This data analysis was conducted using the Abby_T1T2T3 complete 3.26.12.sav data file.

pacman::p_load(dplyr, tidyr, knitr, ggplot2, kableExtra, 
               BSDA, car, psych, readr, magrittr, 
               MASS, gridExtra, Rfit, pwr, pscl, InteractionPoweR, robustHD)

pacman::p_load(tidyverse, MASS,
               magrittr, robustHD,
               tibble, psych,
               kableExtra, e1071,
               knitr, tidyr,
               lavaan, semPlot,
               jtools, car,
               lmtest, ggpubr,
               FSA, rstatix,
               writexl, readxl, 
               rcompanion, coin, lm.beta, Hmisc)

Basic Data Cleaning

Variable creation

Subscales were already created for original datafile such that if a participant answered 80% of the items in a scale or more, the average of their completed items was entered as their missing value.

Scale reliabilities

repdata.1<- subset(repdata, Sex==2)
repdata.2<- subset(repdata.1, Romantic.relationship.T1==1)

#Attachment Avoidance
repdata.2 %>%
  select(AAQ.1r, AAQ.2, AAQ.3r, AAQ.5, AAQ.6, AAQ.7, AAQ.8, AAQ.9) %>%
  psych::alpha( ,check.keys = F, na.rm = TRUE)
## 
## Reliability analysis   
## Call: psych::alpha(x = ., na.rm = TRUE, check.keys = F)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean  sd median_r
##       0.84      0.84    0.84       0.4 5.2 0.011  3.3 1.1     0.41
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.82  0.84  0.86
## Duhachek  0.82  0.84  0.86
## 
##  Reliability if an item is dropped:
##        raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## AAQ.1r      0.82      0.82    0.83      0.40 4.6    0.012 0.040  0.42
## AAQ.2       0.83      0.83    0.83      0.41 4.9    0.012 0.036  0.46
## AAQ.3r      0.86      0.87    0.86      0.48 6.4    0.010 0.012  0.46
## AAQ.5       0.81      0.80    0.80      0.37 4.1    0.014 0.030  0.40
## AAQ.6       0.80      0.80    0.80      0.36 4.0    0.014 0.028  0.40
## AAQ.7       0.82      0.82    0.82      0.40 4.6    0.013 0.033  0.42
## AAQ.8       0.80      0.80    0.79      0.36 3.9    0.014 0.026  0.40
## AAQ.9       0.82      0.82    0.82      0.39 4.5    0.013 0.038  0.42
## 
##  Item statistics 
##          n raw.r std.r r.cor r.drop mean  sd
## AAQ.1r 432  0.68  0.69  0.61   0.57  3.5 1.6
## AAQ.2  430  0.63  0.62  0.53   0.49  4.2 1.8
## AAQ.3r 430  0.35  0.37  0.22   0.19  3.0 1.5
## AAQ.5  429  0.78  0.79  0.77   0.70  2.8 1.6
## AAQ.6  431  0.80  0.80  0.79   0.72  3.0 1.7
## AAQ.7  428  0.70  0.68  0.62   0.57  4.0 1.8
## AAQ.8  428  0.83  0.83  0.83   0.76  2.9 1.6
## AAQ.9  432  0.71  0.71  0.65   0.60  2.8 1.7
## 
## Non missing response frequency for each item
##           1    2    3    4    5    6    7 miss
## AAQ.1r 0.10 0.21 0.24 0.18 0.13 0.10 0.04 0.01
## AAQ.2  0.05 0.18 0.11 0.19 0.19 0.17 0.11 0.02
## AAQ.3r 0.15 0.27 0.26 0.15 0.10 0.05 0.01 0.02
## AAQ.5  0.21 0.32 0.16 0.16 0.09 0.04 0.03 0.02
## AAQ.6  0.23 0.27 0.12 0.16 0.12 0.07 0.02 0.01
## AAQ.7  0.08 0.18 0.14 0.17 0.18 0.14 0.10 0.02
## AAQ.8  0.21 0.31 0.15 0.13 0.11 0.06 0.03 0.02
## AAQ.9  0.27 0.26 0.16 0.14 0.09 0.05 0.03 0.01
#Attachment Anxiety
repdata.2 %>%
  select(AAQ.4r, AAQ.10, AAQ.11, AAQ.12r, AAQ.13, AAQ.14r, AAQ.15, AAQ.16r, AAQ.17r) %>%
  psych::alpha( ,check.keys = F, na.rm = TRUE)
## 
## Reliability analysis   
## Call: psych::alpha(x = ., na.rm = TRUE, check.keys = F)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean  sd median_r
##       0.81      0.81    0.83      0.32 4.2 0.013  3.3 1.1     0.37
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.78  0.81  0.84
## Duhachek  0.79  0.81  0.84
## 
##  Reliability if an item is dropped:
##         raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## AAQ.4r       0.79      0.79    0.81      0.32 3.7    0.015 0.027  0.35
## AAQ.10       0.81      0.81    0.82      0.35 4.2    0.013 0.026  0.38
## AAQ.11       0.77      0.76    0.78      0.29 3.2    0.017 0.026  0.21
## AAQ.12r      0.80      0.80    0.82      0.33 3.9    0.014 0.027  0.36
## AAQ.13       0.81      0.80    0.81      0.33 4.0    0.014 0.027  0.38
## AAQ.14r      0.78      0.78    0.80      0.31 3.6    0.015 0.024  0.35
## AAQ.15       0.81      0.80    0.81      0.34 4.1    0.013 0.024  0.38
## AAQ.16r      0.78      0.78    0.80      0.31 3.5    0.015 0.027  0.36
## AAQ.17r      0.78      0.78    0.79      0.30 3.5    0.016 0.024  0.35
## 
##  Item statistics 
##           n raw.r std.r r.cor r.drop mean  sd
## AAQ.4r  431  0.64  0.62  0.56   0.52  4.0 1.8
## AAQ.10  431  0.45  0.50  0.40   0.33  2.6 1.4
## AAQ.11  430  0.79  0.78  0.77   0.70  2.9 1.9
## AAQ.12r 430  0.62  0.58  0.50   0.46  3.7 2.0
## AAQ.13  428  0.52  0.56  0.49   0.40  2.4 1.4
## AAQ.14r 431  0.70  0.68  0.64   0.59  4.1 1.9
## AAQ.15  430  0.49  0.53  0.46   0.35  3.2 1.6
## AAQ.16r 429  0.70  0.69  0.64   0.59  4.3 1.8
## AAQ.17r 431  0.73  0.71  0.69   0.62  2.9 1.8
## 
## Non missing response frequency for each item
##            1    2    3    4    5    6    7 miss
## AAQ.4r  0.08 0.18 0.14 0.14 0.21 0.15 0.08 0.01
## AAQ.10  0.24 0.36 0.15 0.16 0.07 0.03 0.00 0.01
## AAQ.11  0.31 0.25 0.09 0.11 0.11 0.07 0.05 0.02
## AAQ.12r 0.18 0.21 0.09 0.10 0.17 0.15 0.10 0.02
## AAQ.13  0.31 0.32 0.14 0.12 0.07 0.03 0.01 0.02
## AAQ.14r 0.08 0.19 0.13 0.11 0.18 0.19 0.10 0.01
## AAQ.15  0.16 0.26 0.17 0.19 0.13 0.06 0.03 0.02
## AAQ.16r 0.07 0.14 0.12 0.14 0.22 0.21 0.09 0.02
## AAQ.17r 0.30 0.21 0.14 0.12 0.12 0.08 0.03 0.01
# Partner Trust
repdata.2 %>%
  select(PTrust.2, PTrust.3, PTrust.9, PTrust.10, PTrust.11, PTrust.12, PTrust.16, 
PTrust.1, PTrust.7, PTrust.13, PTrust.15, PTrust.17, PTrust.4r, PTrust.5r, PTrust.6r, PTrust.8, PTrust.14r) %>%
  psych::alpha( ,check.keys = F, na.rm = TRUE)
## 
## Reliability analysis   
## Call: psych::alpha(x = ., na.rm = TRUE, check.keys = F)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean   sd median_r
##        0.9      0.91    0.92      0.36 9.7 0.0072  5.5 0.94     0.35
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.88   0.9  0.91
## Duhachek  0.88   0.9  0.91
## 
##  Reliability if an item is dropped:
##            raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## PTrust.2        0.89      0.90    0.92      0.36  9.0   0.0077 0.023  0.35
## PTrust.3        0.89      0.90    0.91      0.35  8.6   0.0080 0.021  0.34
## PTrust.9        0.89      0.90    0.91      0.35  8.8   0.0079 0.023  0.34
## PTrust.10       0.89      0.90    0.91      0.36  8.8   0.0079 0.022  0.35
## PTrust.11       0.88      0.89    0.91      0.35  8.5   0.0081 0.020  0.34
## PTrust.12       0.89      0.90    0.91      0.35  8.7   0.0080 0.021  0.34
## PTrust.16       0.89      0.90    0.92      0.36  8.9   0.0078 0.023  0.35
## PTrust.1        0.89      0.90    0.92      0.37  9.5   0.0074 0.024  0.36
## PTrust.7        0.90      0.91    0.92      0.38  9.9   0.0070 0.022  0.36
## PTrust.13       0.89      0.90    0.92      0.36  9.1   0.0077 0.024  0.35
## PTrust.15       0.89      0.90    0.91      0.35  8.7   0.0080 0.023  0.34
## PTrust.17       0.89      0.90    0.91      0.36  9.0   0.0078 0.024  0.35
## PTrust.4r       0.90      0.91    0.92      0.39 10.3   0.0068 0.019  0.36
## PTrust.5r       0.89      0.90    0.92      0.37  9.2   0.0076 0.025  0.35
## PTrust.6r       0.90      0.91    0.92      0.38  9.7   0.0072 0.023  0.36
## PTrust.8        0.89      0.90    0.92      0.37  9.2   0.0076 0.024  0.36
## PTrust.14r      0.89      0.90    0.92      0.37  9.5   0.0074 0.024  0.36
## 
##  Item statistics 
##              n raw.r std.r r.cor r.drop mean  sd
## PTrust.2   429  0.65  0.66  0.64   0.60  5.6 1.5
## PTrust.3   424  0.76  0.77  0.77   0.72  5.8 1.4
## PTrust.9   425  0.72  0.74  0.72   0.68  6.0 1.2
## PTrust.10  426  0.71  0.72  0.70   0.66  5.7 1.4
## PTrust.11  427  0.81  0.82  0.84   0.78  5.7 1.3
## PTrust.12  427  0.76  0.77  0.78   0.72  5.6 1.4
## PTrust.16  423  0.68  0.70  0.68   0.64  6.0 1.3
## PTrust.1   425  0.56  0.54  0.50   0.47  5.1 1.7
## PTrust.7   424  0.45  0.43  0.37   0.35  4.9 1.9
## PTrust.13  425  0.64  0.63  0.61   0.57  5.6 1.7
## PTrust.15  425  0.76  0.77  0.76   0.72  5.7 1.3
## PTrust.17  425  0.66  0.67  0.65   0.61  5.3 1.5
## PTrust.4r  425  0.36  0.33  0.26   0.24  4.7 1.8
## PTrust.5r  427  0.61  0.60  0.58   0.54  5.8 1.4
## PTrust.6r  427  0.48  0.47  0.41   0.39  5.3 1.7
## PTrust.8   425  0.60  0.61  0.58   0.54  5.4 1.4
## PTrust.14r 428  0.55  0.54  0.49   0.46  5.9 1.5
## 
## Non missing response frequency for each item
##               1    2    3    4    5    6    7 miss
## PTrust.2   0.01 0.04 0.05 0.09 0.18 0.30 0.32 0.02
## PTrust.3   0.01 0.04 0.04 0.08 0.16 0.26 0.42 0.03
## PTrust.9   0.01 0.01 0.02 0.06 0.14 0.32 0.44 0.03
## PTrust.10  0.02 0.02 0.04 0.08 0.18 0.32 0.33 0.03
## PTrust.11  0.01 0.02 0.04 0.08 0.20 0.32 0.33 0.02
## PTrust.12  0.01 0.02 0.04 0.10 0.20 0.28 0.34 0.02
## PTrust.16  0.01 0.02 0.03 0.06 0.13 0.31 0.43 0.03
## PTrust.1   0.06 0.05 0.06 0.13 0.21 0.23 0.26 0.03
## PTrust.7   0.07 0.08 0.07 0.12 0.18 0.25 0.22 0.03
## PTrust.13  0.04 0.05 0.04 0.08 0.12 0.26 0.41 0.03
## PTrust.15  0.01 0.03 0.03 0.10 0.17 0.34 0.32 0.03
## PTrust.17  0.03 0.03 0.07 0.14 0.20 0.31 0.22 0.03
## PTrust.4r  0.06 0.09 0.13 0.16 0.12 0.25 0.18 0.03
## PTrust.5r  0.02 0.01 0.07 0.08 0.12 0.32 0.39 0.02
## PTrust.6r  0.03 0.06 0.12 0.08 0.13 0.28 0.30 0.02
## PTrust.8   0.02 0.03 0.06 0.09 0.25 0.32 0.23 0.03
## PTrust.14r 0.02 0.02 0.06 0.07 0.07 0.29 0.47 0.02
# Responsiveness
repdata.2 %>%
  select(REIS.1, REIS.2, REIS.3, REIS.4, REIS.5, REIS.6, REIS.7, REIS.8, REIS.9, 
REIS.10, REIS.11, REIS.12, REIS.13, REIS.14, REIS.15, REIS.16, REIS.17, REIS.18) %>%
  psych::alpha( ,check.keys = F, na.rm = TRUE)
## 
## Reliability analysis   
## Call: psych::alpha(x = ., na.rm = TRUE, check.keys = F)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.96      0.97    0.97      0.62  29 0.0025  7.3 1.4     0.64
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.96  0.96  0.97
## Duhachek  0.96  0.96  0.97
## 
##  Reliability if an item is dropped:
##         raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## REIS.1       0.96      0.97    0.97      0.62  28   0.0026 0.0159  0.64
## REIS.2       0.96      0.96    0.97      0.62  27   0.0026 0.0160  0.64
## REIS.3       0.97      0.97    0.98      0.65  31   0.0022 0.0082  0.65
## REIS.4       0.96      0.96    0.97      0.61  27   0.0027 0.0165  0.64
## REIS.5       0.96      0.96    0.97      0.61  27   0.0027 0.0160  0.62
## REIS.6       0.96      0.96    0.97      0.62  27   0.0026 0.0158  0.64
## REIS.7       0.96      0.96    0.97      0.61  27   0.0027 0.0156  0.62
## REIS.8       0.96      0.97    0.97      0.63  29   0.0025 0.0150  0.65
## REIS.9       0.96      0.96    0.97      0.62  27   0.0027 0.0163  0.64
## REIS.10      0.96      0.96    0.97      0.61  27   0.0027 0.0157  0.63
## REIS.11      0.96      0.96    0.97      0.61  27   0.0027 0.0155  0.63
## REIS.12      0.96      0.96    0.97      0.61  27   0.0027 0.0149  0.63
## REIS.13      0.96      0.96    0.97      0.61  27   0.0027 0.0145  0.63
## REIS.14      0.96      0.96    0.97      0.62  27   0.0026 0.0150  0.64
## REIS.15      0.96      0.96    0.97      0.61  26   0.0027 0.0144  0.63
## REIS.16      0.96      0.96    0.97      0.61  27   0.0027 0.0158  0.63
## REIS.17      0.96      0.96    0.97      0.62  27   0.0027 0.0149  0.64
## REIS.18      0.96      0.96    0.97      0.61  27   0.0027 0.0153  0.63
## 
##  Item statistics 
##           n raw.r std.r r.cor r.drop mean  sd
## REIS.1  428  0.75  0.74  0.73   0.71  7.0 1.8
## REIS.2  422  0.79  0.79  0.78   0.76  7.5 1.6
## REIS.3  424  0.53  0.51  0.47   0.46  6.2 2.2
## REIS.4  425  0.82  0.82  0.81   0.80  7.0 1.6
## REIS.5  425  0.83  0.84  0.83   0.81  7.3 1.7
## REIS.6  422  0.79  0.79  0.78   0.76  7.7 1.6
## REIS.7  424  0.86  0.86  0.86   0.84  7.6 1.7
## REIS.8  424  0.69  0.68  0.65   0.64  7.0 2.0
## REIS.9  424  0.79  0.79  0.77   0.76  6.8 1.9
## REIS.10 427  0.86  0.86  0.85   0.84  7.1 1.9
## REIS.11 423  0.83  0.83  0.82   0.80  7.1 1.8
## REIS.12 424  0.85  0.85  0.85   0.83  7.7 1.6
## REIS.13 426  0.86  0.86  0.86   0.84  7.5 1.7
## REIS.14 424  0.79  0.80  0.79   0.77  7.8 1.5
## REIS.15 424  0.87  0.87  0.87   0.85  7.7 1.5
## REIS.16 425  0.85  0.85  0.84   0.82  7.2 1.9
## REIS.17 425  0.79  0.81  0.80   0.77  8.0 1.4
## REIS.18 423  0.83  0.83  0.83   0.81  7.5 1.7
## 
## Non missing response frequency for each item
##            1    2    3    4    5    6    7    8    9 miss
## REIS.1  0.00 0.01 0.04 0.02 0.11 0.09 0.29 0.17 0.26 0.02
## REIS.2  0.00 0.01 0.04 0.02 0.05 0.08 0.24 0.19 0.37 0.03
## REIS.3  0.03 0.04 0.08 0.06 0.14 0.12 0.22 0.15 0.17 0.03
## REIS.4  0.00 0.01 0.03 0.04 0.09 0.13 0.28 0.21 0.21 0.03
## REIS.5  0.00 0.01 0.03 0.03 0.08 0.09 0.23 0.21 0.32 0.03
## REIS.6  0.00 0.01 0.02 0.03 0.06 0.06 0.18 0.21 0.43 0.03
## REIS.7  0.00 0.01 0.02 0.03 0.04 0.08 0.17 0.23 0.42 0.03
## REIS.8  0.00 0.02 0.06 0.04 0.09 0.10 0.21 0.18 0.29 0.03
## REIS.9  0.00 0.02 0.06 0.04 0.11 0.13 0.22 0.17 0.25 0.03
## REIS.10 0.00 0.02 0.05 0.03 0.11 0.11 0.20 0.19 0.29 0.02
## REIS.11 0.01 0.02 0.02 0.04 0.08 0.15 0.20 0.20 0.29 0.03
## REIS.12 0.00 0.00 0.03 0.03 0.05 0.07 0.20 0.20 0.43 0.03
## REIS.13 0.00 0.01 0.03 0.03 0.06 0.10 0.20 0.24 0.34 0.03
## REIS.14 0.00 0.01 0.01 0.02 0.04 0.08 0.18 0.23 0.43 0.03
## REIS.15 0.00 0.00 0.03 0.02 0.04 0.09 0.17 0.27 0.38 0.03
## REIS.16 0.01 0.03 0.03 0.03 0.09 0.12 0.16 0.23 0.32 0.03
## REIS.17 0.00 0.00 0.01 0.02 0.04 0.05 0.14 0.22 0.51 0.03
## REIS.18 0.00 0.01 0.03 0.03 0.06 0.11 0.17 0.22 0.37 0.03
# Felt Security
repdata.2 %>%
  select(Security.1, Security.2, Security.3, Security.4, Security.5, Security.6, Security.7, Security.8r, Security.9r, Security.10r, Security.11r, Security.12r, Security.13r, Security.14r, Security.15r, Security.16r, Security.17r, Security.18r) %>%
  psych::alpha( ,check.keys = F, na.rm = TRUE)
## 
## Reliability analysis   
## Call: psych::alpha(x = ., na.rm = TRUE, check.keys = F)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean   sd median_r
##       0.94      0.95    0.96      0.49  17 0.0042  6.1 0.87      0.5
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.93  0.94  0.95
## Duhachek  0.93  0.94  0.95
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## Security.1        0.94      0.95    0.96      0.50  17   0.0043 0.019  0.50
## Security.2        0.94      0.94    0.96      0.49  16   0.0044 0.021  0.50
## Security.3        0.94      0.94    0.96      0.49  16   0.0045 0.020  0.49
## Security.4        0.94      0.94    0.96      0.50  17   0.0044 0.021  0.50
## Security.5        0.94      0.94    0.96      0.49  16   0.0045 0.020  0.49
## Security.6        0.93      0.94    0.96      0.49  16   0.0045 0.021  0.49
## Security.7        0.93      0.94    0.96      0.49  16   0.0045 0.020  0.49
## Security.8r       0.94      0.94    0.96      0.50  17   0.0044 0.022  0.50
## Security.9r       0.94      0.94    0.96      0.49  16   0.0045 0.022  0.49
## Security.10r      0.94      0.94    0.96      0.50  17   0.0044 0.021  0.50
## Security.11r      0.94      0.94    0.96      0.50  17   0.0044 0.021  0.50
## Security.12r      0.94      0.94    0.96      0.49  16   0.0045 0.022  0.49
## Security.13r      0.94      0.94    0.96      0.49  16   0.0045 0.021  0.49
## Security.14r      0.95      0.95    0.96      0.51  18   0.0038 0.019  0.51
## Security.15r      0.93      0.94    0.96      0.48  16   0.0047 0.022  0.48
## Security.16r      0.93      0.94    0.96      0.48  16   0.0046 0.021  0.48
## Security.17r      0.93      0.94    0.96      0.48  16   0.0046 0.021  0.48
## Security.18r      0.94      0.94    0.96      0.50  17   0.0044 0.022  0.50
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean   sd
## Security.1   429  0.58  0.59  0.56   0.53  6.3 1.13
## Security.2   426  0.72  0.73  0.72   0.68  6.3 1.02
## Security.3   425  0.76  0.77  0.78   0.73  6.3 1.00
## Security.4   426  0.67  0.68  0.66   0.63  5.9 1.26
## Security.5   426  0.77  0.78  0.78   0.74  6.3 1.03
## Security.6   426  0.77  0.78  0.78   0.74  6.1 1.21
## Security.7   423  0.78  0.79  0.79   0.75  6.2 1.17
## Security.8r  428  0.69  0.68  0.66   0.63  6.0 1.26
## Security.9r  426  0.75  0.75  0.74   0.71  6.3 1.24
## Security.10r 426  0.66  0.66  0.64   0.61  6.1 1.10
## Security.11r 424  0.64  0.65  0.63   0.60  6.4 0.92
## Security.12r 425  0.73  0.73  0.72   0.69  6.3 1.17
## Security.13r 425  0.76  0.76  0.76   0.72  6.5 1.01
## Security.14r 427  0.54  0.49  0.45   0.44  4.9 1.92
## Security.15r 425  0.83  0.81  0.80   0.79  6.0 1.53
## Security.16r 424  0.84  0.83  0.83   0.81  6.3 1.18
## Security.17r 425  0.81  0.80  0.80   0.78  6.4 1.13
## Security.18r 428  0.70  0.68  0.66   0.64  5.9 1.57
## 
## Non missing response frequency for each item
##                 1    2    3    4    5    6    7 miss
## Security.1   0.00 0.00 0.02 0.07 0.09 0.18 0.62 0.02
## Security.2   0.00 0.00 0.02 0.05 0.10 0.26 0.58 0.03
## Security.3   0.00 0.00 0.02 0.05 0.10 0.27 0.55 0.03
## Security.4   0.01 0.02 0.04 0.06 0.18 0.30 0.41 0.03
## Security.5   0.00 0.01 0.02 0.05 0.11 0.27 0.55 0.03
## Security.6   0.00 0.01 0.03 0.06 0.14 0.24 0.52 0.03
## Security.7   0.00 0.01 0.02 0.05 0.13 0.24 0.54 0.03
## Security.8r  0.01 0.02 0.03 0.08 0.08 0.33 0.46 0.02
## Security.9r  0.01 0.02 0.02 0.05 0.06 0.23 0.61 0.03
## Security.10r 0.00 0.01 0.03 0.05 0.09 0.40 0.42 0.03
## Security.11r 0.00 0.00 0.02 0.01 0.06 0.29 0.62 0.03
## Security.12r 0.01 0.01 0.03 0.04 0.06 0.25 0.59 0.03
## Security.13r 0.00 0.01 0.02 0.03 0.05 0.21 0.68 0.03
## Security.14r 0.06 0.09 0.11 0.14 0.11 0.20 0.30 0.02
## Security.15r 0.02 0.04 0.04 0.08 0.08 0.21 0.54 0.03
## Security.16r 0.01 0.01 0.03 0.04 0.07 0.21 0.63 0.03
## Security.17r 0.00 0.01 0.03 0.04 0.05 0.23 0.64 0.03
## Security.18r 0.03 0.02 0.05 0.11 0.07 0.18 0.54 0.02
# PRQC
repdata.2 %>%
  select(PRQC.1, PRQC.2, PRQC.3, PRQC.4, 
PRQC.5, PRQC.6, PRQC.7, PRQC.8, PRQC.9, PRQC.10, 
PRQC.11, PRQC.12, PRQC.13, PRQC.14, PRQC.15, PRQC.16, PRQC.17, PRQC.18) %>%
  psych::alpha( ,check.keys = F, na.rm = TRUE)
## 
## Reliability analysis   
## Call: psych::alpha(x = ., na.rm = TRUE, check.keys = F)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.95      0.96    0.98      0.56  22 0.0034    6 0.9     0.58
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.95  0.95  0.96
## Duhachek  0.95  0.95  0.96
## 
##  Reliability if an item is dropped:
##         raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## PRQC.1       0.95      0.95    0.98      0.55  20   0.0038 0.026  0.57
## PRQC.2       0.95      0.95    0.97      0.55  20   0.0038 0.026  0.56
## PRQC.3       0.95      0.95    0.98      0.55  20   0.0038 0.026  0.57
## PRQC.4       0.95      0.95    0.98      0.55  21   0.0037 0.026  0.58
## PRQC.5       0.95      0.95    0.97      0.55  21   0.0037 0.026  0.57
## PRQC.6       0.95      0.95    0.98      0.55  21   0.0037 0.026  0.57
## PRQC.7       0.95      0.96    0.98      0.56  21   0.0037 0.028  0.59
## PRQC.8       0.95      0.95    0.98      0.55  20   0.0038 0.027  0.56
## PRQC.9       0.95      0.95    0.98      0.55  21   0.0038 0.027  0.56
## PRQC.10      0.95      0.96    0.98      0.57  22   0.0035 0.025  0.59
## PRQC.11      0.95      0.96    0.98      0.56  22   0.0036 0.027  0.58
## PRQC.12      0.95      0.96    0.98      0.56  22   0.0036 0.027  0.59
## PRQC.13      0.95      0.95    0.98      0.55  21   0.0037 0.029  0.58
## PRQC.14      0.96      0.96    0.98      0.58  23   0.0032 0.021  0.59
## PRQC.15      0.95      0.96    0.98      0.58  23   0.0032 0.022  0.59
## PRQC.16      0.95      0.96    0.98      0.56  21   0.0036 0.027  0.58
## PRQC.17      0.95      0.95    0.98      0.55  21   0.0037 0.028  0.57
## PRQC.18      0.95      0.95    0.98      0.55  21   0.0037 0.027  0.58
## 
##  Item statistics 
##           n raw.r std.r r.cor r.drop mean   sd
## PRQC.1  428  0.87  0.86  0.86   0.83  5.8 1.24
## PRQC.2  426  0.85  0.85  0.85   0.82  5.9 1.21
## PRQC.3  425  0.86  0.86  0.86   0.83  5.9 1.21
## PRQC.4  425  0.76  0.78  0.78   0.73  6.3 1.01
## PRQC.5  425  0.81  0.83  0.83   0.78  6.3 1.00
## PRQC.6  425  0.81  0.83  0.83   0.79  6.3 1.02
## PRQC.7  426  0.77  0.76  0.74   0.74  6.0 1.20
## PRQC.8  425  0.84  0.85  0.84   0.82  6.2 1.08
## PRQC.9  428  0.86  0.84  0.84   0.82  6.1 1.17
## PRQC.10 424  0.63  0.64  0.61   0.58  6.0 1.29
## PRQC.11 426  0.73  0.72  0.71   0.68  6.0 1.18
## PRQC.12 426  0.71  0.71  0.70   0.67  6.1 1.14
## PRQC.13 423  0.80  0.78  0.77   0.77  6.0 1.23
## PRQC.14 424  0.56  0.52  0.50   0.48  5.3 1.64
## PRQC.15 420  0.58  0.54  0.52   0.50  5.4 1.59
## PRQC.16 425  0.75  0.76  0.75   0.72  6.4 1.02
## PRQC.17 427  0.78  0.80  0.80   0.77  6.3 1.07
## PRQC.18 428  0.75  0.78  0.77   0.73  6.4 0.97
## 
## Non missing response frequency for each item
##            1    2    3    4    5    6    7 miss
## PRQC.1  0.00 0.01 0.06 0.06 0.18 0.32 0.37 0.02
## PRQC.2  0.00 0.01 0.05 0.06 0.19 0.30 0.39 0.03
## PRQC.3  0.00 0.02 0.04 0.08 0.14 0.31 0.42 0.03
## PRQC.4  0.00 0.00 0.02 0.05 0.09 0.21 0.62 0.03
## PRQC.5  0.00 0.00 0.01 0.06 0.11 0.21 0.60 0.03
## PRQC.6  0.00 0.00 0.02 0.06 0.09 0.23 0.60 0.03
## PRQC.7  0.00 0.02 0.03 0.08 0.14 0.29 0.44 0.03
## PRQC.8  0.00 0.01 0.02 0.05 0.13 0.28 0.52 0.03
## PRQC.9  0.00 0.01 0.03 0.06 0.14 0.29 0.47 0.02
## PRQC.10 0.01 0.02 0.04 0.06 0.11 0.33 0.44 0.03
## PRQC.11 0.00 0.01 0.04 0.06 0.10 0.35 0.44 0.03
## PRQC.12 0.00 0.02 0.02 0.07 0.13 0.32 0.45 0.03
## PRQC.13 0.00 0.02 0.03 0.06 0.15 0.30 0.44 0.03
## PRQC.14 0.03 0.05 0.07 0.12 0.18 0.25 0.29 0.03
## PRQC.15 0.03 0.04 0.06 0.10 0.21 0.27 0.29 0.04
## PRQC.16 0.00 0.01 0.01 0.05 0.08 0.22 0.62 0.03
## PRQC.17 0.00 0.01 0.02 0.06 0.09 0.23 0.59 0.02
## PRQC.18 0.00 0.01 0.00 0.06 0.06 0.24 0.62 0.02
#Neuroticism
repdata.2 %>%
  select(MM.3r, MM.6r, MM.12r, MM.14r, MM.16r, MM.23, MM.24, MM.34r) %>%
  psych::alpha( ,check.keys = F, na.rm = TRUE)
## 
## Reliability analysis   
## Call: psych::alpha(x = ., na.rm = TRUE, check.keys = F)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean  sd median_r
##       0.79      0.79    0.81      0.32 3.8 0.015  5.4 1.3     0.29
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.76  0.79  0.82
## Duhachek  0.76  0.79  0.82
## 
##  Reliability if an item is dropped:
##        raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## MM.3r       0.76      0.76    0.77      0.31 3.1    0.018 0.022  0.27
## MM.6r       0.76      0.76    0.76      0.31 3.1    0.018 0.015  0.29
## MM.12r      0.76      0.76    0.77      0.31 3.2    0.018 0.021  0.29
## MM.14r      0.78      0.78    0.80      0.33 3.5    0.016 0.026  0.29
## MM.16r      0.79      0.79    0.81      0.36 3.9    0.015 0.022  0.33
## MM.23       0.79      0.79    0.81      0.36 3.9    0.015 0.022  0.31
## MM.24       0.76      0.76    0.77      0.31 3.2    0.017 0.016  0.29
## MM.34r      0.76      0.76    0.77      0.31 3.1    0.018 0.019  0.29
## 
##  Item statistics 
##          n raw.r std.r r.cor r.drop mean  sd
## MM.3r  430  0.70  0.70  0.66   0.58  4.6 2.0
## MM.6r  427  0.71  0.71  0.69   0.59  5.5 1.9
## MM.12r 425  0.70  0.70  0.66   0.57  5.3 2.0
## MM.14r 419  0.61  0.60  0.50   0.45  5.8 2.1
## MM.16r 426  0.52  0.51  0.38   0.35  4.9 2.0
## MM.23  425  0.50  0.51  0.39   0.35  5.9 1.8
## MM.24  422  0.68  0.68  0.65   0.55  5.3 1.9
## MM.34r 426  0.71  0.71  0.67   0.59  5.8 2.1
## 
## Non missing response frequency for each item
##           1    2    3    4    5    6    7    8    9 miss
## MM.3r  0.05 0.09 0.14 0.31 0.11 0.10 0.10 0.09 0.02 0.02
## MM.6r  0.02 0.04 0.10 0.19 0.14 0.16 0.16 0.15 0.04 0.02
## MM.12r 0.02 0.06 0.10 0.25 0.11 0.15 0.13 0.14 0.04 0.03
## MM.14r 0.02 0.05 0.08 0.18 0.13 0.10 0.14 0.20 0.10 0.04
## MM.16r 0.03 0.08 0.15 0.23 0.14 0.13 0.10 0.10 0.03 0.03
## MM.23  0.01 0.03 0.06 0.16 0.10 0.19 0.25 0.17 0.04 0.03
## MM.24  0.03 0.05 0.08 0.21 0.17 0.20 0.12 0.13 0.03 0.03
## MM.34r 0.02 0.04 0.08 0.23 0.09 0.13 0.15 0.19 0.08 0.03

Creating smaller data frame

Below I’m creating a data frame that only has the variables I’m interested in so that it’s easier to view and manage data.

Removing men from analyses

#Creating new data frame called 'women' that removed men from analyses
women<- subset(df, Sex==2)

length(women$Participant)
## [1] 805
#Now there is 805 cases

Hypothesis 1

H1: Women with a history of sexual victimization will be less likely to be in a romantic relationship than women without a history of sexual victimization.

StatusbySViolence<- table(women$RStatust1, women$SViolence)
head(StatusbySViolence)
##    
##      -1   1
##   1 302 135
##   2 283  85
# 1 = in relationship, 2 = not in relationship
# -1 = no violence; 1 = s violence 
(chisqTest<- chisq.test(StatusbySViolence))
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  StatusbySViolence
## X-squared = 5.7252, df = 1, p-value = 0.01672
chisqTest$expected
##    
##           -1        1
##   1 317.5714 119.4286
##   2 267.4286 100.5714
#Expected values are over 5, does meet assumptions

#Calculating Odds ratio
addmargins(StatusbySViolence)
##      
##        -1   1 Sum
##   1   302 135 437
##   2   283  85 368
##   Sum 585 220 805
# OR = Odds given SV victim / Odds given not SV victim
135/85 # Victim odds of being in relationship
## [1] 1.588235
302/283 # Non Victim odds of being in a relationship
## [1] 1.067138
(135/85)/(302/283)
## [1] 1.488313

Contrary to our hypothesis, we would reject the null hypothesis and conclude that women with a history of sexual abuse or assault are more likely to be in a romantic relationship.

The odds of being in a romantic relationship if a woman was a victim of sexual violence was about 1.49 times higher than being in a romantic relationship if a woman was not a victim of sexual violence.

Frequencies and Descriptive Statistics

#Creating subset for sample that's in a relationship
Rwomen<- subset(women, RStatust1==1)
# Now 437 cases

See below for frequencies and descriptive statistics for women who reported being in a romantic relationship (sample used for primary analyses).

Frequencies

#Need to find frequencies for categorical variables
#### Race
Rwomen$Race<- as.numeric(Rwomen$Race)
Rwomen<- Rwomen %>% #Abby and pat recoded 'other' responses in Other.race
  mutate(Race.recoded = case_when( 
    Rwomen$Participant==1134 ~ 5,
    Rwomen$Participant==6030~ 7,
    Rwomen$Participant==1141 ~ 7,
    Rwomen$Participant==5111 ~ 7,
    Rwomen$Participant==6049 ~ 6,
    Rwomen$Participant==6128 ~ 7,
    Rwomen$Participant==6026 ~ 7,
    .default=Rwomen$Race
  ))

Rwomen$Race.recoded<- as.numeric(Rwomen$Race.recoded)
Rwomen$Race.recoded <- factor(Rwomen$Race.recoded,
                                levels=c(1, 2, 3, 4, 5, 6, 7),
                                labels=c("African American or Black", "Middle Eastern", "Asian or Asian American", "Native American", "Hispanic or Latinx", "Multiracial", "White or European American"))
table(Rwomen$Race.recoded)
## 
##  African American or Black             Middle Eastern 
##                         14                          3 
##    Asian or Asian American            Native American 
##                         55                          2 
##         Hispanic or Latinx                Multiracial 
##                         10                         13 
## White or European American 
##                        340
prop.table(table(Rwomen$Race.recoded))
## 
##  African American or Black             Middle Eastern 
##                0.032036613                0.006864989 
##    Asian or Asian American            Native American 
##                0.125858124                0.004576659 
##         Hispanic or Latinx                Multiracial 
##                0.022883295                0.029748284 
## White or European American 
##                0.778032037
## Age
Rwomen$Age<- as.numeric(Rwomen$Age)
Rwomen$Age <- factor(Rwomen$Age,
                                levels=c(1, 2, 3, 4),
                                labels=c("18-21", "22-30", "31-40", "Over 40"))
table(Rwomen$Age)
## 
##   18-21   22-30   31-40 Over 40 
##     307     103      17      10
prop.table(table(Rwomen$Age))
## 
##     18-21     22-30     31-40   Over 40 
## 0.7025172 0.2356979 0.0389016 0.0228833
## School
Rwomen$School<- as.numeric(Rwomen$School)
Rwomen$School <- factor(Rwomen$School,
                                levels=c(1, 2),
                                labels=c("UMN", "Normandale"))
table(Rwomen$School)
## 
##        UMN Normandale 
##        329        108
prop.table(table(Rwomen$School))
## 
##        UMN Normandale 
##  0.7528604  0.2471396
## Partner Gender
Rwomen$partnerGender<- as.numeric(Rwomen$partnerGender)
Rwomen$partnerGender<- factor(Rwomen$partnerGender,
                              levels=c(1, 2, 0),
                              labels=c("Man", "Woman", "Unknown"))
table(Rwomen$partnerGender)
## 
##     Man   Woman Unknown 
##     416      19       2
prop.table(table(Rwomen$partnerGender))
## 
##         Man       Woman     Unknown 
## 0.951945080 0.043478261 0.004576659
## Relationship type
Rwomen$RType<- as.numeric(Rwomen$RType)
Rwomen$RType<- factor(Rwomen$RType,
                              levels=c(1, 2, 3, 0),
                              labels=c("Dating", "Engaged", "Married", "Unknown"))
table(Rwomen$RType) 
## 
##  Dating Engaged Married Unknown 
##     364      32      40       1
prop.table(table(Rwomen$RType))
## 
##     Dating    Engaged    Married    Unknown 
## 0.83295195 0.07322654 0.09153318 0.00228833
## Adult Sexual Assault
# 0=no; 1=yes
kableExtra::kable(table(Rwomen$ASA1), booktabs = TRUE, col.names = c("Adult Sexual Assault", "Frequency")) %>%
  kableExtra::kable_styling(bootstrap_options = "striped", full_width = TRUE) 
Adult Sexual Assault Frequency
0 384
1 53
## CSA same age
# 0 = no; 1=yes
kableExtra::kable(table(Rwomen$CSA.sameage), booktabs = TRUE, col.names = c("CSA Same Age", "Frequency")) %>%
  kableExtra::kable_styling(bootstrap_options = "striped", full_width = TRUE) 
CSA Same Age Frequency
0 403
1 34
## CSA Older
# 0=no; 1=yes
kableExtra::kable(table(Rwomen$CSA.Older), booktabs = TRUE, col.names = c("CSA Older", "Frequency")) %>%
  kableExtra::kable_styling(bootstrap_options = "striped", full_width = TRUE) 
CSA Older Frequency
0 400
1 37
## Adolescent CSA
# 0=no; 1=yes
kableExtra::kable(table(Rwomen$CSA.adolescent), booktabs = TRUE, col.names = c("Adolescent CSA", "Frequency")) %>%
  kableExtra::kable_styling(bootstrap_options = "striped", full_width = TRUE)
Adolescent CSA Frequency
0 373
1 64
## Sexual Violence 
# -1 = no; 1 = yes
kableExtra::kable(table(Rwomen$SViolence), booktabs = TRUE, col.names = c("Sexual Violence", "Frequency")) %>%
  kableExtra::kable_styling(bootstrap_options = "striped", full_width = TRUE) 
Sexual Violence Frequency
-1 302
1 135
prop.table(table(Rwomen$SViolence))
## 
##        -1         1 
## 0.6910755 0.3089245
## CSA
# -1 = no; 1 = yes
kableExtra::kable(table(Rwomen$CSAtotal), booktabs = TRUE, col.names = c("Any CSA", "Frequency")) %>%
  kableExtra::kable_styling(bootstrap_options = "striped", full_width = TRUE) 
Any CSA Frequency
FALSE 331
TRUE 106

Descriptive Statistics

# Creating relationship length variable that includes year and month information
Rwomen$RYears[is.na(Rwomen$RYears)] <- 0
Rwomen$RMonths[is.na(Rwomen$RMonths1)] <- 0
RYears<- as.numeric(Rwomen$RYears)
RMonths<- as.numeric(Rwomen$RMonths)
Rwomen$relLength<- RYears + (RMonths/12)

summary(Rwomen$relLength)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max.     NA's 
##  0.08333  0.50000  1.41667  2.23325  2.75000 26.66667       44
# So average relationship length is 2.23 years.

# Descriptives
Rwomen %>%
  dplyr::select(PRQC1, PTrust, Security, IOS.current, Responsiveness, AAQ.AV, AAQ.ANX, Neuroticism)%>%
  psych::describe(na.rm=TRUE) %>%
  as.data.frame() %>% 
  dplyr::select("n", "mean", "sd", "median", "min", "max", "range", "skew", "kurtosis") %>%
  kableExtra::kable(caption= "Descriptive Statistics for Study Variables", digits = 2) %>%
  kable_styling(bootstrap_options = "striped", full_width = TRUE)
Descriptive Statistics for Study Variables
n mean sd median min max range skew kurtosis
PRQC1 426 6.04 0.88 6.23 2.89 7.00 4.11 -1.23 1.23
PTrust 426 5.53 0.92 5.65 2.06 7.00 4.94 -0.75 0.41
Security 429 6.12 0.87 6.39 2.78 7.00 4.22 -1.30 1.18
IOS.current 434 5.00 1.68 5.00 1.00 7.00 6.00 -0.47 -0.76
Responsiveness 427 7.31 1.37 7.61 2.44 9.00 6.56 -1.03 0.80
AAQ.AV 431 3.28 1.14 3.25 1.00 6.62 5.62 0.31 -0.37
AAQ.ANX 431 3.35 1.10 3.33 1.00 6.78 5.78 0.21 -0.32
Neuroticism 425 4.61 1.27 4.62 1.25 7.88 6.62 0.07 -0.11
sum(Rwomen$AAQ.ANX>3.5)/length(Rwomen$AAQ.ANX) #percentage of people above midpoints
## [1] NA

Histograms and QQ Plots

par(mfrow=c(1, 2))

# Avoidance
hist(Rwomen$AAQ.AV, sub=paste("Skewness:", 
               round(e1071::skewness(Rwomen$AAQ.AV, na.rm=TRUE), 2)))
qqnorm(Rwomen$AAQ.AV, pch = 1, frame = FALSE, main="QQ Plot of Attachment Avoidance")
qqline(Rwomen$AAQ.AV, col = "hotpink", lwd = 2)

# Anxiety
hist(Rwomen$AAQ.ANX, sub=paste("Skewness:", 
               round(e1071::skewness(Rwomen$AAQ.ANX, na.rm=TRUE), 2)))
qqnorm(Rwomen$AAQ.ANX, pch = 1, frame = FALSE, main="QQ Plot of Attachment Anxiety")
qqline(Rwomen$AAQ.ANX, col = "hotpink", lwd = 2)

# IOS 
hist(Rwomen$IOS.current, sub=paste("Skewness:", 
               round(e1071::skewness(Rwomen$IOS.current, na.rm=TRUE), 2)))
qqnorm(Rwomen$IOS.current, pch = 1, frame = FALSE, main="QQ Plot of IOS")
qqline(Rwomen$IOS.current, col = "hotpink", lwd = 2)

# PRQC Total Scores
hist(Rwomen$PRQC1, sub=paste("Skewness:", 
               round(e1071::skewness(Rwomen$PRQC1, na.rm=TRUE), 2)))
qqnorm(Rwomen$PRQC1, pch = 1, frame = FALSE, main="QQ Plot of PRQC Total Scores")
qqline(Rwomen$PRQC1, col = "hotpink", lwd = 2)

# Felt Security
hist(Rwomen$Security, sub=paste("Skewness:", 
               round(e1071::skewness(Rwomen$Security, na.rm=TRUE), 2)))
qqnorm(Rwomen$Security, pch = 1, frame = FALSE, main="QQ Plot of Felt Security")
qqline(Rwomen$Security, col = "hotpink", lwd = 2)

# Partner Trust
hist(Rwomen$PTrust, sub=paste("Skewness:", 
               round(e1071::skewness(Rwomen$PTrust, na.rm=TRUE), 2)))
qqnorm(Rwomen$PTrust, pch = 1, frame = FALSE, main="QQ Plot of Partner Trust")
qqline(Rwomen$PTrust, col = "hotpink", lwd = 2)

# Responsiveness
hist(Rwomen$Responsiveness, sub=paste("Skewness:", 
               round(e1071::skewness(Rwomen$Responsiveness, na.rm=TRUE), 2)))
qqnorm(Rwomen$Responsiveness, pch = 1, frame = FALSE, main="QQ Plot of Responsiveness")
qqline(Rwomen$Responsiveness, col = "hotpink", lwd = 2)

# Neuroticism
hist(Rwomen$Neuroticism,  sub=paste("Skewness:", 
               round(e1071::skewness(Rwomen$Neuroticism, na.rm=TRUE), 2)))
qqnorm(Rwomen$Neuroticism, pch = 1, frame = FALSE, main="QQ Plot of Neuroticism")
qqline(Rwomen$Neuroticism, col = "hotpink", lwd = 2)

Correlations between Study Variables

Rwomen$AnySA [Rwomen$AnySA=="TRUE"]<-1
corrdata<- Rwomen %>%
  select(SViolence, AnySA, PRQC1, PTrust, Security, IOS.current, Responsiveness, AAQ.AV, AAQ.ANX, Neuroticism)
cor<- cor(corrdata, use= "pairwise.complete.obs", method=c("spearman"))
round(cor,2)
##                SViolence AnySA PRQC1 PTrust Security IOS.current Responsiveness
## SViolence           1.00  1.00  0.04  -0.03    -0.03       -0.01          -0.05
## AnySA               1.00  1.00  0.04  -0.03    -0.03       -0.01          -0.05
## PRQC1               0.04  0.04  1.00   0.67     0.72        0.51           0.70
## PTrust             -0.03 -0.03  0.67   1.00     0.79        0.34           0.76
## Security           -0.03 -0.03  0.72   0.79     1.00        0.41           0.76
## IOS.current        -0.01 -0.01  0.51   0.34     0.41        1.00           0.42
## Responsiveness     -0.05 -0.05  0.70   0.76     0.76        0.42           1.00
## AAQ.AV              0.17  0.17 -0.32  -0.32    -0.28       -0.16          -0.32
## AAQ.ANX             0.15  0.15 -0.33  -0.51    -0.51       -0.21          -0.42
## Neuroticism         0.08  0.08 -0.18  -0.29    -0.30       -0.07          -0.24
##                AAQ.AV AAQ.ANX Neuroticism
## SViolence        0.17    0.15        0.08
## AnySA            0.17    0.15        0.08
## PRQC1           -0.32   -0.33       -0.18
## PTrust          -0.32   -0.51       -0.29
## Security        -0.28   -0.51       -0.30
## IOS.current     -0.16   -0.21       -0.07
## Responsiveness  -0.32   -0.42       -0.24
## AAQ.AV           1.00    0.39        0.27
## AAQ.ANX          0.39    1.00        0.45
## Neuroticism      0.27    0.45        1.00
rcorr(as.matrix(corrdata), type = c("spearman"))
##                SViolence AnySA PRQC1 PTrust Security IOS.current Responsiveness
## SViolence           1.00  1.00  0.04  -0.03    -0.03       -0.01          -0.05
## AnySA               1.00  1.00  0.04  -0.03    -0.03       -0.01          -0.05
## PRQC1               0.04  0.04  1.00   0.67     0.72        0.51           0.70
## PTrust             -0.03 -0.03  0.67   1.00     0.79        0.34           0.76
## Security           -0.03 -0.03  0.72   0.79     1.00        0.41           0.76
## IOS.current        -0.01 -0.01  0.51   0.34     0.41        1.00           0.42
## Responsiveness     -0.05 -0.05  0.70   0.76     0.76        0.42           1.00
## AAQ.AV              0.17  0.17 -0.32  -0.32    -0.28       -0.16          -0.32
## AAQ.ANX             0.15  0.15 -0.33  -0.51    -0.51       -0.21          -0.42
## Neuroticism         0.08  0.08 -0.18  -0.29    -0.30       -0.07          -0.24
##                AAQ.AV AAQ.ANX Neuroticism
## SViolence        0.17    0.15        0.08
## AnySA            0.17    0.15        0.08
## PRQC1           -0.32   -0.33       -0.18
## PTrust          -0.32   -0.51       -0.29
## Security        -0.28   -0.51       -0.30
## IOS.current     -0.16   -0.21       -0.07
## Responsiveness  -0.32   -0.42       -0.24
## AAQ.AV           1.00    0.39        0.27
## AAQ.ANX          0.39    1.00        0.45
## Neuroticism      0.27    0.45        1.00
## 
## n
##                SViolence AnySA PRQC1 PTrust Security IOS.current Responsiveness
## SViolence            437   437   426    426      429         434            427
## AnySA                437   437   426    426      429         434            427
## PRQC1                426   426   426    424      426         426            425
## PTrust               426   426   424    426      426         426            425
## Security             429   429   426    426      429         429            427
## IOS.current          434   434   426    426      429         434            427
## Responsiveness       427   427   425    425      427         427            427
## AAQ.AV               431   431   424    425      426         430            425
## AAQ.ANX              431   431   425    426      427         430            426
## Neuroticism          425   425   421    422      423         424            422
##                AAQ.AV AAQ.ANX Neuroticism
## SViolence         431     431         425
## AnySA             431     431         425
## PRQC1             424     425         421
## PTrust            425     426         422
## Security          426     427         423
## IOS.current       430     430         424
## Responsiveness    425     426         422
## AAQ.AV            431     430         424
## AAQ.ANX           430     431         425
## Neuroticism       424     425         425
## 
## P
##                SViolence AnySA  PRQC1  PTrust Security IOS.current
## SViolence                0.0000 0.3934 0.5189 0.4748   0.8132     
## AnySA          0.0000           0.3934 0.5189 0.4748   0.8132     
## PRQC1          0.3934    0.3934        0.0000 0.0000   0.0000     
## PTrust         0.5189    0.5189 0.0000        0.0000   0.0000     
## Security       0.4748    0.4748 0.0000 0.0000          0.0000     
## IOS.current    0.8132    0.8132 0.0000 0.0000 0.0000              
## Responsiveness 0.2889    0.2889 0.0000 0.0000 0.0000   0.0000     
## AAQ.AV         0.0003    0.0003 0.0000 0.0000 0.0000   0.0007     
## AAQ.ANX        0.0025    0.0025 0.0000 0.0000 0.0000   0.0000     
## Neuroticism    0.0823    0.0823 0.0003 0.0000 0.0000   0.1370     
##                Responsiveness AAQ.AV AAQ.ANX Neuroticism
## SViolence      0.2889         0.0003 0.0025  0.0823     
## AnySA          0.2889         0.0003 0.0025  0.0823     
## PRQC1          0.0000         0.0000 0.0000  0.0003     
## PTrust         0.0000         0.0000 0.0000  0.0000     
## Security       0.0000         0.0000 0.0000  0.0000     
## IOS.current    0.0000         0.0007 0.0000  0.1370     
## Responsiveness                0.0000 0.0000  0.0000     
## AAQ.AV         0.0000                0.0000  0.0000     
## AAQ.ANX        0.0000         0.0000         0.0000     
## Neuroticism    0.0000         0.0000 0.0000
mean(Rwomen$AnySA, na.rm=T)
## [1] 0.3089245
sd(Rwomen$AnySA, na.rm=T)
## [1] 0.4625795

Mean Centering Predictors

Now I am mean centering the predictor variables subset by gender and relationship status.

Rwomen$cANX<- Rwomen$AAQ.ANX - mean(Rwomen$AAQ.ANX, na.rm=TRUE)
Rwomen$cAV<- Rwomen$AAQ.AV - mean(Rwomen$AAQ.AV, na.rm=TRUE)
Rwomen$cNeuroticism<- Rwomen$Neuroticism - mean(Rwomen$Neuroticism, na.rm=TRUE)
Rwomen$cResponsiveness<- Rwomen$Responsiveness - mean(Rwomen$Responsiveness, na.rm=TRUE)
Rwomen$cBSI<- Rwomen$BSI - mean(Rwomen$BSI, na.rm=TRUE)

Winsorizing Variables

## PRQC
PRQCmin <- mean(Rwomen$PRQC1, na.rm=T) - (3*(sd(Rwomen$PRQC1, na.rm=T)))
PRQCmax <- mean(Rwomen$PRQC1, na.rm=T) + (3*(sd(Rwomen$PRQC1, na.rm=T)))
Rwomen$PRQC1[which(Rwomen$PRQC1 < PRQCmin | Rwomen$PRQC1 > PRQCmax)] # 6 outliers
## [1] 3.222222 2.890000 3.166667 3.277778 2.890000 2.888889
Rwomen$PRQC.win<- winsor(Rwomen$PRQC1, trim=.15, na.rm=T) #winsorizing  to 3sds

# Partner Trust
PTrustmin <- mean(Rwomen$PTrust, na.rm=T) - (3*(sd(Rwomen$PTrust, na.rm=T)))
PTrustmax <- mean(Rwomen$PTrust, na.rm=T) + (3*(sd(Rwomen$PTrust, na.rm=T)))
Rwomen$PTrust[which(Rwomen$PTrust < PTrustmin | Rwomen$PTrust > PTrustmax)]
## [1] 2.060000 2.588235 2.058824
Rwomen$PTrust.win<- winsor(Rwomen$PTrust, trim=.15, na.rm=T) #3 outliers

#Security
Securitymin <- mean(Rwomen$Security, na.rm=T) - (3*(sd(Rwomen$Security, na.rm=T)))
Securitymax <- mean(Rwomen$Security, na.rm=T) + (3*(sd(Rwomen$Security, na.rm=T)))
Rwomen$Security[which(Rwomen$Security < Securitymin | Rwomen$Security > Securitymax)]
## [1] 3.333333 3.222222 3.444444 2.777778 2.888889
Rwomen$Security.win<- winsor(Rwomen$Security, trim=.15, na.rm=T) # 5 outliers

# Responsiveness
Responsivenessmin <- mean(Rwomen$cResponsiveness, na.rm=T) - (3*(sd(Rwomen$cResponsiveness, na.rm=T)))
Responsivenessmax <- mean(Rwomen$cResponsiveness, na.rm=T) + (3*(sd(Rwomen$cResponsiveness, na.rm=T)))
Rwomen$cResponsiveness[which(Rwomen$cResponsiveness < Responsivenessmin | Rwomen$cResponsiveness > Responsivenessmax)] # 3 outliers
## [1] -4.754546 -4.865657 -4.587879
Rwomen$Responsiveness.win<- winsor(Rwomen$cResponsiveness, trim=.15, na.rm=T)

# Avoidance
AVmin <- mean(Rwomen$cAV, na.rm=T) - (3*(sd(Rwomen$cAV, na.rm=T)))
AVmax <- mean(Rwomen$cAV, na.rm=T) + (3*(sd(Rwomen$cAV, na.rm=T)))
Rwomen$cAV[which(Rwomen$cAV < AVmin | Rwomen$cAV > AVmax)]
## numeric(0)
Rwomen$AV.win<- winsor(Rwomen$cAV, trim=.15, na.rm=T) #0 outliers

#Anxiety
ANXmin <- mean(Rwomen$cANX, na.rm=T) - (3*(sd(Rwomen$cANX, na.rm=T)))
ANXmax <- mean(Rwomen$cANX, na.rm=T) + (3*(sd(Rwomen$cANX, na.rm=T)))
Rwomen$cANX[which(Rwomen$cANX < ANXmin | Rwomen$cANX > ANXmax)]
## [1] 3.430611
Rwomen$ANX.win<- winsor(Rwomen$cANX, trim=.15, na.rm=T) # 1 outlier

# Neuroticism
Nmin <- mean(Rwomen$cNeuroticism, na.rm=T) - (3*(sd(Rwomen$cNeuroticism, na.rm=T)))
Nmax <- mean(Rwomen$cNeuroticism, na.rm=T) + (3*(sd(Rwomen$cNeuroticism, na.rm=T)))
Rwomen$cNeuroticism[which(Rwomen$cNeuroticism < Nmin | Rwomen$cNeuroticism > Nmax)]
## numeric(0)
Rwomen$Neuroticism.win<- winsor(Rwomen$cNeuroticism, trim=.15, na.rm=T) # 0 outliers

Responsiveness Regression

group_by(Rwomen, SViolence) %>%
  summarise(
    count = n(),
    mean = mean(Responsiveness, na.rm = TRUE),
    sd = sd(Responsiveness, na.rm = TRUE),
    median = median(Responsiveness, na.rm = TRUE),
    IQR = IQR(Responsiveness, na.rm = TRUE)
  )
## # A tibble: 2 × 6
##   SViolence count  mean    sd median   IQR
##       <dbl> <int> <dbl> <dbl>  <dbl> <dbl>
## 1        -1   302  7.39  1.26   7.67  1.56
## 2         1   135  7.14  1.57   7.5   2.15
Rwomen$SViolence<- as.factor(Rwomen$SViolence)

#Regression
Responsiveness.step3<- lm(Responsiveness.win ~ SViolence*cNeuroticism + SViolence*cAV + SViolence*ANX.win, data=Rwomen)
summary(Responsiveness.step3)
## 
## Call:
## lm(formula = Responsiveness.win ~ SViolence * cNeuroticism + 
##     SViolence * cAV + SViolence * ANX.win, data = Rwomen)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.38024 -0.75941  0.06469  0.61780  1.94230 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              0.07180    0.05346   1.343  0.17994    
## SViolence1               0.04338    0.09610   0.451  0.65192    
## cNeuroticism            -0.07429    0.04910  -1.513  0.13105    
## cAV                     -0.13562    0.05184  -2.616  0.00922 ** 
## ANX.win                 -0.43512    0.07254  -5.998 4.36e-09 ***
## SViolence1:cNeuroticism  0.08024    0.08209   0.977  0.32895    
## SViolence1:cAV          -0.07240    0.09003  -0.804  0.42176    
## SViolence1:ANX.win       0.06779    0.13495   0.502  0.61571    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8932 on 413 degrees of freedom
##   (16 observations deleted due to missingness)
## Multiple R-squared:  0.2181, Adjusted R-squared:  0.2049 
## F-statistic: 16.46 on 7 and 413 DF,  p-value: < 2.2e-16
lm.beta(Responsiveness.step3)
## 
## Call:
## lm(formula = Responsiveness.win ~ SViolence * cNeuroticism + 
##     SViolence * cAV + SViolence * ANX.win, data = Rwomen)
## 
## Standardized Coefficients::
##             (Intercept)              SViolence1            cNeuroticism 
##                      NA              0.02015651             -0.09366078 
##                     cAV                 ANX.win SViolence1:cNeuroticism 
##             -0.15302338             -0.36115727              0.06547126 
##          SViolence1:cAV      SViolence1:ANX.win 
##             -0.04774068              0.03205279
confint(Responsiveness.step3, level=0.95)
##                               2.5 %      97.5 %
## (Intercept)             -0.03327637  0.17688035
## SViolence1              -0.14552266  0.23228604
## cNeuroticism            -0.17081325  0.02223050
## cAV                     -0.23752811 -0.03371133
## ANX.win                 -0.57771407 -0.29252094
## SViolence1:cNeuroticism -0.08113318  0.24160440
## SViolence1:cAV          -0.24936727  0.10457232
## SViolence1:ANX.win      -0.19748140  0.33305335
#Non-parametric test
wilcox.test(Responsiveness ~ SViolence, data=Rwomen, alternative=c("two.sided"), conf.int=T, conf.level=.95)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  Responsiveness by SViolence
## W = 20887, p-value = 0.2886
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -0.1110771  0.4444385
## sample estimates:
## difference in location 
##              0.1111571
wilcoxonRG(x = Rwomen$Responsiveness, g = Rwomen$SViolence, verbose=TRUE)
## 
## Levels: -1 1
## n for -1 = 302
## n for 1 = 135
## Mean of ranks for -1 = NA
## Mean of ranks for 1 = NA
## Difference in mean of ranks = NA
## Total n = 427
## 2 * difference / total n = NA
## rg 
## NA
wilcox_effsize(PRQC1 ~ SViolence, data=Rwomen)
## # A tibble: 1 × 7
##   .y.   group1 group2 effsize    n1    n2 magnitude
## * <chr> <chr>  <chr>    <dbl> <int> <int> <ord>    
## 1 PRQC1 -1     1       0.0414   292   134 small
wilcox_test(Responsiveness ~ SViolence, data=Rwomen, conf.level=.95)
## 
##  Asymptotic Wilcoxon-Mann-Whitney Test
## 
## data:  Responsiveness by SViolence (-1, 1)
## Z = 1.0617, p-value = 0.2884
## alternative hypothesis: true mu is not equal to 0

Regression I: PRQC Total

# Descriptives by group
group_by(Rwomen, SViolence) %>%
  summarise(
    count = n(),
    mean = mean(PRQC1, na.rm = TRUE),
    sd = sd(PRQC1, na.rm = TRUE),
    median = median(PRQC1, na.rm = TRUE),
    IQR = IQR(PRQC1, na.rm = TRUE)
  )
## # A tibble: 2 × 6
##   SViolence count  mean    sd median   IQR
##   <fct>     <int> <dbl> <dbl>  <dbl> <dbl>
## 1 -1          302  6.02 0.889   6.22  1.07
## 2 1           135  6.09 0.865   6.28  1.19
# Box Cox transformation
bP.win<- boxcox(lm(Rwomen$PRQC.win ~ 1)) #PRQC.win

lambdaP.win <- bP.win$x[which.max(bP.win$y)]
Rwomen$bcPRQC.win<- ((Rwomen$PRQC.win^lambdaP.win-1)/lambdaP.win)

PRQC.bc.lin<- lm(bcPRQC.win ~ SViolence*Responsiveness.win  + SViolence*Neuroticism.win + SViolence*AV.win + SViolence*ANX.win, data=Rwomen) #model with transformed outcome variable does not improve residual plots


# GLM with gamma distribution. (Link of log vs inverse changes interpretation) 
Rwomen$InversePRQC<- 8-Rwomen$PRQC1 ### Reverse scoring PRQC so it fits gamma distribution
Rwomen$InversePRQC.win<- winsor(Rwomen$InversePRQC, trim=.15, na.rm=T) #winsorizing to 3 sds from mean


PRQC.gamma.win<-  glm(formula = InversePRQC.win ~ SViolence*Responsiveness.win  + SViolence*Neuroticism.win + SViolence*AV.win + SViolence*ANX.win,
                         family  = Gamma(link = "log"),
                 na.action=na.exclude,
                         data    = Rwomen)


PRQC.gamma<-  glm(formula = InversePRQC ~  SViolence*cNeuroticism + SViolence*cAV + SViolence*cANX,
                         family  = Gamma(link = "log"),
                 na.action=na.exclude,
                         data    = Rwomen) 
confint(PRQC.gamma, level=0.95)
## Waiting for profiling to be done...
##                               2.5 %      97.5 %
## (Intercept)              0.65086910  0.74610771
## SViolence1              -0.21282204 -0.04038919
## cNeuroticism            -0.02616955  0.06210264
## cAV                      0.04044081  0.13625212
## cANX                     0.05812642  0.16455709
## SViolence1:cNeuroticism -0.11269856  0.04438639
## SViolence1:cAV          -0.03313549  0.12997287
## SViolence1:cANX         -0.13329345  0.05652916
lm.beta(PRQC.gamma)
## 
## Call:
## glm(formula = InversePRQC ~ SViolence * cNeuroticism + SViolence * 
##     cAV + SViolence * cANX, family = Gamma(link = "log"), data = Rwomen, 
##     na.action = na.exclude)
## 
## Standardized Coefficients::
##             (Intercept)              SViolence1            cNeuroticism 
##                      NA             -0.06689187              0.02566734 
##                     cAV                    cANX SViolence1:cNeuroticism 
##              0.11247187              0.13894807             -0.03160024 
##          SViolence1:cAV         SViolence1:cANX 
##              0.03612613             -0.02963318
# Winsorized Linear model
PRQC.win.lin<- lm(PRQC.win ~ SViolence*Responsiveness.win  + SViolence*Neuroticism.win + SViolence*AV.win + SViolence*ANX.win, data=Rwomen)

PRQC.lin<- lm(PRQC1 ~ SViolence*cResponsiveness + SViolence*cNeuroticism + SViolence*cAV + SViolence*cANX, data=Rwomen)

PRQC.step1<- lm(PRQC.win ~ SViolence, data=Rwomen)
PRQC.step2<- lm(PRQC.win ~ SViolence + cNeuroticism + cAV + ANX.win, data=Rwomen)
PRQC.step3<- lm(PRQC.win ~ SViolence*cNeuroticism + SViolence*cAV + SViolence*ANX.win, data=Rwomen)


#Results
summary(PRQC.step1)
## 
## Call:
## lm(formula = PRQC.win ~ SViolence, data = Rwomen)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.00434 -0.52267  0.08886  0.60677  0.74899 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  6.13990    0.03618 169.708   <2e-16 ***
## SViolence1   0.03111    0.06451   0.482     0.63    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6182 on 424 degrees of freedom
##   (11 observations deleted due to missingness)
## Multiple R-squared:  0.0005483,  Adjusted R-squared:  -0.001809 
## F-statistic: 0.2326 on 1 and 424 DF,  p-value: 0.6298
lm.beta(PRQC.step1) #standardized coefficients
## 
## Call:
## lm(formula = PRQC.win ~ SViolence, data = Rwomen)
## 
## Standardized Coefficients::
## (Intercept)  SViolence1 
##          NA  0.02341585
summary(PRQC.step2)
## 
## Call:
## lm(formula = PRQC.win ~ SViolence + cNeuroticism + cAV + ANX.win, 
##     data = Rwomen)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.3521 -0.4624  0.0180  0.4222  1.1936 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   6.088467   0.033577 181.330  < 2e-16 ***
## SViolence1    0.150148   0.060165   2.496    0.013 *  
## cNeuroticism -0.008298   0.024474  -0.339    0.735    
## cAV          -0.138557   0.026773  -5.175 3.55e-07 ***
## ANX.win      -0.193365   0.038593  -5.010 8.06e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.563 on 415 degrees of freedom
##   (17 observations deleted due to missingness)
## Multiple R-squared:  0.181,  Adjusted R-squared:  0.1731 
## F-statistic: 22.93 on 4 and 415 DF,  p-value: < 2.2e-16
lm.beta(PRQC.step2)
## 
## Call:
## lm(formula = PRQC.win ~ SViolence + cNeuroticism + cAV + ANX.win, 
##     data = Rwomen)
## 
## Standardized Coefficients::
##  (Intercept)   SViolence1 cNeuroticism          cAV      ANX.win 
##           NA    0.1129453   -0.0169915   -0.2525076   -0.2594603
summary(PRQC.step3)
## 
## Call:
## lm(formula = PRQC.win ~ SViolence * cNeuroticism + SViolence * 
##     cAV + SViolence * ANX.win, data = Rwomen)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.37186 -0.46477  0.01461  0.42302  1.21437 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              6.08718    0.03381 180.065  < 2e-16 ***
## SViolence1               0.15469    0.06070   2.548 0.011189 *  
## cNeuroticism            -0.01971    0.03095  -0.637 0.524573    
## cAV                     -0.12065    0.03288  -3.669 0.000275 ***
## ANX.win                 -0.21414    0.04603  -4.652 4.44e-06 ***
## SViolence1:cNeuroticism  0.02661    0.05180   0.514 0.607661    
## SViolence1:cAV          -0.05378    0.05692  -0.945 0.345322    
## SViolence1:ANX.win       0.06116    0.08532   0.717 0.473898    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5639 on 412 degrees of freedom
##   (17 observations deleted due to missingness)
## Multiple R-squared:  0.1842, Adjusted R-squared:  0.1704 
## F-statistic: 13.29 on 7 and 412 DF,  p-value: 1.742e-15
lm.beta(PRQC.step3)
## 
## Call:
## lm(formula = PRQC.win ~ SViolence * cNeuroticism + SViolence * 
##     cAV + SViolence * ANX.win, data = Rwomen)
## 
## Standardized Coefficients::
##             (Intercept)              SViolence1            cNeuroticism 
##                      NA              0.11635903             -0.04035652 
##                     cAV                 ANX.win SViolence1:cNeuroticism 
##             -0.21986747             -0.28733341              0.03517679 
##          SViolence1:cAV      SViolence1:ANX.win 
##             -0.05744708              0.04684573
confint(PRQC.step3, level=0.95)
##                               2.5 %      97.5 %
## (Intercept)              6.02072543  6.15363081
## SViolence1               0.03535982  0.27401162
## cNeuroticism            -0.08054311  0.04112529
## cAV                     -0.18528081 -0.05601289
## ANX.win                 -0.30462350 -0.12365151
## SViolence1:cNeuroticism -0.07520370  0.12842984
## SViolence1:cAV          -0.16568013  0.05811723
## SViolence1:ANX.win      -0.10656180  0.22888162
wilcox.test(PRQC1 ~ SViolence, data=Rwomen, alternative=c("two.sided"), conf.int=T, conf.level=.95)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  PRQC1 by SViolence
## W = 18556, p-value = 0.393
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -0.16669375  0.05556911
## sample estimates:
## difference in location 
##            -0.05554931
wilcoxonRG(x = Rwomen$PRQC1, g = Rwomen$SViolence, ci=T)
##   rg lower.ci upper.ci
## 1 NA   -0.121    0.117
wilcox_effsize(PRQC1 ~ SViolence, data=Rwomen)
## # A tibble: 1 × 7
##   .y.   group1 group2 effsize    n1    n2 magnitude
## * <chr> <chr>  <chr>    <dbl> <int> <int> <ord>    
## 1 PRQC1 -1     1       0.0414   292   134 small
wilcox_test(PRQC1 ~ SViolence, data=Rwomen, conf.level=.95)
## 
##  Asymptotic Wilcoxon-Mann-Whitney Test
## 
## data:  PRQC1 by SViolence (-1, 1)
## Z = -0.85454, p-value = 0.3928
## alternative hypothesis: true mu is not equal to 0

Regression II: Partner Trust

# Descriptives by group
group_by(Rwomen, SViolence) %>%
  summarise(
    count = n(),
    mean = mean(PTrust, na.rm = TRUE),
    sd = sd(PTrust, na.rm = TRUE),
    median = median(PTrust, na.rm = TRUE),
    IQR = IQR(PTrust, na.rm = TRUE)
  )
## # A tibble: 2 × 6
##   SViolence count  mean    sd median   IQR
##   <fct>     <int> <dbl> <dbl>  <dbl> <dbl>
## 1 -1          302  5.57 0.854   5.71  1.06
## 2 1           135  5.44 1.05    5.56  1.51
# GLM with gamma distribution. Link of log vs inverse changes interpretation
Rwomen$InversePtrust<- 8-Rwomen$PTrust ### Reverse scoring Ptrust so it fits gamma distribution
Rwomen$InverseTrust.win<- winsor(Rwomen$InversePtrust, trim=.15, na.rm=T)

Trust.gamma.win <-  glm(formula = InverseTrust.win ~ SViolence*Responsiveness.win  + SViolence*Neuroticism.win + SViolence*AV.win + SViolence*ANX.win,
                         family  = Gamma(link = "log"),
                         data    = Rwomen)

Trust.gamma<- glm(formula = InverseTrust.win ~ SViolence*cResponsiveness  + SViolence*cNeuroticism + SViolence*cAV + SViolence*cANX,
                         family  = Gamma(link = "log"),
                         data    = Rwomen)

# Linear models 
Trust.win.lin<- lm(PTrust.win ~ SViolence*Responsiveness.win  + SViolence*Neuroticism.win + SViolence*AV.win + SViolence*ANX.win, data=Rwomen)

Trust.lin<- lm(PTrust ~ SViolence*cResponsiveness + SViolence*cNeuroticism + SViolence*cAV + SViolence*cANX, data=Rwomen)

Trust.step1<- lm(PTrust.win ~ SViolence, data=Rwomen)
Trust.step2<- lm(PTrust.win ~ cNeuroticism + cAV + ANX.win, data=Rwomen)
Trust.step3<- lm(PTrust.win ~ SViolence*cNeuroticism + SViolence*cAV + SViolence*ANX.win, data=Rwomen)

# Results
summary(Trust.step1)
## 
## Call:
## lm(formula = PTrust.win ~ SViolence, data = Rwomen)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.07358 -0.60120  0.06961  0.63230  0.93358 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  5.60299    0.04021  139.34   <2e-16 ***
## SViolence1  -0.06598    0.07170   -0.92    0.358    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6871 on 424 degrees of freedom
##   (11 observations deleted due to missingness)
## Multiple R-squared:  0.001993,   Adjusted R-squared:  -0.0003604 
## F-statistic: 0.8469 on 1 and 424 DF,  p-value: 0.358
lm.beta(Trust.step1)
## 
## Call:
## lm(formula = PTrust.win ~ SViolence, data = Rwomen)
## 
## Standardized Coefficients::
## (Intercept)  SViolence1 
##          NA -0.04464768
summary(Trust.step2)
## 
## Call:
## lm(formula = PTrust.win ~ cNeuroticism + cAV + ANX.win, data = Rwomen)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.41034 -0.48726 -0.00925  0.40480  1.50488 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   5.56426    0.02853 195.056  < 2e-16 ***
## cNeuroticism -0.03886    0.02538  -1.531  0.12652    
## cAV          -0.08025    0.02742  -2.927  0.00361 ** 
## ANX.win      -0.36013    0.03992  -9.021  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5837 on 417 degrees of freedom
##   (16 observations deleted due to missingness)
## Multiple R-squared:  0.2865, Adjusted R-squared:  0.2813 
## F-statistic: 55.81 on 3 and 417 DF,  p-value: < 2.2e-16
lm.beta(Trust.step2)
## 
## Call:
## lm(formula = PTrust.win ~ cNeuroticism + cAV + ANX.win, data = Rwomen)
## 
## Standardized Coefficients::
##  (Intercept) cNeuroticism          cAV      ANX.win 
##           NA  -0.07140014  -0.13173191  -0.43441565
summary(Trust.step3)
## 
## Call:
## lm(formula = PTrust.win ~ SViolence * cNeuroticism + SViolence * 
##     cAV + SViolence * ANX.win, data = Rwomen)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.38444 -0.47729  0.00009  0.40664  1.52790 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              5.541857   0.035059 158.071  < 2e-16 ***
## SViolence1               0.076331   0.063000   1.212    0.226    
## cNeuroticism            -0.035479   0.032153  -1.103    0.270    
## cAV                     -0.080006   0.033976  -2.355    0.019 *  
## ANX.win                 -0.361956   0.047753  -7.580  2.3e-13 ***
## SViolence1:cNeuroticism -0.007740   0.053788  -0.144    0.886    
## SViolence1:cAV          -0.013705   0.059005  -0.232    0.816    
## SViolence1:ANX.win      -0.004173   0.088560  -0.047    0.962    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5855 on 413 degrees of freedom
##   (16 observations deleted due to missingness)
## Multiple R-squared:  0.2891, Adjusted R-squared:  0.2771 
## F-statistic:    24 on 7 and 413 DF,  p-value: < 2.2e-16
lm.beta(Trust.step3)
## 
## Call:
## lm(formula = PTrust.win ~ SViolence * cNeuroticism + SViolence * 
##     cAV + SViolence * ANX.win, data = Rwomen)
## 
## Standardized Coefficients::
##             (Intercept)              SViolence1            cNeuroticism 
##                      NA             0.051595017            -0.065194946 
##                     cAV                 ANX.win SViolence1:cNeuroticism 
##            -0.131329341            -0.436622863            -0.009188421 
##          SViolence1:cAV      SViolence1:ANX.win 
##            -0.013147506            -0.002870745
confint(Trust.step3, level=0.95)
##                               2.5 %      97.5 %
## (Intercept)              5.47293982  5.61077395
## SViolence1              -0.04750906  0.20017116
## cNeuroticism            -0.09868344  0.02772526
## cAV                     -0.14679221 -0.01321901
## ANX.win                 -0.45582561 -0.26808692
## SViolence1:cNeuroticism -0.11347195  0.09799128
## SViolence1:cAV          -0.12969328  0.10228319
## SViolence1:ANX.win      -0.17825840  0.16991197
# Just looking at SV and partner trust
wilcox.test(PTrust ~ SViolence, data=Rwomen, alternative=c("two.sided"), conf.int=T, conf.level=.95)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  PTrust by SViolence
## W = 20326, p-value = 0.5186
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -0.1176517  0.2500349
## sample estimates:
## difference in location 
##             0.05887059
wilcoxonRG(x = Rwomen$PTrust, g = Rwomen$SViolence, ci=T)
##   rg lower.ci upper.ci
## 1 NA   -0.124    0.124
wilcox_effsize(PTrust ~ SViolence, data=Rwomen)
## # A tibble: 1 × 7
##   .y.    group1 group2 effsize    n1    n2 magnitude
## * <chr>  <chr>  <chr>    <dbl> <int> <int> <ord>    
## 1 PTrust -1     1       0.0313   292   134 small
wilcox_test(PTrust ~ SViolence, data=Rwomen, conf.level=.95)
## 
##  Asymptotic Wilcoxon-Mann-Whitney Test
## 
## data:  PTrust by SViolence (-1, 1)
## Z = 0.64595, p-value = 0.5183
## alternative hypothesis: true mu is not equal to 0
# No sig. differences at bivariate level

mean(Rwomen$SViolence)
## Warning in mean.default(Rwomen$SViolence): argument is not numeric or logical:
## returning NA
## [1] NA

Regression III: Felt Security

# Descriptives by group
group_by(Rwomen, SViolence) %>%
  summarise(
    count = n(),
    mean = mean(Security, na.rm = TRUE),
    sd = sd(Security, na.rm = TRUE),
    median = median(Security, na.rm = TRUE),
    IQR = IQR(Security, na.rm = TRUE)
  )
## # A tibble: 2 × 6
##   SViolence count  mean    sd median   IQR
##   <fct>     <int> <dbl> <dbl>  <dbl> <dbl>
## 1 -1          302  6.16 0.816   6.39  1.02
## 2 1           135  6.04 0.987   6.37  1.22
# GLM with gamma distribution. Link of log vs inverse changes interpretation
Rwomen$InverseSecurity<- 22-Rwomen$Security ### Reverse scoring felt security so it fits gamma distribution
Rwomen$InverseSecurity.win<- winsor(Rwomen$InverseSecurity, trim=.15, na.rm=T)


Security.gamma.win <-  glm(formula = InverseSecurity.win ~ SViolence*Responsiveness.win  + SViolence*Neuroticism.win + SViolence*AV.win + SViolence*ANX.win,
                         family  = Gamma(link = "log"),
                         data    = Rwomen)

Security.gamma<- glm(formula = InverseSecurity ~ SViolence*cResponsiveness  + SViolence*cNeuroticism + SViolence*cAV + SViolence*cANX,
                         family  = Gamma(link = "log"),
                         data    = Rwomen)

# Linear models 
Security.win.lin<- lm(Security.win ~ SViolence*Responsiveness.win  + SViolence*Neuroticism.win + SViolence*AV.win + SViolence*ANX.win, data=Rwomen)

Security.lin<- lm(Security ~ SViolence*cResponsiveness + SViolence*cNeuroticism + SViolence*cAV + SViolence*cANX, data=Rwomen)

Security.step1<- lm(Security.win ~ SViolence, data=Rwomen)
Security.step2<- lm(Security.win ~ SViolence + cNeuroticism + cAV + ANX.win, data=Rwomen)
Security.step3<- lm(Security.win ~ SViolence*cNeuroticism + SViolence*cAV + SViolence*ANX.win, data=Rwomen)

# Results
summary(Security.step1)
## 
## Call:
## lm(formula = Security.win ~ SViolence, data = Rwomen)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.0296 -0.5296  0.1502  0.5750  0.7417 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  6.25187    0.03586 174.365   <2e-16 ***
## SViolence1  -0.04908    0.06415  -0.765    0.445    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6158 on 427 degrees of freedom
##   (8 observations deleted due to missingness)
## Multiple R-squared:  0.001369,   Adjusted R-squared:  -0.00097 
## F-statistic: 0.5853 on 1 and 427 DF,  p-value: 0.4447
lm.beta(Security.step1)
## 
## Call:
## lm(formula = Security.win ~ SViolence, data = Rwomen)
## 
## Standardized Coefficients::
## (Intercept)  SViolence1 
##          NA -0.03699641
summary(Security.step2)
## 
## Call:
## lm(formula = Security.win ~ SViolence + cNeuroticism + cAV + 
##     ANX.win, data = Rwomen)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.16931 -0.41852  0.05819  0.36758  1.20878 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   6.19613    0.03082 201.015   <2e-16 ***
## SViolence1    0.06963    0.05537   1.258   0.2093    
## cNeuroticism -0.05465    0.02247  -2.432   0.0154 *  
## cAV          -0.04132    0.02458  -1.681   0.0935 .  
## ANX.win      -0.33878    0.03541  -9.568   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5185 on 417 degrees of freedom
##   (15 observations deleted due to missingness)
## Multiple R-squared:  0.2969, Adjusted R-squared:  0.2902 
## F-statistic: 44.03 on 4 and 417 DF,  p-value: < 2.2e-16
lm.beta(Security.step2)
## 
## Call:
## lm(formula = Security.win ~ SViolence + cNeuroticism + cAV + 
##     ANX.win, data = Rwomen)
## 
## Standardized Coefficients::
##  (Intercept)   SViolence1 cNeuroticism          cAV      ANX.win 
##           NA   0.05262069  -0.11240385  -0.07578554  -0.45719458
summary(Security.step3)
## 
## Call:
## lm(formula = Security.win ~ SViolence * cNeuroticism + SViolence * 
##     cAV + SViolence * ANX.win, data = Rwomen)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.16578 -0.43829  0.04954  0.35622  1.17367 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              6.196205   0.031045 199.587  < 2e-16 ***
## SViolence1               0.073423   0.055869   1.314   0.1895    
## cNeuroticism            -0.070393   0.028390  -2.479   0.0136 *  
## cAV                     -0.027470   0.030149  -0.911   0.3628    
## ANX.win                 -0.342709   0.042186  -8.124 5.26e-15 ***
## SViolence1:cNeuroticism  0.043950   0.047646   0.922   0.3568    
## SViolence1:cAV          -0.043843   0.052361  -0.837   0.4029    
## SViolence1:ANX.win       0.002907   0.078486   0.037   0.9705    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5195 on 414 degrees of freedom
##   (15 observations deleted due to missingness)
## Multiple R-squared:  0.2993, Adjusted R-squared:  0.2875 
## F-statistic: 25.26 on 7 and 414 DF,  p-value: < 2.2e-16
lm.beta(Security.step3)
## 
## Call:
## lm(formula = Security.win ~ SViolence * cNeuroticism + SViolence * 
##     cAV + SViolence * ANX.win, data = Rwomen)
## 
## Standardized Coefficients::
##             (Intercept)              SViolence1            cNeuroticism 
##                      NA             0.055488001            -0.144777621 
##                     cAV                 ANX.win SViolence1:cNeuroticism 
##            -0.050387575            -0.462490982             0.058299454 
##          SViolence1:cAV      SViolence1:ANX.win 
##            -0.046999518             0.002234492
confint(Security.step3, level=0.95)
##                               2.5 %      97.5 %
## (Intercept)              6.13517900  6.25723022
## SViolence1              -0.03639967  0.18324485
## cNeuroticism            -0.12619981 -0.01458628
## cAV                     -0.08673449  0.03179476
## ANX.win                 -0.42563456 -0.25978408
## SViolence1:cNeuroticism -0.04970867  0.13760804
## SViolence1:cAV          -0.14676911  0.05908403
## SViolence1:ANX.win      -0.15137418  0.15718794
#Bivariate test
wilcox.test(Security ~ SViolence, data=Rwomen, alternative=c("two.sided"), conf.int=T, conf.level=.95)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  Security by SViolence
## W = 20616, p-value = 0.4744
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -0.05557498  0.16670765
## sample estimates:
## difference in location 
##             0.05555086
wilcoxonRG(x = Rwomen$Security, g = Rwomen$SViolence)
## rg 
## NA
wilcox_effsize(Security ~ SViolence, data=Rwomen)
## # A tibble: 1 × 7
##   .y.      group1 group2 effsize    n1    n2 magnitude
## * <chr>    <chr>  <chr>    <dbl> <int> <int> <ord>    
## 1 Security -1     1       0.0346   295   134 small
wilcox_test(Security ~ SViolence, data=Rwomen, conf.level=.95)
## 
##  Asymptotic Wilcoxon-Mann-Whitney Test
## 
## data:  Security by SViolence (-1, 1)
## Z = 0.7158, p-value = 0.4741
## alternative hypothesis: true mu is not equal to 0

Regression IV: IOS

# Descriptives by group
group_by(Rwomen, SViolence) %>%
  summarise(
    count = n(),
    mean = mean(IOS.current, na.rm = TRUE),
    sd = sd(IOS.current, na.rm = TRUE),
    median = median(IOS.current, na.rm = TRUE),
    IQR = IQR(IOS.current, na.rm = TRUE)
  )
## # A tibble: 2 × 6
##   SViolence count  mean    sd median   IQR
##   <fct>     <int> <dbl> <dbl>  <dbl> <dbl>
## 1 -1          302  5.02  1.66      5     2
## 2 1           135  4.97  1.71      5     3
IOS.lin.win<- lm(IOS.current ~ SViolence*Responsiveness.win  + SViolence*Neuroticism.win + SViolence*AV.win + SViolence*ANX.win, data=Rwomen)

IOS.lin<- lm(IOS.current ~ SViolence*cResponsiveness + SViolence*cNeuroticism + SViolence*cAV + SViolence*cANX, data=Rwomen)

IOS.step1<- lm(IOS.current ~ SViolence, data=Rwomen)
IOS.step2<- lm(IOS.current ~ SViolence + cNeuroticism + cAV + ANX.win, data=Rwomen)
IOS.step3<- lm(IOS.current ~  SViolence*cNeuroticism + SViolence*cAV + SViolence*ANX.win, data=Rwomen)

summary(IOS.step1)
## 
## Call:
## lm(formula = IOS.current ~ SViolence, data = Rwomen)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.0201 -1.0201 -0.0201  1.9799  2.0296 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  5.02007    0.09702  51.744   <2e-16 ***
## SViolence1  -0.04970    0.17395  -0.286    0.775    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.678 on 432 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.0001889,  Adjusted R-squared:  -0.002125 
## F-statistic: 0.08162 on 1 and 432 DF,  p-value: 0.7752
lm.beta(IOS.step1)
## 
## Call:
## lm(formula = IOS.current ~ SViolence, data = Rwomen)
## 
## Standardized Coefficients::
## (Intercept)  SViolence1 
##          NA -0.01374417
summary(IOS.step2)
## 
## Call:
## lm(formula = IOS.current ~ SViolence + cNeuroticism + cAV + ANX.win, 
##     data = Rwomen)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.2104 -1.0773  0.1638  1.3663  2.8586 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   4.92638    0.09631  51.151  < 2e-16 ***
## SViolence1    0.12028    0.17319   0.694 0.487772    
## cNeuroticism  0.05572    0.06977   0.799 0.425002    
## cAV          -0.17572    0.07650  -2.297 0.022104 *  
## ANX.win      -0.40361    0.11079  -3.643 0.000303 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.622 on 418 degrees of freedom
##   (14 observations deleted due to missingness)
## Multiple R-squared:  0.06195,    Adjusted R-squared:  0.05297 
## F-statistic: 6.901 on 4 and 418 DF,  p-value: 2.186e-05
lm.beta(IOS.step2)
## 
## Call:
## lm(formula = IOS.current ~ SViolence + cNeuroticism + cAV + ANX.win, 
##     data = Rwomen)
## 
## Standardized Coefficients::
##  (Intercept)   SViolence1 cNeuroticism          cAV      ANX.win 
##           NA   0.03353455   0.04247143  -0.11924990  -0.20084908
summary(IOS.step3)
## 
## Call:
## lm(formula = IOS.current ~ SViolence * cNeuroticism + SViolence * 
##     cAV + SViolence * ANX.win, data = Rwomen)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.1853 -1.0658  0.1369  1.4192  2.8456 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              4.92966    0.09708  50.779  < 2e-16 ***
## SViolence1               0.12592    0.17487   0.720  0.47190    
## cNeuroticism             0.02025    0.08787   0.230  0.81786    
## cAV                     -0.15925    0.09371  -1.699  0.08999 .  
## ANX.win                 -0.37467    0.13210  -2.836  0.00479 ** 
## SViolence1:cNeuroticism  0.11240    0.14859   0.756  0.44980    
## SViolence1:cAV          -0.05904    0.16356  -0.361  0.71831    
## SViolence1:ANX.win      -0.11961    0.24577  -0.487  0.62675    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.627 on 415 degrees of freedom
##   (14 observations deleted due to missingness)
## Multiple R-squared:  0.06354,    Adjusted R-squared:  0.04775 
## F-statistic: 4.023 on 7 and 415 DF,  p-value: 0.0002812
lm.beta(IOS.step3)
## 
## Call:
## lm(formula = IOS.current ~ SViolence * cNeuroticism + SViolence * 
##     cAV + SViolence * ANX.win, data = Rwomen)
## 
## Standardized Coefficients::
##             (Intercept)              SViolence1            cNeuroticism 
##                      NA              0.03510828              0.01543672 
##                     cAV                 ANX.win SViolence1:cNeuroticism 
##             -0.10807126             -0.18644626              0.05497920 
##          SViolence1:cAV      SViolence1:ANX.win 
##             -0.02333781             -0.03390305
confint(IOS.step3, level=0.95)
##                              2.5 %      97.5 %
## (Intercept)              4.7388311  5.12049104
## SViolence1              -0.2178306  0.46966960
## cNeuroticism            -0.1524816  0.19298224
## cAV                     -0.3434534  0.02495162
## ANX.win                 -0.6343408 -0.11499795
## SViolence1:cNeuroticism -0.1796794  0.40448464
## SViolence1:cAV          -0.3805520  0.26247317
## SViolence1:ANX.win      -0.6027273  0.36350408
# Bivariate test
wilcox.test(IOS.current ~ SViolence, data=Rwomen, alternative=c("two.sided"), conf.int=T, conf.level=.95)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  IOS.current by SViolence
## W = 20464, p-value = 0.8132
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
##  -2.957400e-05  4.856633e-05
## sample estimates:
## difference in location 
##           4.575258e-05
wilcoxonRG(x = Rwomen$IOS.current, g = Rwomen$SViolence)
## rg 
## NA
wilcox_effsize(IOS.current ~ SViolence, data=Rwomen)
## # A tibble: 1 × 7
##   .y.         group1 group2 effsize    n1    n2 magnitude
## * <chr>       <chr>  <chr>    <dbl> <int> <int> <ord>    
## 1 IOS.current -1     1       0.0114   299   135 small
wilcox_test(IOS.current ~ SViolence, data=Rwomen, conf.level=.95)
## 
##  Asymptotic Wilcoxon-Mann-Whitney Test
## 
## data:  IOS.current by SViolence (-1, 1)
## Z = 0.23669, p-value = 0.8129
## alternative hypothesis: true mu is not equal to 0

Notes

Based on conversations with stats professor and LATIS consultants, decided to not do multivariate multiple regression as this is the same as running multiple multiple regressions and need to do more complex analyses to truly take the correlations betwee DVs into account. I conducted a multiple regression using PRQC total as DV and SV, attachment, and neuroticism (and interactions between SV and these variables) as predictors, but the residuals were not normally distributed. I attempted a Box Cox transformation to address the left skew of the data, but this did not improve the residual plots. We added responsiveness as predictor to better understandwhy SV may be associated with better relationship quality. To address residual plot issues, we reverse-coded the dependent variables so that they were right skewed and therefore similar to gamma distributions. We then ran several general linear model regressions using a gamma distribution using the subscale totals as dependent variables.

Exploratory: To understand why negative SV impacts reported in qualitative data were not matching up to quantitative measures, we conducted several exploratory analyses.

```