# Load packages
# Core
library(tidyverse)
library(tidyquant)
Collect individual returns into a portfolio by assigning a weight to each stock
five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”
from 2012-12-31 to 2017-12-31
# Choose stocks
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
market_returns_tbl <- tq_get(x = "SPY",
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1)
market_returns_tbl
## # A tibble: 60 × 2
## date monthly.returns
## <date> <dbl>
## 1 2013-01-31 0.0499
## 2 2013-02-28 0.0127
## 3 2013-03-28 0.0373
## 4 2013-04-30 0.0190
## 5 2013-05-31 0.0233
## 6 2013-06-28 -0.0134
## 7 2013-07-31 0.0504
## 8 2013-08-30 -0.0305
## 9 2013-09-30 0.0312
## 10 2013-10-31 0.0453
## # … with 50 more rows
asset_beta_tbl <- asset_returns_tbl %>%
nest(data = -asset) %>%
# Cal CAPM Beta
mutate(model = map(.x = data,
.f = ~lm(returns ~ market_returns_tbl$monthly.returns,
data = .x))) %>%
# Extract beta
mutate(model = map(.x = model, .f = broom::tidy)) %>%
unnest(model) %>%
filter(term != "(Intercept)")
asset_beta_tbl %>%
ggplot(aes(x = estimate,
y = fct_reorder(asset, estimate),
fill = asset)) +
geom_col() +
scale_fill_tq() +
theme_tq() +
theme(legend.position = "none") +
labs(y = NULL, x = "Beta Coefficient",
title = "The Beta Coefficient by Asset")