# Import data
library(readr)
retdata <- read_csv("C:/Users/DELL/Downloads/m-fac9003.csv")
## Rows: 168 Columns: 14
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (14): AA, AGE, CAT, F, FDX, GM, HPQ, KMB, MEL, NYT, PG, TRB, TXN, SP500
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(retdata)
## # A tibble: 6 × 14
##       AA    AGE    CAT     F    FDX    GM   HPQ    KMB    MEL    NYT    PG
##    <dbl>  <dbl>  <dbl> <dbl>  <dbl> <dbl> <dbl>  <dbl>  <dbl>  <dbl> <dbl>
## 1 -16.4  -12.2   -4.44 -0.06  -2.28 -2.12 -6.19 -11.0  -10.8   -6.3  -8.89
## 2   4.04   4.95   8.84  6.02  10.5   8.97 -4.01  -5.2    0.34  -4.62 -0.84
## 3   0.12  13.1    0.17  2.06  10.8   1.57  5.67   3.21  -0.17  -0.66  5.41
## 4  -4.28 -11.1    0.25 -5.67  -2.44 -4.19 -5.29  -0.65  -2.2  -10.6   4.26
## 5   5.81  19.7    8.52  3.89 -16.2  10.9   8.81   8.83  11.8   11.6  16.4 
## 6  -4.05  -1.44 -22.1  -5.79  -2.81 -2.7  -1.47   1.55  -7.76  -0.12  4.8 
## # … with 3 more variables: TRB <dbl>, TXN <dbl>, SP500 <dbl>
retdata1 <- retdata / 100
head(retdata1)
##        AA     AGE     CAT       F     FDX      GM     HPQ     KMB     MEL
## 1 -0.1640 -0.1217 -0.0444 -0.0006 -0.0228 -0.0212 -0.0619 -0.1101 -0.1077
## 2  0.0404  0.0495  0.0884  0.0602  0.1047  0.0897 -0.0401 -0.0520  0.0034
## 3  0.0012  0.1308  0.0017  0.0206  0.1084  0.0157  0.0567  0.0321 -0.0017
## 4 -0.0428 -0.1106  0.0025 -0.0567 -0.0244 -0.0419 -0.0529 -0.0065 -0.0220
## 5  0.0581  0.1970  0.0852  0.0389 -0.1617  0.1094  0.0881  0.0883  0.1185
## 6 -0.0405 -0.0144 -0.2210 -0.0579 -0.0281 -0.0270 -0.0147  0.0155 -0.0776
##       NYT      PG     TRB     TXN   SP500
## 1 -0.0630 -0.0889 -0.1304 -0.0761 -0.0752
## 2 -0.0462 -0.0084 -0.0037  0.0497  0.0021
## 3 -0.0066  0.0541  0.0236  0.0269  0.0177
## 4 -0.1060  0.0426 -0.0798 -0.0685 -0.0334
## 5  0.1159  0.1635  0.0882  0.2288  0.0855
## 6 -0.0012  0.0480 -0.0064 -0.0587 -0.0153
# Method 1: Using lm function to estimate regression ----
stockret <- as.matrix(retdata1[, 1:13])
head(stockret)
##           AA     AGE     CAT       F     FDX      GM     HPQ     KMB     MEL
## [1,] -0.1640 -0.1217 -0.0444 -0.0006 -0.0228 -0.0212 -0.0619 -0.1101 -0.1077
## [2,]  0.0404  0.0495  0.0884  0.0602  0.1047  0.0897 -0.0401 -0.0520  0.0034
## [3,]  0.0012  0.1308  0.0017  0.0206  0.1084  0.0157  0.0567  0.0321 -0.0017
## [4,] -0.0428 -0.1106  0.0025 -0.0567 -0.0244 -0.0419 -0.0529 -0.0065 -0.0220
## [5,]  0.0581  0.1970  0.0852  0.0389 -0.1617  0.1094  0.0881  0.0883  0.1185
## [6,] -0.0405 -0.0144 -0.2210 -0.0579 -0.0281 -0.0270 -0.0147  0.0155 -0.0776
##          NYT      PG     TRB     TXN
## [1,] -0.0630 -0.0889 -0.1304 -0.0761
## [2,] -0.0462 -0.0084 -0.0037  0.0497
## [3,] -0.0066  0.0541  0.0236  0.0269
## [4,] -0.1060  0.0426 -0.0798 -0.0685
## [5,]  0.1159  0.1635  0.0882  0.2288
## [6,] -0.0012  0.0480 -0.0064 -0.0587
mktret <- as.matrix(retdata1[, 14])
head(mktret)
##         [,1]
## [1,] -0.0752
## [2,]  0.0021
## [3,]  0.0177
## [4,] -0.0334
## [5,]  0.0855
## [6,] -0.0153
TT <- dim(stockret)[1]
TT
## [1] 168
fit <- lm(formula = stockret ~ mktret)
fit
## 
## Call:
## lm(formula = stockret ~ mktret)
## 
## Coefficients:
##              AA        AGE       CAT       F         FDX       GM      
## (Intercept)  0.005491  0.007218  0.008394  0.004544  0.007996  0.001982
## mktret       1.291591  1.514136  0.940693  1.219245  0.805117  1.045702
##              HPQ       KMB       MEL       NYT       PG        TRB     
## (Intercept)  0.006836  0.005463  0.008849  0.004904  0.008881  0.006512
## mktret       1.627951  0.549805  1.122871  0.770649  0.468803  0.717881
##              TXN     
## (Intercept)  0.014389
## mktret       1.796412
sigF = as.numeric(var(mktret))
bbeta = as.matrix(fit$coefficients)
bbeta = as.matrix(bbeta[-1,])
bbeta
##          [,1]
## AA  1.2915911
## AGE 1.5141359
## CAT 0.9406928
## F   1.2192453
## FDX 0.8051166
## GM  1.0457019
## HPQ 1.6279512
## KMB 0.5498052
## MEL 1.1228708
## NYT 0.7706495
## PG  0.4688034
## TRB 0.7178808
## TXN 1.7964117
sigeps = crossprod(fit$residuals)/(TT-2)

# You can use this method to compute sigeps:
# sigeps.1 = as.matrix(var(fit$residuals))   
sigeps = diag(diag(sigeps))
sigeps
##              [,1]        [,2]        [,3]        [,4]        [,5]        [,6]
##  [1,] 0.005919846 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
##  [2,] 0.000000000 0.006095651 0.000000000 0.000000000 0.000000000 0.000000000
##  [3,] 0.000000000 0.000000000 0.005966741 0.000000000 0.000000000 0.000000000
##  [4,] 0.000000000 0.000000000 0.000000000 0.006791031 0.000000000 0.000000000
##  [5,] 0.000000000 0.000000000 0.000000000 0.000000000 0.007839072 0.000000000
##  [6,] 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.006609876
##  [7,] 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
##  [8,] 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
##  [9,] 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
## [10,] 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
## [11,] 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
## [12,] 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
## [13,] 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
##              [,7]       [,8]        [,9]      [,10]       [,11]       [,12]
##  [1,] 0.000000000 0.00000000 0.000000000 0.00000000 0.000000000 0.000000000
##  [2,] 0.000000000 0.00000000 0.000000000 0.00000000 0.000000000 0.000000000
##  [3,] 0.000000000 0.00000000 0.000000000 0.00000000 0.000000000 0.000000000
##  [4,] 0.000000000 0.00000000 0.000000000 0.00000000 0.000000000 0.000000000
##  [5,] 0.000000000 0.00000000 0.000000000 0.00000000 0.000000000 0.000000000
##  [6,] 0.000000000 0.00000000 0.000000000 0.00000000 0.000000000 0.000000000
##  [7,] 0.008966712 0.00000000 0.000000000 0.00000000 0.000000000 0.000000000
##  [8,] 0.000000000 0.00368461 0.000000000 0.00000000 0.000000000 0.000000000
##  [9,] 0.000000000 0.00000000 0.003745483 0.00000000 0.000000000 0.000000000
## [10,] 0.000000000 0.00000000 0.000000000 0.00434329 0.000000000 0.000000000
## [11,] 0.000000000 0.00000000 0.000000000 0.00000000 0.004171711 0.000000000
## [12,] 0.000000000 0.00000000 0.000000000 0.00000000 0.000000000 0.005205835
## [13,] 0.000000000 0.00000000 0.000000000 0.00000000 0.000000000 0.000000000
##            [,13]
##  [1,] 0.00000000
##  [2,] 0.00000000
##  [3,] 0.00000000
##  [4,] 0.00000000
##  [5,] 0.00000000
##  [6,] 0.00000000
##  [7,] 0.00000000
##  [8,] 0.00000000
##  [9,] 0.00000000
## [10,] 0.00000000
## [11,] 0.00000000
## [12,] 0.00000000
## [13,] 0.01316524
# Covariance matrix by single factor model 
cov_1f = sigF*bbeta%*%t(bbeta)+sigeps
cov_1f
##              AA         AGE          CAT           F          FDX          GM
## AA  0.009046736 0.003665662 0.0022773795 0.002951744 0.0019491551 0.002531602
## AGE 0.003665662 0.010392918 0.0026697784 0.003460338 0.0022850000 0.002967804
## CAT 0.002277380 0.002669778 0.0076254044 0.002149817 0.0014196104 0.001843819
## F   0.002951744 0.003460338 0.0021498168 0.009577439 0.0018399772 0.002389800
## FDX 0.001949155 0.002285000 0.0014196104 0.001839977 0.0090540833 0.001578081
## GM  0.002531602 0.002967804 0.0018438188 0.002389800 0.0015780808 0.008659520
## HPQ 0.003941205 0.004620285 0.0028704615 0.003720446 0.0024567600 0.003190890
## KMB 0.001331056 0.001560401 0.0009694362 0.001256500 0.0008297174 0.001077654
## MEL 0.002718425 0.003186817 0.0019798858 0.002566158 0.0016945373 0.002200899
## NYT 0.001865711 0.002187179 0.0013588366 0.001761207 0.0011629960 0.001510523
## PG  0.001134954 0.001330510 0.0008266108 0.001071382 0.0007074766 0.000918885
## TRB 0.001737961 0.002037416 0.0012657930 0.001640612 0.0010833622 0.001407093
## TXN 0.004349041 0.005098393 0.0031674972 0.004105438 0.0027109857 0.003521083
##             HPQ          KMB          MEL          NYT           PG
## AA  0.003941205 0.0013310564 0.0027184251 0.0018657114 0.0011349541
## AGE 0.004620285 0.0015604012 0.0031868174 0.0021871787 0.0013305099
## CAT 0.002870462 0.0009694362 0.0019798858 0.0013588366 0.0008266108
## F   0.003720446 0.0012565001 0.0025661582 0.0017612075 0.0010713820
## FDX 0.002456760 0.0008297174 0.0016945373 0.0011629960 0.0007074766
## GM  0.003190890 0.0010776539 0.0022008995 0.0015105229 0.0009188850
## HPQ 0.013934297 0.0016776942 0.0034263656 0.0023515856 0.0014305223
## KMB 0.001677694 0.0042512149 0.0011571807 0.0007941971 0.0004831279
## MEL 0.003426366 0.0011571807 0.0061088004 0.0016219938 0.0009866952
## NYT 0.002351586 0.0007941971 0.0016219938 0.0054564979 0.0006771894
## PG  0.001430522 0.0004831279 0.0009866952 0.0006771894 0.0045836602
## TRB 0.002190566 0.0007398161 0.0015109311 0.0010369833 0.0006308202
## TXN 0.005481631 0.0018513021 0.0037809262 0.0025949280 0.0015785529
##              TRB         TXN
## AA  0.0017379606 0.004349041
## AGE 0.0020374161 0.005098393
## CAT 0.0012657930 0.003167497
## F   0.0016406124 0.004105438
## FDX 0.0010833622 0.002710986
## GM  0.0014070929 0.003521083
## HPQ 0.0021905656 0.005481631
## KMB 0.0007398161 0.001851302
## MEL 0.0015109311 0.003780926
## NYT 0.0010369833 0.002594928
## PG  0.0006308202 0.001578553
## TRB 0.0061718134 0.002417246
## TXN 0.0024172455 0.019214110
# Method 2: Use formula "inv(X'X)*X'Y" ----
ones = rep(1, TT)
X = as.matrix(cbind(ones, mktret))
X
##        ones        
##   [1,]    1 -0.0752
##   [2,]    1  0.0021
##   [3,]    1  0.0177
##   [4,]    1 -0.0334
##   [5,]    1  0.0855
##   [6,]    1 -0.0153
##   [7,]    1 -0.0116
##   [8,]    1 -0.1005
##   [9,]    1 -0.0573
##  [10,]    1 -0.0127
##  [11,]    1  0.0540
##  [12,]    1  0.0192
##  [13,]    1  0.0363
##  [14,]    1  0.0623
##  [15,]    1  0.0173
##  [16,]    1 -0.0044
##  [17,]    1  0.0340
##  [18,]    1 -0.0525
##  [19,]    1  0.0402
##  [20,]    1  0.0152
##  [21,]    1 -0.0235
##  [22,]    1  0.0077
##  [23,]    1 -0.0477
##  [24,]    1  0.1082
##  [25,]    1 -0.0231
##  [26,]    1  0.0064
##  [27,]    1 -0.0252
##  [28,]    1  0.0248
##  [29,]    1 -0.0021
##  [30,]    1 -0.0204
##  [31,]    1  0.0367
##  [32,]    1 -0.0266
##  [33,]    1  0.0067
##  [34,]    1 -0.0003
##  [35,]    1  0.0277
##  [36,]    1  0.0074
##  [37,]    1  0.0046
##  [38,]    1  0.0080
##  [39,]    1  0.0162
##  [40,]    1 -0.0278
##  [41,]    1  0.0203
##  [42,]    1 -0.0018
##  [43,]    1 -0.0079
##  [44,]    1  0.0319
##  [45,]    1 -0.0124
##  [46,]    1  0.0169
##  [47,]    1 -0.0155
##  [48,]    1  0.0075
##  [49,]    1  0.0300
##  [50,]    1 -0.0328
##  [51,]    1 -0.0487
##  [52,]    1  0.0085
##  [53,]    1  0.0090
##  [54,]    1 -0.0303
##  [55,]    1  0.0279
##  [56,]    1  0.0339
##  [57,]    1 -0.0308
##  [58,]    1  0.0167
##  [59,]    1 -0.0439
##  [60,]    1  0.0076
##  [61,]    1  0.0195
##  [62,]    1  0.0313
##  [63,]    1  0.0226
##  [64,]    1  0.0233
##  [65,]    1  0.0316
##  [66,]    1  0.0167
##  [67,]    1  0.0273
##  [68,]    1 -0.0048
##  [69,]    1  0.0357
##  [70,]    1 -0.0094
##  [71,]    1  0.0366
##  [72,]    1  0.0132
##  [73,]    1  0.0285
##  [74,]    1  0.0029
##  [75,]    1  0.0038
##  [76,]    1  0.0093
##  [77,]    1  0.0187
##  [78,]    1 -0.0020
##  [79,]    1 -0.0500
##  [80,]    1  0.0146
##  [81,]    1  0.0499
##  [82,]    1  0.0220
##  [83,]    1  0.0692
##  [84,]    1 -0.0256
##  [85,]    1  0.0571
##  [86,]    1  0.0018
##  [87,]    1 -0.0469
##  [88,]    1  0.0541
##  [89,]    1  0.0544
##  [90,]    1  0.0393
##  [91,]    1  0.0739
##  [92,]    1 -0.0617
##  [93,]    1  0.0490
##  [94,]    1 -0.0386
##  [95,]    1  0.0403
##  [96,]    1  0.0114
##  [97,]    1  0.0060
##  [98,]    1  0.0662
##  [99,]    1  0.0458
## [100,]    1  0.0050
## [101,]    1 -0.0230
## [102,]    1  0.0353
## [103,]    1 -0.0158
## [104,]    1 -0.1499
## [105,]    1  0.0586
## [106,]    1  0.0770
## [107,]    1  0.0555
## [108,]    1  0.0527
## [109,]    1  0.0374
## [110,]    1 -0.0360
## [111,]    1  0.0351
## [112,]    1  0.0344
## [113,]    1 -0.0287
## [114,]    1  0.0506
## [115,]    1 -0.0358
## [116,]    1 -0.0102
## [117,]    1 -0.0324
## [118,]    1  0.0585
## [119,]    1  0.0148
## [120,]    1  0.0535
## [121,]    1 -0.0553
## [122,]    1 -0.0247
## [123,]    1  0.0920
## [124,]    1 -0.0355
## [125,]    1 -0.0267
## [126,]    1  0.0192
## [127,]    1 -0.0213
## [128,]    1  0.0556
## [129,]    1 -0.0585
## [130,]    1 -0.0100
## [131,]    1 -0.0852
## [132,]    1 -0.0008
## [133,]    1  0.0303
## [134,]    1 -0.0964
## [135,]    1 -0.0679
## [136,]    1  0.0736
## [137,]    1  0.0021
## [138,]    1 -0.0279
## [139,]    1 -0.0137
## [140,]    1 -0.0669
## [141,]    1 -0.0839
## [142,]    1  0.0163
## [143,]    1  0.0736
## [144,]    1  0.0062
## [145,]    1 -0.0169
## [146,]    1 -0.0222
## [147,]    1  0.0352
## [148,]    1 -0.0629
## [149,]    1 -0.0105
## [150,]    1 -0.0739
## [151,]    1 -0.0804
## [152,]    1  0.0035
## [153,]    1 -0.1114
## [154,]    1  0.0851
## [155,]    1  0.0560
## [156,]    1 -0.0613
## [157,]    1 -0.0284
## [158,]    1 -0.0180
## [159,]    1  0.0074
## [160,]    1  0.0801
## [161,]    1  0.0500
## [162,]    1  0.0106
## [163,]    1  0.0155
## [164,]    1  0.0171
## [165,]    1 -0.0127
## [166,]    1  0.0542
## [167,]    1  0.0064
## [168,]    1  0.0500
Y = stockret
Y
##             AA     AGE     CAT       F     FDX      GM     HPQ     KMB     MEL
##   [1,] -0.1640 -0.1217 -0.0444 -0.0006 -0.0228 -0.0212 -0.0619 -0.1101 -0.1077
##   [2,]  0.0404  0.0495  0.0884  0.0602  0.1047  0.0897 -0.0401 -0.0520  0.0034
##   [3,]  0.0012  0.1308  0.0017  0.0206  0.1084  0.0157  0.0567  0.0321 -0.0017
##   [4,] -0.0428 -0.1106  0.0025 -0.0567 -0.0244 -0.0419 -0.0529 -0.0065 -0.0220
##   [5,]  0.0581  0.1970  0.0852  0.0389 -0.1617  0.1094  0.0881  0.0883  0.1185
##   [6,] -0.0405 -0.0144 -0.2210 -0.0579 -0.0281 -0.0270 -0.0147  0.0155 -0.0776
##   [7,]  0.0909 -0.0652 -0.0719 -0.0406 -0.0865 -0.0273 -0.0937  0.0669 -0.0552
##   [8,] -0.0799 -0.0877 -0.1264 -0.1658 -0.0633 -0.1376 -0.1975 -0.0348 -0.1950
##   [9,] -0.0333 -0.2747 -0.0236 -0.1208 -0.0826 -0.0942 -0.0426 -0.0838  0.0002
##  [10,] -0.1513  0.0409 -0.0344 -0.0829 -0.0956  0.0078 -0.2299  0.0966 -0.0510
##  [11,]  0.0271  0.1135  0.0033 -0.0194 -0.1006  0.0077  0.1480  0.0473  0.2608
##  [12,]  0.0445  0.0901  0.1372 -0.0330  0.1283 -0.0638  0.0604  0.0629 -0.0056
##  [13,]  0.1220  0.1973  0.0597  0.0746  0.2568  0.0494  0.2144 -0.0037 -0.0273
##  [14,] -0.0088  0.1634  0.0930  0.1602 -0.0400  0.0957  0.1944  0.0173  0.1317
##  [15,]  0.0165  0.1320 -0.1285 -0.0126 -0.1261 -0.0492  0.0701  0.0240  0.0047
##  [16,]  0.0319  0.0146 -0.0037  0.0115 -0.0323 -0.0577  0.0178  0.0323  0.0372
##  [17,]  0.0491  0.0712  0.0821  0.1301  0.1338  0.2129  0.0566  0.0600  0.1066
##  [18,] -0.0556 -0.1044 -0.0505 -0.0284 -0.0451 -0.0597 -0.0669 -0.0112 -0.0088
##  [19,]  0.0476  0.1942 -0.0036 -0.0630  0.0798 -0.0292  0.0545  0.0032  0.1033
##  [20,] -0.0239  0.0208 -0.0375 -0.0753 -0.0553 -0.0384 -0.0207  0.0032  0.0070
##  [21,] -0.0820  0.1986 -0.0649 -0.0405 -0.1211 -0.0208 -0.0658 -0.0745 -0.0006
##  [22,] -0.0057  0.0722  0.0782 -0.0867  0.0958 -0.0644  0.0135  0.0699  0.0477
##  [23,] -0.0807 -0.1307 -0.1444 -0.1190 -0.0980 -0.1170 -0.0485 -0.0415 -0.0688
##  [24,]  0.0970  0.2963  0.0602  0.1685  0.1077 -0.0644  0.1836  0.1014  0.0738
##  [25,] -0.0012 -0.0593  0.0658  0.0955  0.1259  0.1180  0.0363 -0.0636  0.1108
##  [26,]  0.0786 -0.0696  0.0422  0.2017  0.1682  0.1675  0.2289  0.0887  0.0195
##  [27,]  0.0129 -0.0921  0.0197  0.0409 -0.0887 -0.0267  0.1021  0.0262 -0.0129
##  [28,]  0.1001 -0.1663  0.1224  0.1897 -0.0751  0.1300 -0.0093  0.0416  0.0283
##  [29,]  0.0002  0.0957  0.0727 -0.0251 -0.0662 -0.0422 -0.0530  0.0330  0.0126
##  [30,] -0.0256 -0.0815 -0.1128  0.0307  0.1043  0.1104 -0.0942  0.0215  0.0124
##  [31,] -0.0307 -0.0088  0.0280  0.0033 -0.0553 -0.0567  0.0645 -0.0305  0.0393
##  [32,] -0.1209  0.0409 -0.1293 -0.1119 -0.1049 -0.1612 -0.2237 -0.0350 -0.0408
##  [33,]  0.0227 -0.0739  0.0779 -0.0331 -0.0611 -0.0746 -0.0251 -0.0162  0.0618
##  [34,]  0.0504  0.1130  0.0029 -0.0682  0.2467 -0.0452  0.0178  0.0556  0.0689
##  [35,]  0.0085  0.1641  0.0835  0.1481  0.0805  0.0527  0.1666  0.0660  0.0542
##  [36,]  0.0187 -0.0665 -0.0578  0.0181  0.1124 -0.0027  0.0511 -0.0275  0.0817
##  [37,]  0.0359  0.0874  0.0469  0.0826  0.0365  0.1680  0.0279 -0.0258  0.0589
##  [38,] -0.0542 -0.0219  0.0310 -0.0079 -0.0069 -0.0104  0.0219 -0.0306  0.0803
##  [39,] -0.0827  0.0777  0.0169  0.1311 -0.0025  0.0076  0.0325 -0.0171  0.0017
##  [40,]  0.0228 -0.0531  0.1714  0.0582 -0.1443  0.0840 -0.0188 -0.1280 -0.0908
##  [41,]  0.0244 -0.0549  0.0318 -0.0527  0.0105 -0.0159  0.1111 -0.0170 -0.0070
##  [42,]  0.0345  0.0490  0.0428  0.0023 -0.0510  0.1065 -0.0280  0.0563  0.0271
##  [43,]  0.0153  0.0612  0.0262  0.0147  0.1288  0.0874 -0.1136 -0.0556 -0.0047
##  [44,]  0.0575  0.0076  0.0674 -0.0357  0.1302 -0.0319  0.0270  0.0428  0.0378
##  [45,] -0.1089  0.0801 -0.0420  0.0809  0.0331 -0.1118 -0.0767  0.0063 -0.0562
##  [46,]  0.0105  0.0441  0.1576  0.1246  0.0884  0.1382  0.0743  0.0511 -0.0161
##  [47,]  0.0217 -0.0350 -0.0709 -0.0208  0.0567  0.1092 -0.0009  0.0216  0.0276
##  [48,] -0.0007 -0.0344  0.0414  0.0592 -0.0113  0.0377  0.0720 -0.0133 -0.0476
##  [49,]  0.1438  0.0138  0.1691  0.0425  0.0698  0.1137  0.0766  0.0939  0.0623
##  [50,] -0.0517 -0.0508  0.0381 -0.0755 -0.0175 -0.0484  0.0603 -0.0235 -0.0094
##  [51,] -0.0511 -0.1917  0.0340 -0.0572 -0.1098 -0.0780 -0.0939 -0.0459  0.0083
##  [52,] -0.0537 -0.0171 -0.0240 -0.0018  0.1371  0.0503 -0.0259  0.0348  0.0025
##  [53,]  0.0410  0.0683 -0.0308 -0.0142 -0.0002 -0.0528 -0.0253  0.0262  0.0435
##  [54,]  0.0319 -0.0835 -0.0678  0.0182 -0.0263 -0.0686 -0.0410 -0.0598 -0.0419
##  [55,]  0.0665  0.0109  0.0831  0.0845 -0.1140  0.0188  0.0280  0.0697  0.0241
##  [56,]  0.0749  0.1463  0.0609 -0.0861  0.0621 -0.0217  0.1541  0.0425  0.0312
##  [57,]  0.0051 -0.0901 -0.0656 -0.0551 -0.1308 -0.0710 -0.0283 -0.0070 -0.0545
##  [58,]  0.0065  0.0096  0.1026  0.0683 -0.0223 -0.1615  0.1160 -0.1275 -0.0032
##  [59,] -0.0469 -0.0644 -0.0985 -0.0849 -0.0682 -0.0342 -0.0057 -0.0311 -0.1111
##  [60,]  0.0566  0.0388  0.0138  0.0230  0.0547  0.1003  0.0201  0.0091 -0.0801
##  [61,] -0.0919  0.0161 -0.0682 -0.0896  0.0035 -0.0819  0.0015 -0.0494  0.1528
##  [62,] -0.0128  0.2197  0.0001  0.0298  0.0672  0.0968  0.1395  0.0757  0.0845
##  [63,]  0.0593 -0.0208  0.0703  0.0239  0.0336  0.0275  0.0446  0.0039  0.0641
##  [64,]  0.0766  0.0351  0.0539  0.0161  0.0008  0.0209  0.0939  0.0842 -0.0292
##  [65,]  0.0365 -0.0157  0.0252  0.0736 -0.1242  0.0656 -0.0066  0.0549  0.0844
##  [66,]  0.0734 -0.0039  0.0618  0.0125  0.0101 -0.0280  0.1273  0.0009 -0.0309
##  [67,]  0.1326  0.0844  0.0963 -0.0193  0.1066  0.0355  0.0408  0.0539 -0.0285
##  [68,]  0.0016 -0.0096 -0.0507  0.0558  0.0585 -0.0317  0.0228  0.0034  0.1762
##  [69,] -0.0788  0.0937 -0.1571  0.0078  0.1524 -0.0097  0.0403  0.0535 -0.0598
##  [70,] -0.0399 -0.0466 -0.0004 -0.0695 -0.0149 -0.0711  0.1065  0.0775  0.1252
##  [71,]  0.1470  0.0606  0.0770 -0.0219 -0.0973  0.1110 -0.1084  0.0523  0.0730
##  [72,] -0.1004 -0.1200 -0.0471  0.0178 -0.0127  0.0859  0.0072  0.1112 -0.0066
##  [73,]  0.0518  0.0482  0.0975  0.0296  0.0263 -0.0089  0.0078 -0.0298 -0.0125
##  [74,]  0.0207 -0.0389  0.0329  0.0553 -0.0319 -0.0226  0.1848 -0.0567  0.0552
##  [75,]  0.0970  0.0282  0.0146  0.0959 -0.0599  0.0349 -0.0679 -0.0243 -0.0153
##  [76,] -0.0081 -0.0594 -0.0560  0.0497  0.1515  0.0147  0.1207 -0.0277 -0.0204
##  [77,] -0.0109  0.0862  0.0192  0.0132 -0.0553  0.0193  0.0017 -0.0007  0.0586
##  [78,] -0.0732  0.0605  0.0281 -0.1173  0.0659 -0.0541 -0.0665  0.0621 -0.0064
##  [79,]  0.0124  0.0049 -0.0261  0.0076 -0.0561 -0.0735 -0.1210 -0.0205 -0.0683
##  [80,]  0.0669  0.0186  0.0413  0.0305 -0.0412  0.0219 -0.0099  0.0254  0.0456
##  [81,] -0.0545  0.0416  0.0901 -0.0714  0.0542 -0.0370  0.1128  0.1278  0.0657
##  [82,] -0.0049  0.0216 -0.0884  0.0082  0.0116  0.1130 -0.0990  0.0540  0.1030
##  [83,]  0.0811  0.0418  0.1488  0.0438  0.0952  0.0779  0.2168  0.0454  0.1073
##  [84,] -0.0021  0.0770 -0.0531 -0.0194  0.0016 -0.0366 -0.0692 -0.0262 -0.0214
##  [85,]  0.0782  0.0070  0.0327  0.0039  0.1475  0.0541  0.0431  0.0194  0.0553
##  [86,]  0.0317  0.0399  0.0039  0.0192  0.0007 -0.0148  0.0623  0.0830  0.0729
##  [87,] -0.0499 -0.1330  0.0213 -0.0499  0.0079 -0.0475 -0.0511 -0.0611 -0.0992
##  [88,]  0.0269  0.1339  0.1097  0.1167  0.0317  0.0409 -0.0207  0.0259  0.1474
##  [89,]  0.0495  0.0565  0.0927  0.0749 -0.0343 -0.0042 -0.0233 -0.0237  0.0484
##  [90,]  0.0197  0.1523  0.0958  0.0092  0.1009 -0.0324  0.0860 -0.0093  0.0273
##  [91,]  0.1699 -0.0159  0.0435  0.0825  0.1113  0.1057  0.2458  0.0146  0.1208
##  [92,] -0.0721 -0.0635  0.0325  0.0477  0.0248  0.0179 -0.1257 -0.0684 -0.0501
##  [93,] -0.0072  0.2932 -0.0752  0.0453  0.2000  0.0626  0.1292  0.0326  0.1335
##  [94,] -0.1139 -0.0333 -0.0493 -0.0267 -0.1698 -0.0452 -0.1183  0.0572 -0.0483
##  [95,] -0.0796  0.0220 -0.0689 -0.0200  0.0004 -0.0471 -0.0124 -0.0019  0.0859
##  [96,]  0.0422  0.1643  0.0074  0.1251 -0.0938  0.0537  0.0184 -0.0525  0.0652
##  [97,]  0.0811 -0.0514 -0.0093  0.0546  0.0613 -0.0505 -0.0403  0.0541 -0.0029
##  [98,] -0.0403  0.1113  0.1325  0.1048 -0.0254  0.1942  0.1101  0.0628  0.0278
##  [99,] -0.0664  0.0403  0.0050  0.1417  0.1126 -0.0214 -0.0562 -0.0996  0.0149
## [100,]  0.1221  0.0243  0.0345  0.0821 -0.0481 -0.0097  0.1852  0.0083  0.1354
## [101,] -0.1058 -0.1064 -0.0393  0.1282 -0.0612  0.0700 -0.1775 -0.0276 -0.0675
## [102,] -0.0537  0.0501 -0.0411  0.1332 -0.0256 -0.0746 -0.0407 -0.0735  0.0292
## [103,]  0.0470 -0.0891 -0.0817 -0.0309 -0.0370  0.0782 -0.0772 -0.0246 -0.0322
## [104,] -0.1348 -0.3097 -0.1381 -0.2212 -0.1792 -0.1934 -0.1291 -0.1571 -0.2323
## [105,]  0.1820  0.1188  0.0557  0.0494 -0.1087 -0.0598  0.0895  0.0668  0.0538
## [106,]  0.1129  0.1369  0.0133  0.1607  0.1696  0.1482  0.1348  0.1881  0.0964
## [107,] -0.0620  0.0723  0.0965  0.0113  0.2306  0.1101  0.0347  0.0870  0.0473
## [108,]  0.0006  0.0018 -0.0732  0.0622  0.3711  0.0205  0.0908  0.0367  0.0844
## [109,]  0.1171 -0.0942 -0.0555  0.0511 -0.0905  0.2505  0.1437 -0.0896 -0.0238
## [110,] -0.0295 -0.0424  0.0483 -0.0383  0.1659 -0.0782 -0.1560 -0.0551  0.0056
## [111,]  0.0133  0.0047  0.0045 -0.0480 -0.0273  0.0507  0.0194  0.0164  0.0370
## [112,]  0.5078  0.0672  0.4043  0.1324  0.2088  0.0201  0.1596  0.2754  0.0581
## [113,] -0.1170 -0.0430 -0.1513 -0.1103 -0.0315 -0.0750  0.1920 -0.0486 -0.0433
## [114,]  0.1212 -0.0402  0.0896 -0.0158 -0.0141 -0.0473  0.0635 -0.0260  0.0155
## [115,] -0.0361 -0.1453 -0.0213 -0.1363 -0.1789 -0.0777  0.0379  0.0664 -0.0705
## [116,]  0.0777 -0.0965 -0.0381  0.0708 -0.0556  0.0881  0.0026 -0.0705 -0.0150
## [117,] -0.0426  0.0518 -0.0359 -0.0399 -0.0878 -0.0539 -0.1412 -0.0729  0.0036
## [118,] -0.0252  0.1429  0.0110  0.0979  0.1037  0.1151 -0.1866  0.1903  0.1004
## [119,]  0.0773 -0.0208 -0.1658 -0.0840 -0.0274  0.0251  0.2746  0.0107 -0.0178
## [120,]  0.2628  0.0784  0.0105  0.0514 -0.0311  0.0052  0.1963  0.0232 -0.0695
## [121,] -0.1648  0.0287 -0.0958 -0.0619 -0.0380  0.1039 -0.0528 -0.0551  0.0088
## [122,] -0.0181 -0.0480 -0.1784 -0.1679 -0.1215 -0.0543  0.2379 -0.1757 -0.1267
## [123,]  0.0208  0.2626  0.1200  0.0989  0.1062  0.0840 -0.0156  0.0891 -0.0172
## [124,] -0.0812 -0.0641  0.0035  0.1977 -0.0337  0.1259  0.0113  0.0287  0.0825
## [125,] -0.1002 -0.0720 -0.0349 -0.1178 -0.0629 -0.2451 -0.1145  0.0394  0.1975
## [126,] -0.0122  0.1115 -0.1191 -0.0824  0.0657 -0.1826  0.2897 -0.0519 -0.0614
## [127,]  0.0381  0.3508  0.0106  0.0895  0.0378 -0.0243 -0.1306 -0.0039  0.0354
## [128,]  0.0982 -0.0186  0.0738  0.0339  0.0132  0.2715  0.1008  0.0134  0.1956
## [129,] -0.2437  0.0010 -0.0866  0.0415  0.0939 -0.1046 -0.2004 -0.0463  0.0199
## [130,]  0.1282 -0.0350  0.0439  0.0389  0.0517 -0.0493 -0.0463  0.1774  0.0401
## [131,] -0.0182 -0.1221  0.1161 -0.1343  0.0175 -0.2003 -0.3250  0.0545 -0.0336
## [132,]  0.1837  0.0573  0.1987  0.0254 -0.1709  0.0242 -0.0043  0.0098  0.0445
## [133,]  0.0969 -0.0123 -0.0625  0.2113  0.1313  0.0499  0.1632 -0.0883 -0.0524
## [134,] -0.0307 -0.1781 -0.0633 -0.0175 -0.1021 -0.0018 -0.2212  0.1002 -0.0103
## [135,]  0.0016 -0.0477  0.0631  0.0075  0.0146 -0.0313  0.0830 -0.0511 -0.1287
## [136,]  0.1484  0.0960  0.1356  0.0558  0.0061  0.0539 -0.0940 -0.1275  0.0128
## [137,]  0.0429  0.0425  0.0759 -0.1770 -0.0522  0.0442  0.0283  0.0147  0.1165
## [138,] -0.0898  0.0592 -0.0788  0.0053  0.0021  0.1280 -0.0247 -0.0735 -0.0249
## [139,] -0.0072 -0.0307  0.1050  0.0345  0.0262 -0.0146 -0.1407  0.0849 -0.1491
## [140,] -0.0273 -0.0702 -0.0954 -0.2109  0.0149 -0.1341 -0.0616  0.0176 -0.0757
## [141,] -0.1887 -0.1377 -0.1062 -0.1290 -0.1293 -0.2186 -0.3072  0.0015 -0.0850
## [142,]  0.0437  0.1244  0.0042 -0.0681  0.1160 -0.0386  0.0468 -0.1065  0.0412
## [143,]  0.1946  0.0758  0.0588  0.1785  0.1148  0.2134  0.3050  0.0464  0.1112
## [144,] -0.0804  0.0392  0.1005 -0.1714  0.1299 -0.0235 -0.0637  0.0314  0.0047
## [145,]  0.0071 -0.0390 -0.0324 -0.0217  0.0308  0.0509  0.0751  0.0070  0.0225
## [146,]  0.0507 -0.0405  0.1026 -0.0289  0.0790  0.0443 -0.0914  0.0367 -0.0639
## [147,]  0.0030  0.0790  0.0226  0.1067  0.0027  0.1395 -0.1059  0.0360  0.0704
## [148,] -0.0997 -0.0710 -0.0345 -0.0311 -0.1121  0.0598 -0.0483  0.0058 -0.0198
## [149,]  0.0309 -0.0315 -0.0445  0.1079  0.0427 -0.0248  0.1149 -0.0045 -0.0189
## [150,] -0.0537 -0.0180 -0.0649 -0.0949 -0.0107 -0.1414 -0.1968 -0.0418 -0.1542
## [151,] -0.1809 -0.1164 -0.0811 -0.1533 -0.0473 -0.1305 -0.0753 -0.0167 -0.1519
## [152,] -0.0738  0.0928 -0.0251 -0.1276 -0.0720  0.0375 -0.0522 -0.0212  0.0389
## [153,] -0.2321 -0.1475 -0.1485 -0.1687  0.0571 -0.1886 -0.1264 -0.0498 -0.0636
## [154,]  0.1417  0.0275  0.1056 -0.1278  0.0610 -0.1466  0.3526 -0.0921  0.0947
## [155,]  0.1640  0.0968  0.2205  0.3441 -0.0127  0.2080  0.2319 -0.0239  0.0612
## [156,] -0.1094 -0.0841 -0.0848 -0.1838  0.0313 -0.0725 -0.1057 -0.0517 -0.1321
## [157,] -0.1331 -0.1342 -0.0314 -0.0107 -0.0309 -0.0154  0.0019 -0.0252 -0.1201
## [158,]  0.0435 -0.0675  0.0677 -0.0877 -0.0238 -0.0577 -0.0906 -0.0116 -0.0167
## [159,] -0.0556 -0.0238  0.0459 -0.0971  0.0714 -0.0054 -0.0148 -0.0016 -0.0565
## [160,]  0.1900  0.1508  0.0753  0.3820  0.0864  0.0713  0.0473  0.0939  0.2498
## [161,]  0.0724  0.1020 -0.0095  0.0185  0.0676 -0.0070  0.1954  0.0425  0.0263
## [162,]  0.0354  0.0436  0.0665  0.0459 -0.0305  0.0182  0.0956  0.0098  0.0206
## [163,]  0.0883  0.0808  0.2177  0.0147  0.0373  0.0390 -0.0069 -0.0725  0.0944
## [164,]  0.0331 -0.0276  0.0638  0.0444  0.0413  0.1106 -0.0594  0.0552  0.0356
## [165,] -0.0848  0.0706 -0.0424 -0.0691 -0.0398 -0.0049 -0.0254  0.0100 -0.0394
## [166,]  0.2060  0.0536  0.0691  0.1348  0.1751  0.0417  0.1516  0.0283 -0.0044
## [167,]  0.0433 -0.0936  0.0370  0.0874 -0.0412  0.0135 -0.0263  0.0259 -0.0366
## [168,]  0.1574 -0.0103  0.0909  0.2114 -0.0714  0.2475  0.0595  0.0953  0.1142
##            NYT      PG     TRB     TXN
##   [1,] -0.0630 -0.0889 -0.1304 -0.0761
##   [2,] -0.0462 -0.0084 -0.0037  0.0497
##   [3,] -0.0066  0.0541  0.0236  0.0269
##   [4,] -0.1060  0.0426 -0.0798 -0.0685
##   [5,]  0.1159  0.1635  0.0882  0.2288
##   [6,] -0.0012  0.0480 -0.0064 -0.0587
##   [7,] -0.1152 -0.0055 -0.0529 -0.1988
##   [8,] -0.1160 -0.1186 -0.0735 -0.1390
##   [9,] -0.0719 -0.0597 -0.0390  0.0139
##  [10,] -0.0341  0.0798 -0.0910 -0.1526
##  [11,]  0.0602  0.0482  0.1053  0.3118
##  [12,]  0.1245  0.0396 -0.0561  0.2017
##  [13,]  0.0918 -0.0846  0.2218 -0.0216
##  [14,] -0.0264  0.0203 -0.0514  0.1054
##  [15,]  0.0178  0.0428  0.0164 -0.0397
##  [16,] -0.0158 -0.0135  0.0401  0.0047
##  [17,]  0.0411  0.0103  0.0838 -0.0325
##  [18,]  0.0386 -0.0957 -0.0838 -0.1502
##  [19,] -0.0824  0.0454  0.0240 -0.0272
##  [20,]  0.0018  0.0296  0.0232 -0.0314
##  [21,]  0.0013  0.0121 -0.1161 -0.1054
##  [22,] -0.1382 -0.0130 -0.0839  0.1153
##  [23,] -0.0103 -0.0352 -0.0107 -0.1224
##  [24,]  0.2312  0.1556  0.1047  0.1062
##  [25,]  0.1556  0.1074  0.0334  0.1594
##  [26,]  0.0293 -0.0237  0.0436  0.0457
##  [27,]  0.0766  0.0028 -0.0090 -0.1286
##  [28,]  0.0339  0.0120  0.0679  0.0582
##  [29,] -0.0383 -0.0079 -0.0696  0.0836
##  [30,] -0.0774 -0.1077 -0.0659 -0.0647
##  [31,] -0.0116  0.1038  0.0156  0.1895
##  [32,] -0.0561 -0.0767  0.0031 -0.0802
##  [33,]  0.0550  0.0509  0.1054  0.1252
##  [34,] -0.0567  0.0741 -0.0078  0.1302
##  [35,]  0.0745  0.0234  0.0950 -0.0026
##  [36,] -0.0607 -0.0142 -0.0475 -0.0499
##  [37,]  0.1018 -0.0696  0.0912  0.1557
##  [38,] -0.0148  0.0428  0.0045  0.0439
##  [39,]  0.0761 -0.0433  0.0213  0.0317
##  [40,] -0.0712 -0.0119  0.0138 -0.0239
##  [41,]  0.0068 -0.0025 -0.0369  0.1335
##  [42,] -0.1584  0.0560  0.0188  0.0794
##  [43,]  0.0385 -0.0591 -0.0583  0.0100
##  [44,] -0.0512 -0.0102  0.0121  0.1371
##  [45,]  0.0340 -0.0205  0.0414 -0.0638
##  [46,] -0.0528  0.1461  0.0349 -0.1333
##  [47,]  0.0563  0.0435  0.0062 -0.0235
##  [48,]  0.0527  0.0019  0.0759 -0.0114
##  [49,]  0.0832  0.0468 -0.0025  0.0999
##  [50,] -0.0153 -0.0363 -0.0296  0.1544
##  [51,] -0.0252 -0.0725  0.0185 -0.0470
##  [52,] -0.0761  0.0658  0.0642 -0.0160
##  [53,]  0.0070 -0.0122 -0.0742  0.0490
##  [54,] -0.0672 -0.0567 -0.0971 -0.0097
##  [55,] -0.0141  0.0474 -0.0224 -0.0146
##  [56,]  0.0392  0.0882  0.0252 -0.0133
##  [57,] -0.1110 -0.0244  0.0055 -0.1274
##  [58,]  0.0302  0.0563 -0.0296  0.0970
##  [59,]  0.0515 -0.0104 -0.0470  0.0039
##  [60,] -0.0731 -0.0127  0.0876 -0.0096
##  [61,] -0.0161  0.0513 -0.0481 -0.0832
##  [62,] -0.0219  0.0163  0.0674  0.1365
##  [63,]  0.0773 -0.0085 -0.0160  0.1222
##  [64,] -0.0263  0.0553  0.0654  0.1930
##  [65,]  0.0015  0.0239  0.0085  0.0861
##  [66,]  0.0341 -0.0046  0.0248  0.1562
##  [67,]  0.0806 -0.0407  0.0362  0.1626
##  [68,] -0.0186  0.0028  0.0488 -0.0493
##  [69,]  0.0906  0.1055 -0.0137  0.0659
##  [70,]  0.0093  0.0527 -0.0534 -0.1447
##  [71,]  0.0636  0.0634  0.0237 -0.1596
##  [72,]  0.0000 -0.0447 -0.0584 -0.1115
##  [73,] -0.0253  0.0127  0.0204 -0.1037
##  [74,] -0.0644 -0.0278  0.0666  0.0714
##  [75,]  0.0652  0.0294 -0.0172  0.0159
##  [76,]  0.1166 -0.0024  0.0547  0.1098
##  [77,]  0.0117  0.0358  0.0628 -0.0086
##  [78,] -0.0118  0.0270 -0.0245 -0.1176
##  [79,] -0.1116 -0.0145 -0.0404 -0.1337
##  [80,]  0.0736 -0.0084  0.0269  0.0767
##  [81,]  0.0758  0.0928  0.0810  0.1785
##  [82,]  0.0662  0.0158  0.0439 -0.1311
##  [83,]  0.0346  0.0943  0.0576  0.3205
##  [84,]  0.0126 -0.0144 -0.0922 -0.0014
##  [85,]  0.0057  0.0708 -0.0343  0.2252
##  [86,]  0.1593  0.0347  0.0262 -0.0201
##  [87,] -0.0127 -0.0490  0.0276 -0.0313
##  [88,] -0.0241  0.0955  0.0790  0.1877
##  [89,]  0.0645  0.0922 -0.0148  0.0014
##  [90,]  0.0705  0.0204  0.1072 -0.0656
##  [91,]  0.0122  0.0764  0.0972  0.3638
##  [92,] -0.0620 -0.1292 -0.0674 -0.0162
##  [93,]  0.1070  0.0334  0.0743  0.1767
##  [94,]  0.0387 -0.0159  0.0299 -0.2080
##  [95,]  0.0833  0.1161  0.0213 -0.0740
##  [96,]  0.1094  0.0433  0.0999 -0.0958
##  [97,] -0.0203 -0.0190 -0.0283  0.2097
##  [98,]  0.0041  0.0787  0.0613  0.0575
##  [99,]  0.0655 -0.0101  0.0878 -0.0710
## [100,]  0.0093 -0.0271 -0.0680  0.1822
## [101,] -0.0103  0.0164  0.0117 -0.2020
## [102,]  0.1227  0.0815  0.0248  0.1295
## [103,] -0.2281 -0.1294 -0.0268  0.0155
## [104,] -0.0579 -0.0403 -0.0434 -0.2062
## [105,] -0.0556 -0.0741 -0.2230  0.1149
## [106,]  0.0240  0.2476  0.1420  0.2047
## [107,]  0.0992 -0.0157  0.1121  0.1909
## [108,]  0.1130  0.0384  0.0256  0.1175
## [109,] -0.0144 -0.0053 -0.0349  0.1521
## [110,] -0.0975 -0.0188  0.0363 -0.1017
## [111,] -0.0844  0.0906 -0.0169  0.1091
## [112,]  0.2070 -0.0428  0.2715  0.0262
## [113,] -0.0116 -0.0084 -0.0555  0.0672
## [114,]  0.0749 -0.0480  0.0999  0.3128
## [115,]  0.0641  0.0145  0.0070 -0.0032
## [116,] -0.0076  0.0920  0.0577  0.1358
## [117,] -0.0439 -0.0593  0.0624 -0.0016
## [118,]  0.0693  0.1180  0.2020  0.0877
## [119,] -0.0466  0.0303 -0.2017  0.0661
## [120,]  0.2737  0.0055  0.1413  0.0015
## [121,] -0.0744 -0.0791 -0.2383  0.1111
## [122,] -0.0776 -0.1351 -0.0793  0.5371
## [123,]  0.0115 -0.3618 -0.0657 -0.0416
## [124,] -0.0455  0.0585  0.0483  0.0135
## [125,] -0.0658  0.1081 -0.0022 -0.1176
## [126,]  0.0196 -0.1438 -0.0957 -0.0541
## [127,]  0.0378 -0.0054 -0.0764 -0.1502
## [128,] -0.0508  0.0817  0.0961  0.1355
## [129,] -0.0018  0.0789  0.2174 -0.3000
## [130,] -0.0703  0.0664 -0.1555  0.0351
## [131,] -0.0411  0.0430 -0.0041 -0.2446
## [132,]  0.1297  0.0428  0.1371  0.2649
## [133,]  0.0838 -0.0839 -0.0502 -0.0793
## [134,]  0.0126 -0.0227  0.0059 -0.3294
## [135,] -0.0768 -0.1157 -0.0002  0.0447
## [136,] -0.0018 -0.0384  0.0311  0.2467
## [137,]  0.0259  0.0668  0.0183 -0.1214
## [138,] -0.0050 -0.0098 -0.0709 -0.0680
## [139,]  0.0995  0.1162  0.0283  0.0792
## [140,] -0.0768  0.0413 -0.0447 -0.0434
## [141,] -0.0892 -0.0205 -0.2056 -0.2475
## [142,]  0.0551  0.0170 -0.0400  0.1195
## [143,]  0.1033  0.0483  0.1975  0.1435
## [144,] -0.0498  0.0202  0.0354 -0.1278
## [145,] -0.0273  0.0357 -0.0083  0.1140
## [146,]  0.0435  0.0366  0.1535 -0.0610
## [147,]  0.0887  0.0610  0.0602  0.1263
## [148,] -0.0286  0.0047 -0.0298 -0.0664
## [149,]  0.0811 -0.0093 -0.0365 -0.0745
## [150,]  0.0231  0.0040  0.0219 -0.1748
## [151,] -0.1228 -0.0003 -0.0842 -0.0237
## [152,]  0.0447 -0.0052  0.0468 -0.1504
## [153,] -0.0384  0.0069  0.0010 -0.2516
## [154,]  0.0638 -0.0071  0.1479  0.0739
## [155,] -0.0059 -0.0453 -0.0456  0.2606
## [156,] -0.0491  0.0157 -0.0084 -0.2509
## [157,]  0.0670 -0.0005  0.0637  0.0597
## [158,] -0.0469 -0.0443 -0.0720  0.0525
## [159,] -0.0722  0.0869  0.0026 -0.0236
## [160,]  0.0739  0.0126  0.0873  0.1299
## [161,]  0.0350  0.0210  0.0197  0.1078
## [162,] -0.0509 -0.0295 -0.0324 -0.1422
## [163,] -0.0205 -0.0103 -0.0231  0.0726
## [164,] -0.0023 -0.0074 -0.0190  0.2631
## [165,] -0.0217  0.0626 -0.0084 -0.0448
## [166,]  0.0929  0.0631  0.0679  0.2686
## [167,] -0.0320 -0.0216 -0.0026  0.0283
## [168,]  0.0404  0.0371  0.0555 -0.0135
b_hat = solve(t(X)%*%X)%*%t(X) %*% stockret
head(b_hat)
##              AA         AGE         CAT           F        FDX          GM
## ones 0.00549124 0.007218061 0.008393521 0.004543643 0.00799579 0.001982025
##      1.29159112 1.514135888 0.940692777 1.219245328 0.80511664 1.045701859
##              HPQ        KMB         MEL        NYT          PG         TRB
## ones 0.006835681 0.00546302 0.008849263 0.00490412 0.008880914 0.006512465
##      1.627951166 0.54980523 1.122870759 0.77064945 0.468803354 0.717880797
##             TXN
## ones 0.01438887
##      1.79641173
E_hat = Y - X %*% b_hat
head(E_hat)
##                AA          AGE          CAT            F          FDX
## [1,] -0.072363588 -0.015055042  0.017946575  0.086543606  0.029748981
## [2,]  0.032196419  0.039102254  0.078031024  0.053095942  0.095013465
## [3,] -0.027152402  0.096781734 -0.023343784 -0.005524285  0.086153645
## [4,] -0.005152096 -0.067245922  0.025525617 -0.020520849 -0.005504894
## [5,] -0.057822280  0.060323321 -0.003622754 -0.069889119 -0.238533263
## [6,] -0.026229896  0.001548218 -0.215000922 -0.043789190 -0.023777506
##                GM          HPQ          KMB          MEL          NYT
## [1,]  0.055454755  0.053686247 -0.074217666 -0.032109382 -0.009951281
## [2,]  0.085522001 -0.050354379 -0.058617611 -0.007807291 -0.052722484
## [3,] -0.004790948  0.021049583  0.016905428 -0.030424075 -0.025144615
## [4,] -0.008955583 -0.005362112  0.006400475  0.006654621 -0.085164428
## [5,]  0.018010466 -0.057925506  0.035828633  0.013645288  0.045105352
## [6,] -0.012982786  0.003371972  0.018449000 -0.069269340  0.005686817
##               PG          TRB         TXN
## [1,] -0.06252690 -0.082927829  0.04460129
## [2,] -0.01826540 -0.011720014  0.03153867
## [3,]  0.03692127  0.004381045 -0.01928535
## [4,]  0.04937712 -0.062335246 -0.02288872
## [5,]  0.11453640  0.020308727  0.06081793
## [6,]  0.04629178 -0.001928888 -0.04560377
# Excluding constant term
b_hat = as.matrix(b_hat[-1,])
head(b_hat)
##          [,1]
## AA  1.2915911
## AGE 1.5141359
## CAT 0.9406928
## F   1.2192453
## FDX 0.8051166
## GM  1.0457019
diagD_hat = diag(t(E_hat) %*% E_hat)/(TT-2)
head(diagD_hat)
##          AA         AGE         CAT           F         FDX          GM 
## 0.005919846 0.006095651 0.005966741 0.006791031 0.007839072 0.006609876
# Covariance matrix by single factor model 
cov_1f.1 = as.numeric(var(mktret))*b_hat%*%t(b_hat) + diag(diagD_hat); 
cov_1f.1
##              AA         AGE          CAT           F          FDX          GM
## AA  0.009046736 0.003665662 0.0022773795 0.002951744 0.0019491551 0.002531602
## AGE 0.003665662 0.010392918 0.0026697784 0.003460338 0.0022850000 0.002967804
## CAT 0.002277380 0.002669778 0.0076254044 0.002149817 0.0014196104 0.001843819
## F   0.002951744 0.003460338 0.0021498168 0.009577439 0.0018399772 0.002389800
## FDX 0.001949155 0.002285000 0.0014196104 0.001839977 0.0090540833 0.001578081
## GM  0.002531602 0.002967804 0.0018438188 0.002389800 0.0015780808 0.008659520
## HPQ 0.003941205 0.004620285 0.0028704615 0.003720446 0.0024567600 0.003190890
## KMB 0.001331056 0.001560401 0.0009694362 0.001256500 0.0008297174 0.001077654
## MEL 0.002718425 0.003186817 0.0019798858 0.002566158 0.0016945373 0.002200899
## NYT 0.001865711 0.002187179 0.0013588366 0.001761207 0.0011629960 0.001510523
## PG  0.001134954 0.001330510 0.0008266108 0.001071382 0.0007074766 0.000918885
## TRB 0.001737961 0.002037416 0.0012657930 0.001640612 0.0010833622 0.001407093
## TXN 0.004349041 0.005098393 0.0031674972 0.004105438 0.0027109857 0.003521083
##             HPQ          KMB          MEL          NYT           PG
## AA  0.003941205 0.0013310564 0.0027184251 0.0018657114 0.0011349541
## AGE 0.004620285 0.0015604012 0.0031868174 0.0021871787 0.0013305099
## CAT 0.002870462 0.0009694362 0.0019798858 0.0013588366 0.0008266108
## F   0.003720446 0.0012565001 0.0025661582 0.0017612075 0.0010713820
## FDX 0.002456760 0.0008297174 0.0016945373 0.0011629960 0.0007074766
## GM  0.003190890 0.0010776539 0.0022008995 0.0015105229 0.0009188850
## HPQ 0.013934297 0.0016776942 0.0034263656 0.0023515856 0.0014305223
## KMB 0.001677694 0.0042512149 0.0011571807 0.0007941971 0.0004831279
## MEL 0.003426366 0.0011571807 0.0061088004 0.0016219938 0.0009866952
## NYT 0.002351586 0.0007941971 0.0016219938 0.0054564979 0.0006771894
## PG  0.001430522 0.0004831279 0.0009866952 0.0006771894 0.0045836602
## TRB 0.002190566 0.0007398161 0.0015109311 0.0010369833 0.0006308202
## TXN 0.005481631 0.0018513021 0.0037809262 0.0025949280 0.0015785529
##              TRB         TXN
## AA  0.0017379606 0.004349041
## AGE 0.0020374161 0.005098393
## CAT 0.0012657930 0.003167497
## F   0.0016406124 0.004105438
## FDX 0.0010833622 0.002710986
## GM  0.0014070929 0.003521083
## HPQ 0.0021905656 0.005481631
## KMB 0.0007398161 0.001851302
## MEL 0.0015109311 0.003780926
## NYT 0.0010369833 0.002594928
## PG  0.0006308202 0.001578553
## TRB 0.0061718134 0.002417246
## TXN 0.0024172455 0.019214110
# Calculate the global minimum variance portfolio

library(matlib)
## Warning: package 'matlib' was built under R version 4.2.3
one <- rep(1,13)
one_13_1 <- matrix(one,ncol=1)
a <- inv(cov_1f.1)%*%one_13_1
b <- t(one_13_1)%*%inv(cov_1f.1)%*%one_13_1

mvp <- a/as.vector(b)
head(mvp)
##             [,1]
## [1,]  0.01171552
## [2,] -0.03060051
## [3,]  0.07924266
## [4,]  0.02246168
## [5,]  0.08020173
## [6,]  0.05326574
# Change the column name 
colnames(mvp)="Weight"
mvp
##            Weight
##  [1,]  0.01171552
##  [2,] -0.03060051
##  [3,]  0.07924266
##  [4,]  0.02246168
##  [5,]  0.08020173
##  [6,]  0.05326574
##  [7,] -0.03539714
##  [8,]  0.25030240
##  [9,]  0.07031147
## [10,]  0.15387826
## [11,]  0.24340218
## [12,]  0.14003743
## [13,] -0.03882144