library(tidyverse)
library(openintro)
library(infer)
library("plotrix")
Exercise 1
What percent of the adults in your sample think climate change
affects their local community? Hint: Just like we did with the
population, we can calculate the proportion of those in this sample who
think climate change affects their local community.
62 % of adults say YES
us_adults <- tibble(
climate_change_affects = c(rep("Yes", 62000), rep("No", 38000))
)
ggplot(us_adults, aes(x = climate_change_affects)) +
geom_bar() +
labs(
x = "", y = "",
title = "Do you think climate change is affecting your local community?"
) +
coord_flip()

us_adults %>%
count(climate_change_affects) %>%
mutate(p = n /sum(n))
## # A tibble: 2 × 3
## climate_change_affects n p
## <chr> <int> <dbl>
## 1 No 38000 0.38
## 2 Yes 62000 0.62
n <- 60
samp <- us_adults %>%
sample_n(size = n)
summary(us_adults)
## climate_change_affects
## Length:100000
## Class :character
## Mode :character
table(samp$climate_change_affects)
##
## No Yes
## 24 36
Exercise 2
Would you expect another student’s sample proportion to be identical
to yours? Would you expect it to be similar? Why or Why not?
No, another student’s sample proportion may be slightly different
from mine because sample proportion, p (point estimates) will vary from
one sample to another depending on the simulation. …
Exercise 3
In the interpretation above, we used the phrase “95% confident”. What
does “95% confidence” mean? Getting a sense of the precision of the
estimate, we compute a 95% confidence which is a range of value above
and below the point estimate within which the true value in the
proportion is likely to lie with 95% confidence. The other 5% is the
possibility that the true value is not within the confidence
interval.
samp %>%
specify(response = climate_change_affects, success = "Yes") %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "prop") %>%
get_ci(level = 0.95)
## # A tibble: 1 × 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.467 0.717
Exercise 4
Does your confidence interval capture the true value proportion of US
adults who think climate change affects their local community? If you
are working on this lab in a classroom, does your neighbor’s interval
capture this value?
No. the lower limit of the interval is 45% and upper limit for 95%
confidence interval is 72 %.
Exercise 5
Each student should have gotten a slightly different confidence
interval. What proportion of those intervals would you expect to capture
the true population mean? Why?
It is expected that only +/- 0.01 range of interval may be different
to capture the true population mean.
Exercise 6
Given a sample size of 60, 1000 bootstrap samples for each interval,
and 50 confidence intervals constructed (the default values for the
above app), what proportion of your confidence intervals include the
true population proportion? Is this proportion exactly equal to the
confidence level? If not, explain, why. Make sure to include your plot
in your answer.
samp %>%
specify(response = climate_change_affects, success = "Yes") %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "prop") %>%
get_ci(level = 0.50)
## # A tibble: 1 × 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.567 0.65
ggplot(samp, aes(x = climate_change_affects, y = "")) +
geom_point(colour = "black") +
geom_smooth(method = "lm", se = TRUE, level = 0.50) +
labs(title = "50% Confidence Interval") +
theme_bw() +
theme(plot.title = element_text(face = "bold",hjust = 0.5))
## `geom_smooth()` using formula = 'y ~ x'

Exercise 7
Choose a different confidence level than 95%. Would you expect a
confidence interval at this level to me wider or narrower than the the
confidence interval you calculated at the 95% confidence level? Explain
your reasoning.
As the confidence level is higher, the range of confidence interval
is wider that will capture “true p”.
samp %>%
specify(response = climate_change_affects, success = "Yes") %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "prop") %>%
get_ci(level = 0.90)
## # A tibble: 1 × 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.5 0.7
Exercise 8
Using code from the infer package and data from the one sample you
have (samp), find a confidence interval for the proportion of US Adults
who think climate change is affecting their local community with a
confidence level of your choosing (other than 95%) and interpret it.
us_adults <- tibble(
climate_change_affects = c(rep("Yes", 62000), rep("No", 38000))
)
us_adults %>%
specify(response = climate_change_affects, success = "Yes") %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "prop") %>%
get_ci(level = 0.95)
## # A tibble: 1 × 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.617 0.623
Exercise 9
Using the app, calculate 50 confidence intervals at the confidence
level you chose in the previous question, and plot all intervals on one
plot, and calculate the proportion of intervals that include the true
population proportion. How does this percentage compare to the
confidence level selected for the intervals?
us_adults <- tibble(
climate_change_affects = c(rep("Yes", 62000), rep("No", 38000))
)
us_adults %>%
specify(response = climate_change_affects, success = "Yes") %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "prop") %>%
get_ci(level = 0.50)
## # A tibble: 1 × 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.619 0.621
us_adults<-round(data.frame(x = 1:20,
y = runif(20, 20, 40),
lower = runif(20, 0, 20),
upper = runif(20, 40, 50)), 4)
plotCI(x = us_adults$x,
y = us_adults$y,
li = us_adults$lower,
ui = us_adults$upper)

Exercise 10
Lastly, try one or more (different) confidence level. First, state
how you expect the width of this interval to compare to previous ones
you calculated, then, calculate the bounds of the interval using the
infer package and data from samp and interpret it. Finally, use the app
to generate many intervals and calculate the proportion of intervals
that are capture the true proportion.
samp <- tibble(
climate_change_affects = c(rep("Yes", 62000), rep("No", 38000))
)
samp %>%
specify(response = climate_change_affects, success = "Yes") %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "prop") %>%
get_ci(level = 0.90)
## # A tibble: 1 × 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 0.617 0.623
samp<-round(data.frame(x = 1:10,
y = runif(10, 10, 20),
lower = runif(10, 0, 10),
upper = runif(10, 20, 40)), 4)
ggplot(samp, aes(x, y)) + geom_point() +
geom_errorbar(aes(ymin = lower, ymax = upper))

Exercise 11
Using the app, experiment with different sample sizes and comment on
how the widths of intervals change as sample size changes (increases and
decreases).
The widths of intervals increases, sample sizes decreases.
Exercise 12
Finally, given a sample size (say, 60), how does the width of the
interval changes as you increase the number of bootstrap samples. Hint:
Does changing the number of bootstrap samples affect the standard
error?
No change in the width of the interval as the number of bootstrap
samples increases.
LS0tCnRpdGxlOiAiTGFiIDVCOiBGb3VuZGF0aW9ucyBmb3Igc3RhdGlzdGljYWwgaW5mZXJlbmNlIC0gQ29uZmlkZW5jZSBJbnRlcnZhbHMiCmF1dGhvcjogIkx3aW4gTmFuZGFyIFNod2UiCmRhdGU6ICJBcHJpbC02IgpvdXRwdXQ6IG9wZW5pbnRybzo6bGFiX3JlcG9ydAotLS0KCmBgYHtyIGxvYWQtcGFja2FnZXMsIG1lc3NhZ2U9RkFMU0V9CmxpYnJhcnkodGlkeXZlcnNlKQpsaWJyYXJ5KG9wZW5pbnRybykKbGlicmFyeShpbmZlcikKbGlicmFyeSgicGxvdHJpeCIpCmBgYAoKIyMjIEV4ZXJjaXNlIDEKCldoYXQgcGVyY2VudCBvZiB0aGUgYWR1bHRzIGluIHlvdXIgc2FtcGxlIHRoaW5rIGNsaW1hdGUgY2hhbmdlIGFmZmVjdHMgdGhlaXIgbG9jYWwgY29tbXVuaXR5PwpIaW50OiBKdXN0IGxpa2Ugd2UgZGlkIHdpdGggdGhlIHBvcHVsYXRpb24sIHdlIGNhbiBjYWxjdWxhdGUgdGhlIHByb3BvcnRpb24gb2YgdGhvc2UgaW4gdGhpcyBzYW1wbGUgd2hvIHRoaW5rIGNsaW1hdGUgY2hhbmdlIGFmZmVjdHMgdGhlaXIgbG9jYWwgY29tbXVuaXR5LgoKNjIgJSBvZiBhZHVsdHMgc2F5IFlFUwoKYGBge3IgY29kZS1jaHVuay1sYWJlbH0KdXNfYWR1bHRzIDwtIHRpYmJsZSgKICBjbGltYXRlX2NoYW5nZV9hZmZlY3RzID0gYyhyZXAoIlllcyIsIDYyMDAwKSwgcmVwKCJObyIsIDM4MDAwKSkKKQpnZ3Bsb3QodXNfYWR1bHRzLCBhZXMoeCA9IGNsaW1hdGVfY2hhbmdlX2FmZmVjdHMpKSArIAogIGdlb21fYmFyKCkgKwogIGxhYnMoCiAgICB4ID0gIiIsIHkgPSAiIiwKICAgIHRpdGxlID0gIkRvIHlvdSB0aGluayBjbGltYXRlIGNoYW5nZSBpcyBhZmZlY3RpbmcgeW91ciBsb2NhbCBjb21tdW5pdHk/IgogICkgKwogIGNvb3JkX2ZsaXAoKQp1c19hZHVsdHMgJT4lCiAgY291bnQoY2xpbWF0ZV9jaGFuZ2VfYWZmZWN0cykgJT4lCiAgbXV0YXRlKHAgPSBuIC9zdW0obikpCm4gPC0gNjAKc2FtcCA8LSB1c19hZHVsdHMgJT4lCiAgc2FtcGxlX24oc2l6ZSA9IG4pCnN1bW1hcnkodXNfYWR1bHRzKQp0YWJsZShzYW1wJGNsaW1hdGVfY2hhbmdlX2FmZmVjdHMpCmBgYAoKIyMjIEV4ZXJjaXNlIDIKV291bGQgeW91IGV4cGVjdCBhbm90aGVyIHN0dWRlbnQncyBzYW1wbGUgcHJvcG9ydGlvbiB0byBiZSBpZGVudGljYWwgdG8geW91cnM/IFdvdWxkIHlvdSBleHBlY3QgaXQgdG8gYmUgc2ltaWxhcj8gV2h5IG9yIFdoeSBub3Q/CgpObywgYW5vdGhlciBzdHVkZW50J3Mgc2FtcGxlIHByb3BvcnRpb24gbWF5IGJlIHNsaWdodGx5IGRpZmZlcmVudCBmcm9tIG1pbmUgYmVjYXVzZSBzYW1wbGUgcHJvcG9ydGlvbiwgcCAocG9pbnQgZXN0aW1hdGVzKSB3aWxsIHZhcnkgZnJvbSBvbmUgc2FtcGxlIHRvIGFub3RoZXIgZGVwZW5kaW5nIG9uIHRoZSBzaW11bGF0aW9uLiAKLi4uCgojIyMgRXhlcmNpc2UgMwpJbiB0aGUgaW50ZXJwcmV0YXRpb24gYWJvdmUsIHdlIHVzZWQgdGhlIHBocmFzZSAiOTUlIGNvbmZpZGVudCIuIFdoYXQgZG9lcyAiOTUlIGNvbmZpZGVuY2UiIG1lYW4/IApHZXR0aW5nIGEgc2Vuc2Ugb2YgdGhlIHByZWNpc2lvbiBvZiB0aGUgZXN0aW1hdGUsIHdlIGNvbXB1dGUgYSA5NSUgY29uZmlkZW5jZSB3aGljaCBpcyBhIHJhbmdlIG9mIHZhbHVlIGFib3ZlIGFuZCBiZWxvdyB0aGUgcG9pbnQgZXN0aW1hdGUgd2l0aGluIHdoaWNoIHRoZSB0cnVlIHZhbHVlIGluIHRoZSBwcm9wb3J0aW9uIGlzIGxpa2VseSB0byBsaWUgd2l0aCA5NSUgY29uZmlkZW5jZS4gVGhlIG90aGVyIDUlIGlzIHRoZSBwb3NzaWJpbGl0eSB0aGF0IHRoZSB0cnVlIHZhbHVlIGlzIG5vdCB3aXRoaW4gdGhlIGNvbmZpZGVuY2UgaW50ZXJ2YWwuCgpgYGB7ciBjb25maWRlbmNlLWludGVycHJldGF0aW9ufQpzYW1wICU+JQogIHNwZWNpZnkocmVzcG9uc2UgPSBjbGltYXRlX2NoYW5nZV9hZmZlY3RzLCBzdWNjZXNzID0gIlllcyIpICU+JQogIGdlbmVyYXRlKHJlcHMgPSAxMDAwLCB0eXBlID0gImJvb3RzdHJhcCIpICU+JQogIGNhbGN1bGF0ZShzdGF0ID0gInByb3AiKSAlPiUKICBnZXRfY2kobGV2ZWwgPSAwLjk1KQpgYGAKIyMjIEV4ZXJjaXNlIDQKRG9lcyB5b3VyIGNvbmZpZGVuY2UgaW50ZXJ2YWwgY2FwdHVyZSB0aGUgdHJ1ZSB2YWx1ZSBwcm9wb3J0aW9uIG9mIFVTIGFkdWx0cyB3aG8gdGhpbmsgY2xpbWF0ZSBjaGFuZ2UgYWZmZWN0cyB0aGVpciBsb2NhbCBjb21tdW5pdHk/IElmIHlvdSBhcmUgd29ya2luZyBvbiB0aGlzIGxhYiBpbiBhIGNsYXNzcm9vbSwgZG9lcyB5b3VyIG5laWdoYm9yJ3MgaW50ZXJ2YWwgY2FwdHVyZSB0aGlzIHZhbHVlPwoKTm8uIHRoZSBsb3dlciBsaW1pdCBvZiB0aGUgaW50ZXJ2YWwgaXMgNDUlIGFuZCB1cHBlciBsaW1pdCBmb3IgOTUlIGNvbmZpZGVuY2UgaW50ZXJ2YWwgaXMgNzIgJS4KCiMjIyBFeGVyY2lzZSA1CkVhY2ggc3R1ZGVudCBzaG91bGQgaGF2ZSBnb3R0ZW4gYSBzbGlnaHRseSBkaWZmZXJlbnQgY29uZmlkZW5jZSBpbnRlcnZhbC4gV2hhdCBwcm9wb3J0aW9uIG9mIHRob3NlIGludGVydmFscyB3b3VsZCB5b3UgZXhwZWN0IHRvIGNhcHR1cmUgdGhlIHRydWUgcG9wdWxhdGlvbiBtZWFuPyBXaHk/CgpJdCBpcyBleHBlY3RlZCB0aGF0IG9ubHkgKy8tIDAuMDEgcmFuZ2Ugb2YgaW50ZXJ2YWwgbWF5IGJlIGRpZmZlcmVudCB0byBjYXB0dXJlIHRoZSB0cnVlIHBvcHVsYXRpb24gbWVhbi4KCiMjIyBFeGVyY2lzZSA2CkdpdmVuIGEgc2FtcGxlIHNpemUgb2YgNjAsIDEwMDAgYm9vdHN0cmFwIHNhbXBsZXMgZm9yIGVhY2ggaW50ZXJ2YWwsIGFuZCA1MCBjb25maWRlbmNlIGludGVydmFscyBjb25zdHJ1Y3RlZCAodGhlIGRlZmF1bHQgdmFsdWVzIGZvciB0aGUgYWJvdmUgYXBwKSwgd2hhdCBwcm9wb3J0aW9uIG9mIHlvdXIgY29uZmlkZW5jZSBpbnRlcnZhbHMgaW5jbHVkZSB0aGUgdHJ1ZSBwb3B1bGF0aW9uIHByb3BvcnRpb24/IElzIHRoaXMgcHJvcG9ydGlvbiBleGFjdGx5IGVxdWFsIHRvIHRoZSBjb25maWRlbmNlIGxldmVsPyBJZiBub3QsIGV4cGxhaW4sIHdoeS4gTWFrZSBzdXJlIHRvIGluY2x1ZGUgeW91ciBwbG90IGluIHlvdXIgYW5zd2VyLgoKCmBgYHtyIGNvbmZpZGVuY2UtbGV2ZWx9CnNhbXAgJT4lCiAgc3BlY2lmeShyZXNwb25zZSA9IGNsaW1hdGVfY2hhbmdlX2FmZmVjdHMsIHN1Y2Nlc3MgPSAiWWVzIikgJT4lCiAgZ2VuZXJhdGUocmVwcyA9IDEwMDAsIHR5cGUgPSAiYm9vdHN0cmFwIikgJT4lCiAgY2FsY3VsYXRlKHN0YXQgPSAicHJvcCIpICU+JQogIGdldF9jaShsZXZlbCA9IDAuNTApCmdncGxvdChzYW1wLCBhZXMoeCA9IGNsaW1hdGVfY2hhbmdlX2FmZmVjdHMsIHkgPSAiIikpICsgCiAgZ2VvbV9wb2ludChjb2xvdXIgPSAiYmxhY2siKSArCiAgZ2VvbV9zbW9vdGgobWV0aG9kID0gImxtIiwgc2UgPSBUUlVFLCBsZXZlbCA9IDAuNTApICsKICBsYWJzKHRpdGxlID0gIjUwJSBDb25maWRlbmNlIEludGVydmFsIikgKwogIHRoZW1lX2J3KCkgKwogIHRoZW1lKHBsb3QudGl0bGUgPSBlbGVtZW50X3RleHQoZmFjZSA9ICJib2xkIixoanVzdCA9IDAuNSkpCmBgYAoKIyMjIEV4ZXJjaXNlIDcKQ2hvb3NlIGEgZGlmZmVyZW50IGNvbmZpZGVuY2UgbGV2ZWwgdGhhbiA5NSUuIFdvdWxkIHlvdSBleHBlY3QgYSBjb25maWRlbmNlIGludGVydmFsIGF0IHRoaXMgbGV2ZWwgdG8gbWUgd2lkZXIgb3IgbmFycm93ZXIgdGhhbiB0aGUgdGhlIGNvbmZpZGVuY2UgaW50ZXJ2YWwgeW91IGNhbGN1bGF0ZWQgYXQgdGhlIDk1JSBjb25maWRlbmNlIGxldmVsPyBFeHBsYWluIHlvdXIgcmVhc29uaW5nLiAKCkFzIHRoZSBjb25maWRlbmNlIGxldmVsIGlzIGhpZ2hlciwgdGhlIHJhbmdlIG9mIGNvbmZpZGVuY2UgaW50ZXJ2YWwgaXMgd2lkZXIgdGhhdCB3aWxsIGNhcHR1cmUgInRydWUgcCIuCgpgYGB7ciBkaWZmZXJlbnQtaW50ZXJ2YWx9CnNhbXAgJT4lCiAgc3BlY2lmeShyZXNwb25zZSA9IGNsaW1hdGVfY2hhbmdlX2FmZmVjdHMsIHN1Y2Nlc3MgPSAiWWVzIikgJT4lCiAgZ2VuZXJhdGUocmVwcyA9IDEwMDAsIHR5cGUgPSAiYm9vdHN0cmFwIikgJT4lCiAgY2FsY3VsYXRlKHN0YXQgPSAicHJvcCIpICU+JQogIGdldF9jaShsZXZlbCA9IDAuOTApCmBgYAojIyMgRXhlcmNpc2UgOApVc2luZyBjb2RlIGZyb20gdGhlIGluZmVyIHBhY2thZ2UgYW5kIGRhdGEgZnJvbSB0aGUgb25lIHNhbXBsZSB5b3UgaGF2ZSAoc2FtcCksIGZpbmQgYSBjb25maWRlbmNlIGludGVydmFsIGZvciB0aGUgcHJvcG9ydGlvbiBvZiBVUyBBZHVsdHMgd2hvIHRoaW5rIGNsaW1hdGUgY2hhbmdlIGlzIGFmZmVjdGluZyB0aGVpciBsb2NhbCBjb21tdW5pdHkgd2l0aCBhIGNvbmZpZGVuY2UgbGV2ZWwgb2YgeW91ciBjaG9vc2luZyAob3RoZXIgdGhhbiA5NSUpIGFuZCBpbnRlcnByZXQgaXQuCgpgYGB7ciB1cy1hZHVsdH0KdXNfYWR1bHRzIDwtIHRpYmJsZSgKICBjbGltYXRlX2NoYW5nZV9hZmZlY3RzID0gYyhyZXAoIlllcyIsIDYyMDAwKSwgcmVwKCJObyIsIDM4MDAwKSkKKQp1c19hZHVsdHMgJT4lCiAgc3BlY2lmeShyZXNwb25zZSA9IGNsaW1hdGVfY2hhbmdlX2FmZmVjdHMsIHN1Y2Nlc3MgPSAiWWVzIikgJT4lCiAgZ2VuZXJhdGUocmVwcyA9IDEwMDAsIHR5cGUgPSAiYm9vdHN0cmFwIikgJT4lCiAgY2FsY3VsYXRlKHN0YXQgPSAicHJvcCIpICU+JQogIGdldF9jaShsZXZlbCA9IDAuOTUpCmBgYAojIyMgRXhlcmNpc2UgOQpVc2luZyB0aGUgYXBwLCBjYWxjdWxhdGUgNTAgY29uZmlkZW5jZSBpbnRlcnZhbHMgYXQgdGhlIGNvbmZpZGVuY2UgbGV2ZWwgeW91IGNob3NlIGluIHRoZSBwcmV2aW91cyBxdWVzdGlvbiwgYW5kIHBsb3QgYWxsIGludGVydmFscyBvbiBvbmUgcGxvdCwgYW5kIGNhbGN1bGF0ZSB0aGUgcHJvcG9ydGlvbiBvZiBpbnRlcnZhbHMgdGhhdCBpbmNsdWRlIHRoZSB0cnVlIHBvcHVsYXRpb24gcHJvcG9ydGlvbi4gSG93IGRvZXMgdGhpcyBwZXJjZW50YWdlIGNvbXBhcmUgdG8gdGhlIGNvbmZpZGVuY2UgbGV2ZWwgc2VsZWN0ZWQgZm9yIHRoZSBpbnRlcnZhbHM/CgpgYGB7ciB1cy1hZHVsdDJ9CnVzX2FkdWx0cyA8LSB0aWJibGUoCiAgY2xpbWF0ZV9jaGFuZ2VfYWZmZWN0cyA9IGMocmVwKCJZZXMiLCA2MjAwMCksIHJlcCgiTm8iLCAzODAwMCkpCikKdXNfYWR1bHRzICU+JQogIHNwZWNpZnkocmVzcG9uc2UgPSBjbGltYXRlX2NoYW5nZV9hZmZlY3RzLCBzdWNjZXNzID0gIlllcyIpICU+JQogIGdlbmVyYXRlKHJlcHMgPSAxMDAwLCB0eXBlID0gImJvb3RzdHJhcCIpICU+JQogIGNhbGN1bGF0ZShzdGF0ID0gInByb3AiKSAlPiUKICBnZXRfY2kobGV2ZWwgPSAwLjUwKQp1c19hZHVsdHM8LXJvdW5kKGRhdGEuZnJhbWUoeCA9IDE6MjAsCiAgICAgICAgICAgICAgICAgICAgICB5ID0gcnVuaWYoMjAsIDIwLCA0MCksCiAgICAgICAgICAgICAgICAgICAgICBsb3dlciA9IHJ1bmlmKDIwLCAwLCAyMCksCiAgICAgICAgICAgICAgICAgICAgICB1cHBlciA9IHJ1bmlmKDIwLCA0MCwgNTApKSwgNCkKcGxvdENJKHggPSB1c19hZHVsdHMkeCwgICAgICAgICAgIAogICAgICAgeSA9IHVzX2FkdWx0cyR5LAogICAgICAgbGkgPSB1c19hZHVsdHMkbG93ZXIsCiAgICAgICB1aSA9IHVzX2FkdWx0cyR1cHBlcikKCmBgYAoKIyMjIEV4ZXJjaXNlIDEwCkxhc3RseSwgdHJ5IG9uZSBvciBtb3JlIChkaWZmZXJlbnQpIGNvbmZpZGVuY2UgbGV2ZWwuIEZpcnN0LCBzdGF0ZSBob3cgeW91IGV4cGVjdCB0aGUgd2lkdGggb2YgdGhpcyBpbnRlcnZhbCB0byBjb21wYXJlIHRvIHByZXZpb3VzIG9uZXMgeW91IGNhbGN1bGF0ZWQsIHRoZW4sIGNhbGN1bGF0ZSB0aGUgYm91bmRzIG9mIHRoZSBpbnRlcnZhbCB1c2luZyB0aGUgaW5mZXIgcGFja2FnZSBhbmQgZGF0YSBmcm9tIHNhbXAgYW5kIGludGVycHJldCBpdC4gRmluYWxseSwgdXNlIHRoZSBhcHAgdG8gZ2VuZXJhdGUgbWFueSBpbnRlcnZhbHMgYW5kIGNhbGN1bGF0ZSB0aGUgcHJvcG9ydGlvbiBvZiBpbnRlcnZhbHMgdGhhdCBhcmUgY2FwdHVyZSB0aGUgdHJ1ZSBwcm9wb3J0aW9uLgoKYGBgIHtyIGNvbmZlZGVuY2UtbGV2ZWx9CnNhbXAgPC0gdGliYmxlKAogIGNsaW1hdGVfY2hhbmdlX2FmZmVjdHMgPSBjKHJlcCgiWWVzIiwgNjIwMDApLCByZXAoIk5vIiwgMzgwMDApKQopCnNhbXAgJT4lCiAgc3BlY2lmeShyZXNwb25zZSA9IGNsaW1hdGVfY2hhbmdlX2FmZmVjdHMsIHN1Y2Nlc3MgPSAiWWVzIikgJT4lCiAgZ2VuZXJhdGUocmVwcyA9IDEwMDAsIHR5cGUgPSAiYm9vdHN0cmFwIikgJT4lCiAgY2FsY3VsYXRlKHN0YXQgPSAicHJvcCIpICU+JQogIGdldF9jaShsZXZlbCA9IDAuOTApCnNhbXA8LXJvdW5kKGRhdGEuZnJhbWUoeCA9IDE6MTAsCiAgICAgICAgICAgICAgICAgICAgICB5ID0gcnVuaWYoMTAsIDEwLCAyMCksCiAgICAgICAgICAgICAgICAgICAgICBsb3dlciA9IHJ1bmlmKDEwLCAwLCAxMCksCiAgICAgICAgICAgICAgICAgICAgICB1cHBlciA9IHJ1bmlmKDEwLCAyMCwgNDApKSwgNCkKZ2dwbG90KHNhbXAsIGFlcyh4LCB5KSkgKyBnZW9tX3BvaW50KCkgKyAKZ2VvbV9lcnJvcmJhcihhZXMoeW1pbiA9IGxvd2VyLCB5bWF4ID0gdXBwZXIpKQpgYGAKCiMjIyBFeGVyY2lzZSAxMQpVc2luZyB0aGUgYXBwLCBleHBlcmltZW50IHdpdGggZGlmZmVyZW50IHNhbXBsZSBzaXplcyBhbmQgY29tbWVudCBvbiBob3cgdGhlIHdpZHRocyBvZiBpbnRlcnZhbHMgY2hhbmdlIGFzIHNhbXBsZSBzaXplIGNoYW5nZXMgKGluY3JlYXNlcyBhbmQgZGVjcmVhc2VzKS4KClRoZSB3aWR0aHMgb2YgaW50ZXJ2YWxzIGluY3JlYXNlcywgc2FtcGxlIHNpemVzIGRlY3JlYXNlcy4KCiMjIyBFeGVyY2lzZSAxMgpGaW5hbGx5LCBnaXZlbiBhIHNhbXBsZSBzaXplIChzYXksIDYwKSwgaG93IGRvZXMgdGhlIHdpZHRoIG9mIHRoZSBpbnRlcnZhbCBjaGFuZ2VzIGFzIHlvdSBpbmNyZWFzZSB0aGUgbnVtYmVyIG9mIGJvb3RzdHJhcCBzYW1wbGVzLiBIaW50OiBEb2VzIGNoYW5naW5nIHRoZSBudW1iZXIgb2YgYm9vdHN0cmFwIHNhbXBsZXMgYWZmZWN0IHRoZSBzdGFuZGFyZCBlcnJvcj8KCk5vIGNoYW5nZSBpbiB0aGUgd2lkdGggb2YgdGhlIGludGVydmFsIGFzIHRoZSBudW1iZXIgb2YgYm9vdHN0cmFwIHNhbXBsZXMgaW5jcmVhc2VzLgo=