0.0653
## 6 2013-06-28 -0.0121
## 7 2013-07-31 0.138
## 8 2013-08-30 0.0597
## 9 2013-09-30 0.0732
## 10 2013-10-31 0.0544
## # … with 50 more rows
markets_returns_tbl <- tq_get(x = "QQQ",
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log",
col_rename = "Market Return") %>%
slice(-1)
markets_returns_tbl
## # A tibble: 60 × 2
## date `Market Return`
## <date> <dbl>
## 1 2013-01-31 0.0264
## 2 2013-02-28 0.00343
## 3 2013-03-28 0.0298
## 4 2013-04-30 0.0251
## 5 2013-05-31 0.0351
## 6 2013-06-28 -0.0242
## 7 2013-07-31 0.0612
## 8 2013-08-30 -0.00397
## 9 2013-09-30 0.0472
## 10 2013-10-31 0.0484
## # … with 50 more rows
portfolio_market_returns_tbl <- left_join(markets_returns_tbl, portfolio_returns_tbl, "date") %>%
set_names("date", "market_returns", "portfolio_returns")
portfolio_market_returns_tbl
## # A tibble: 60 × 3
## date market_returns portfolio_returns
## <date> <dbl> <dbl>
## 1 2013-01-31 0.0264 0.0213
## 2 2013-02-28 0.00343 -0.0365
## 3 2013-03-28 0.0298 0.00432
## 4 2013-04-30 0.0251 0.0689
## 5 2013-05-31 0.0351 0.0653
## 6 2013-06-28 -0.0242 -0.0121
## 7 2013-07-31 0.0612 0.138
## 8 2013-08-30 -0.00397 0.0597
## 9 2013-09-30 0.0472 0.0732
## 10 2013-10-31 0.0484 0.0544
## # … with 50 more rows
portfolio_market_returns_tbl %>%
tq_performance(Ra = portfolio_returns,
Rb = market_returns,
performance_fun = CAPM.beta)
## # A tibble: 1 × 1
## CAPM.beta.1
## <dbl>
## 1 1.15
How sensitive is your portfolio to the market? Discuss in terms of the beta coefficient. Does the plot confirm the beta coefficient you calculated?
My portfolio is more sensitive than the market and will move more than the market on average both to the upside and downside. My beta coefficient is 1.15 meaning my portfolio should move 15% more than the makret. The plot does confirm it and it is linear however not as linear as the portfolio from the Code Along assingment with the returns being further from the line.
portfolio_market_returns_tbl %>%
ggplot(aes(x = market_returns, y = portfolio_returns)) +
geom_point(color = "cornflowerblue") +
geom_smooth(method = "lm", se = FALSE, size = 1.5, color = tidyquant::palette_light()[3]) +
labs(y = "Portfolio Returns",
x = "Market Returns")