library(readxl)
library(tidyverse)
library(car)
library(plm)
library(tseries)
library(lmtest)
library(broom)
library(flextable)
library(lme4)
library(lmerTest)
library(pglm)
library(nlme)
library(kableExtra)
data <- read_xlsx("C:/Users/Nabil Izzany/Documents/Kuylah/Semester 6/Analisis Data Panel/Data (1).xlsx")
data$INFRA <- data$INFRA/100000
head(data)
## # A tibble: 6 × 7
## PROVINSI TAHUN INFRA PEKO INFL PGGR KMIS
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Bali 2008 4.31 5.97 9.62 3.31 6.17
## 2 Bali 2009 4.84 5.33 4.37 3.13 5.13
## 3 Bali 2010 3.36 5.83 8.1 3.06 4.88
## 4 Bali 2011 2.99 6.49 3.75 2.95 4.2
## 5 Bali 2012 3.49 6.65 4.71 2.1 3.95
## 6 Bali 2013 3.99 6.69 8.16 1.83 4.49
Multikol
model_08 <- lm(KMIS~INFRA+PEKO+INFL+PGGR,data%>%filter(TAHUN==2008))
model_09 <- lm(KMIS~INFRA+PEKO+INFL+PGGR,data%>%filter(TAHUN==2009))
model_10 <- lm(KMIS~INFRA+PEKO+INFL+PGGR,data%>%filter(TAHUN==2010))
model_11 <- lm(KMIS~INFRA+PEKO+INFL+PGGR,data%>%filter(TAHUN==2011))
model_12 <- lm(KMIS~INFRA+PEKO+INFL+PGGR,data%>%filter(TAHUN==2012))
model_13 <- lm(KMIS~INFRA+PEKO+INFL+PGGR,data%>%filter(TAHUN==2013))
model_14 <- lm(KMIS~INFRA+PEKO+INFL+PGGR,data%>%filter(TAHUN==2014))
model_15 <- lm(KMIS~INFRA+PEKO+INFL+PGGR,data%>%filter(TAHUN==2015))
model_16 <- lm(KMIS~INFRA+PEKO+INFL+PGGR,data%>%filter(TAHUN==2016))
model_17 <- lm(KMIS~INFRA+PEKO+INFL+PGGR,data%>%filter(TAHUN==2017))
model_18 <- lm(KMIS~INFRA+PEKO+INFL+PGGR,data%>%filter(TAHUN==2018))
model_19 <- lm(KMIS~INFRA+PEKO+INFL+PGGR,data%>%filter(TAHUN==2019))
model_20 <- lm(KMIS~INFRA+PEKO+INFL+PGGR,data%>%filter(TAHUN==2020))
model_full <- lm(KMIS~INFRA+PEKO+INFL+PGGR,data)
Multikol <- rbind(as.vector(vif(model_08)),as.vector(vif(model_09)),as.vector(vif(model_10)),
as.vector(vif(model_11)),as.vector(vif(model_12)),as.vector(vif(model_13)),
as.vector(vif(model_14)),as.vector(vif(model_15)),as.vector(vif(model_16)),
as.vector(vif(model_17)),as.vector(vif(model_18)),as.vector(vif(model_19)),
as.vector(vif(model_20)),as.vector(vif(model_full))
)
rownames(Multikol) <- c("Tahun 2008","Tahun 2009","Tahun 2010",
"Tahun 2011","Tahun 2012","Tahun 2013","Tahun 2014",
"Tahun 2015","Tahun 2016","Tahun 2017","Tahun 2018",
"Tahun 2019","Tahun 2020","Tahun 2008-2020")
colnames(Multikol) <- c("INFRA","PEKO","INFL","PGGR")
Multikol
## INFRA PEKO INFL PGGR
## Tahun 2008 1.018128 1.039962 1.008180 1.027142
## Tahun 2009 1.005583 1.098824 1.051225 1.093657
## Tahun 2010 1.026937 1.219132 1.216510 1.062607
## Tahun 2011 1.135149 1.261387 1.332625 1.157114
## Tahun 2012 1.073155 1.099455 1.059840 1.077085
## Tahun 2013 1.089168 1.340071 1.177480 1.363017
## Tahun 2014 1.003681 1.139900 1.013858 1.158505
## Tahun 2015 1.027002 1.116258 1.033706 1.118729
## Tahun 2016 1.018004 1.463559 1.165066 1.269270
## Tahun 2017 1.001229 1.029898 1.061055 1.062875
## Tahun 2018 1.005769 1.031605 1.029227 1.008431
## Tahun 2019 1.023695 1.177636 1.117407 1.037509
## Tahun 2020 1.059669 1.233411 1.161370 1.117794
## Tahun 2008-2020 1.124957 1.057116 1.157683 1.048047
Pemilihan Model Terbaik
Common Effect Model
cem <- plm(KMIS~INFRA+PEKO+INFL+PGGR, data=data, model = "pooling")
summary(cem)
## Pooling Model
##
## Call:
## plm(formula = KMIS ~ INFRA + PEKO + INFL + PGGR, data = data,
## model = "pooling")
##
## Balanced Panel: n = 32, T = 13, N = 416
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -9.1611 -5.1292 -1.5170 4.5191 19.6026
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## (Intercept) 6.670704 1.196074 5.5772 4.438e-08 ***
## INFRA 0.103474 0.029780 3.4746 0.0005661 ***
## PEKO 0.502862 0.082736 6.0779 2.781e-09 ***
## INFL 0.313383 0.103938 3.0151 0.0027284 **
## PGGR 0.048913 0.135313 0.3615 0.7179249
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 17772
## Residual Sum of Squares: 15525
## R-Squared: 0.12645
## Adj. R-Squared: 0.11794
## F-statistic: 14.873 on 4 and 411 DF, p-value: 2.3234e-11
Uji Asumsi CEM
res.cem <- residuals(cem)
normal <- jarque.bera.test(res.cem) # Normal
homos <- bptest(cem) # Homoskedastisitas
autokol <- pbgtest(cem) # Autokol
asumsi_cem <- data.frame(Asumsi=c("Normalitas","Homoskesdastisitas","Non-Autokorelasi"),
PValue=c(normal$p.value,homos$p.value,autokol$p.value),
Keputusan=c("Tolak H0", "Tolak H0", "Tolak H0"))
asumsi_cem
## Asumsi PValue Keputusan
## 1 Normalitas 9.355164e-10 Tolak H0
## 2 Homoskesdastisitas 1.934845e-03 Tolak H0
## 3 Non-Autokorelasi 2.991775e-64 Tolak H0
Fixed Effect Model
fem.twoway <- plm(KMIS~INFRA+PEKO+INFL+PGGR, data, model = "within",
effect= "twoways", index = c("PROVINSI","TAHUN"))
summary(fem.twoway)
## Twoways effects Within Model
##
## Call:
## plm(formula = KMIS ~ INFRA + PEKO + INFL + PGGR, data = data,
## effect = "twoways", model = "within", index = c("PROVINSI",
## "TAHUN"))
##
## Balanced Panel: n = 32, T = 13, N = 416
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -3.718143 -0.713539 0.050615 0.682921 4.957867
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## INFRA -0.062411 0.015858 -3.9356 9.922e-05 ***
## PEKO 0.153983 0.024514 6.2813 9.478e-10 ***
## INFL 0.110982 0.047496 2.3367 0.01999 *
## PGGR -0.063412 0.078861 -0.8041 0.42186
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 695.57
## Residual Sum of Squares: 592.21
## R-Squared: 0.14859
## Adj. R-Squared: 0.039851
## F-statistic: 16.0562 on 4 and 368 DF, p-value: 3.9613e-12
Uji Asumsi FEM
res.fem.twoway <- residuals(fem.twoway)
normal.fem.2 <- jarque.bera.test(res.fem.twoway)
homos.fem.2 <- bptest(fem.twoway)
autokol.fem.2 <- pbgtest(fem.twoway)
asumsi.fem.2 <- data.frame(Asumsi=c("Normalitas","Homoskesdastisitas","Non-Autokorelasi"),
PValue=c(normal.fem.2$p.value,homos.fem.2$p.value,autokol.fem.2$p.value),
Keputusan=c("Tolak H0", "Tolak H0", "Tolak H0"))
asumsi.fem.2
## Asumsi PValue Keputusan
## 1 Normalitas 4.773959e-15 Tolak H0
## 2 Homoskesdastisitas 1.934845e-03 Tolak H0
## 3 Non-Autokorelasi 1.967413e-34 Tolak H0
Uji Chow
H0 : Pilih Common Effect H1 : Pilih Fixed Effect
pooltest(cem,fem.twoway)
##
## F statistic
##
## data: KMIS ~ INFRA + PEKO + INFL + PGGR
## F = 215.8, df1 = 43, df2 = 368, p-value < 2.2e-16
## alternative hypothesis: unstability
Random Effect Model
rem.twoway <- plm(KMIS~INFRA+PEKO+INFL+PGGR, data, model = "random",
effect= "twoways", index = c("PROVINSI","TAHUN"))
summary(rem.twoway)
## Twoways effects Random Effect Model
## (Swamy-Arora's transformation)
##
## Call:
## plm(formula = KMIS ~ INFRA + PEKO + INFL + PGGR, data = data,
## effect = "twoways", model = "random", index = c("PROVINSI",
## "TAHUN"))
##
## Balanced Panel: n = 32, T = 13, N = 416
##
## Effects:
## var std.dev share
## idiosyncratic 1.6093 1.2686 0.047
## individual 32.6514 5.7141 0.947
## time 0.2158 0.4646 0.006
## theta: 0.9385 (id) 0.5653 (time) 0.5648 (total)
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -3.48112 -0.80340 -0.21541 0.46391 6.46679
##
## Coefficients:
## Estimate Std. Error z-value Pr(>|z|)
## (Intercept) 10.882843 1.246213 8.7327 < 2.2e-16 ***
## INFRA -0.078316 0.014391 -5.4421 5.266e-08 ***
## PEKO 0.169723 0.024964 6.7988 1.055e-11 ***
## INFL 0.172517 0.038357 4.4977 6.871e-06 ***
## PGGR 0.162553 0.077831 2.0886 0.03675 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 1018
## Residual Sum of Squares: 773.87
## R-Squared: 0.23978
## Adj. R-Squared: 0.23238
## Chisq: 129.63 on 4 DF, p-value: < 2.22e-16
res.rem.twoway <- residuals(rem.twoway)
normal.rem.2 <- jarque.bera.test(res.rem.twoway)
homos.rem.2 <- bptest(rem.twoway)
autokol.rem.2 <- pbgtest(rem.twoway)
asumsi.rem <- data.frame(Asumsi=c("Normalitas","Homoskesdastisitas","Non-Autokorelasi"),
PValue=c(normal.rem.2$p.value,homos.rem.2$p.value,autokol.rem.2$p.value),
Keputusan=c("Tolak H0", "Tolak H0", "Tolak H0"))
asumsi.rem
## Asumsi PValue Keputusan
## 1 Normalitas 0.000000e+00 Tolak H0
## 2 Homoskesdastisitas 1.934845e-03 Tolak H0
## 3 Non-Autokorelasi 3.324685e-35 Tolak H0
Uji Haussman
H0 : Pilih Random Effect H1 : Pilih Fixed Effect
phtest(fem.twoway, rem.twoway)
##
## Hausman Test
##
## data: KMIS ~ INFRA + PEKO + INFL + PGGR
## chisq = 40.108, df = 4, p-value = 4.111e-08
## alternative hypothesis: one model is inconsistent
Fixed Effect Model
# efek individu dan waktu
plmtest(fem.twoway,type = "bp", effect="twoways")
##
## Lagrange Multiplier Test - two-ways effects (Breusch-Pagan)
##
## data: KMIS ~ INFRA + PEKO + INFL + PGGR
## chisq = 1746.8, df = 2, p-value < 2.2e-16
## alternative hypothesis: significant effects
# efek individu
plmtest(fem.twoway,type = "bp", effect="individual")
##
## Lagrange Multiplier Test - (Breusch-Pagan)
##
## data: KMIS ~ INFRA + PEKO + INFL + PGGR
## chisq = 1726.2, df = 1, p-value < 2.2e-16
## alternative hypothesis: significant effects
# efek waktu
plmtest(fem.twoway,type = "bp", effect="time")
##
## Lagrange Multiplier Test - time effects (Breusch-Pagan)
##
## data: KMIS ~ INFRA + PEKO + INFL + PGGR
## chisq = 20.619, df = 1, p-value = 5.605e-06
## alternative hypothesis: significant effects
Fixed Effect dengan LSDV
fem.lsdv <- lm(KMIS~INFRA+PEKO+INFL+PGGR+factor(TAHUN)+factor(PROVINSI) , data)
summary(fem.lsdv)
##
## Call:
## lm(formula = KMIS ~ INFRA + PEKO + INFL + PGGR + factor(TAHUN) +
## factor(PROVINSI), data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7181 -0.7135 0.0506 0.6829 4.9579
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 21.74660 1.05705 20.573 < 2e-16 ***
## INFRA -0.06241 0.01586 -3.936 9.92e-05 ***
## PEKO 0.15398 0.02451 6.281 9.48e-10 ***
## INFL 0.11098 0.04750 2.337 0.0200 *
## PGGR -0.06341 0.07886 -0.804 0.4219
## factor(TAHUN)2009 -0.08688 0.49873 -0.174 0.8618
## factor(TAHUN)2010 -1.66799 0.38303 -4.355 1.73e-05 ***
## factor(TAHUN)2011 -2.40129 0.48322 -4.969 1.03e-06 ***
## factor(TAHUN)2012 -3.48541 0.49066 -7.103 6.34e-12 ***
## factor(TAHUN)2013 -3.81264 0.39315 -9.698 < 2e-16 ***
## factor(TAHUN)2014 -4.15197 0.39123 -10.613 < 2e-16 ***
## factor(TAHUN)2015 -3.44188 0.50533 -6.811 3.96e-11 ***
## factor(TAHUN)2016 -2.70009 0.64641 -4.177 3.69e-05 ***
## factor(TAHUN)2017 -3.76441 0.57400 -6.558 1.85e-10 ***
## factor(TAHUN)2018 -4.05674 0.59247 -6.847 3.17e-11 ***
## factor(TAHUN)2019 -4.22990 0.62942 -6.720 6.92e-11 ***
## factor(TAHUN)2020 -3.01961 0.63732 -4.738 3.09e-06 ***
## factor(PROVINSI)BABEL -14.01452 0.61293 -22.865 < 2e-16 ***
## factor(PROVINSI)Bali -15.17667 0.69683 -21.779 < 2e-16 ***
## factor(PROVINSI)Banten -13.08043 0.57988 -22.557 < 2e-16 ***
## factor(PROVINSI)Bengkulu -2.50468 0.62056 -4.036 6.61e-05 ***
## factor(PROVINSI)DIY -5.14729 0.63307 -8.131 6.60e-15 ***
## factor(PROVINSI)Gorontalo -1.02812 0.60819 -1.690 0.0918 .
## factor(PROVINSI)JABAR -8.55617 0.52753 -16.219 < 2e-16 ***
## factor(PROVINSI)Jambi -11.46537 0.60469 -18.961 < 2e-16 ***
## factor(PROVINSI)JATENG -3.94729 0.55750 -7.080 7.33e-12 ***
## factor(PROVINSI)JATIM -4.97799 0.60736 -8.196 4.17e-15 ***
## factor(PROVINSI)KALBAR -10.65580 0.57747 -18.453 < 2e-16 ***
## factor(PROVINSI)KALSEL -14.38507 0.57534 -25.003 < 2e-16 ***
## factor(PROVINSI)KALTENG -13.39698 0.60990 -21.966 < 2e-16 ***
## factor(PROVINSI)KALTIM -12.23047 0.53264 -22.962 < 2e-16 ***
## factor(PROVINSI)Kepri -12.65170 0.54723 -23.120 < 2e-16 ***
## factor(PROVINSI)Lampung -3.72484 0.55652 -6.693 8.17e-11 ***
## factor(PROVINSI)Maluku 2.25632 0.52338 4.311 2.09e-05 ***
## factor(PROVINSI)MALUT -11.62297 0.56959 -20.406 < 2e-16 ***
## factor(PROVINSI)NTB -1.40023 0.57304 -2.444 0.0150 *
## factor(PROVINSI)NTT 2.95019 0.62686 4.706 3.58e-06 ***
## factor(PROVINSI)PAPUA 8.80069 0.67437 13.050 < 2e-16 ***
## factor(PROVINSI)PapuaBarat 7.54665 0.55741 13.539 < 2e-16 ***
## factor(PROVINSI)RIAU -10.73024 0.53321 -20.124 < 2e-16 ***
## factor(PROVINSI)SULBAR -7.26047 0.66362 -10.941 < 2e-16 ***
## factor(PROVINSI)SULSEL -8.47371 0.53991 -15.695 < 2e-16 ***
## factor(PROVINSI)SULTENG -4.47203 0.60591 -7.381 1.06e-12 ***
## factor(PROVINSI)SulTenggara -5.43362 0.59686 -9.104 < 2e-16 ***
## factor(PROVINSI)SULUT -10.64917 0.51513 -20.673 < 2e-16 ***
## factor(PROVINSI)SUMBAR -11.25656 0.52261 -21.539 < 2e-16 ***
## factor(PROVINSI)SUMSEL -4.92304 0.54462 -9.039 < 2e-16 ***
## factor(PROVINSI)SUMUT -8.07732 0.52420 -15.409 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.269 on 368 degrees of freedom
## Multiple R-squared: 0.9667, Adjusted R-squared: 0.9624
## F-statistic: 227.1 on 47 and 368 DF, p-value: < 2.2e-16