What you need:
- Download the paper “ElectionFemaleLeader.pdf”
- Download the Readme which includes information on variable
names
Get Started (18 points)
Read the Introduction of the paper.
(2 points) What is the research question?
ANSWER
(2 points) Why is this question important, according to the
authors? ANSWER
(2 points) Where does the data come from?
ANSWER
(2 points) What is their empirical strategy to answer the
research question? ANSWER
(10 points) Read the rest of the paper and summarize the main
findings here.
ANSWER
Data and Summary Analysis (17 points)
- (2 points) Import the dataset
main_dataset.Rdata.
#ANSWER
- (5 points) Replicate the left hand part of Table 1 of the paper (all
candidates). It does not need to look exactly the same, but it
should be easy to read and convey the same information. I recommend
subsetting the data (there is many ways to do this, but I use the
dplr package) so that you keep only the variables listed in
the table. Then using stargazer to create summary
statistics. It is okay if you include more statistics than is in the
original table. Do not worry about changing the variable names.
#ANSWER
- (5 points) Replicate the right-hand part of Table 1 (female
candidates only). It does not need to look exactly the same,
but it should be easy to read and convey the same information. I
recommend filtering the data so that only female candidates remain and
then subsetting the data so that you keep only the variables listed in
the table. Then using
stargazer to create summary
statistics. It is okay if you include more statistics than is in the
original table. Do not worry about changing the variable names.
#ANSWER
- (5 points) Summarize the tables in a narrative. This should be
original work and not quoted from the author.
ANSWER
Empirical Results (20 points)
- (5 points) In this part, you are going to create a scatterplot that
looks similar to Figure 2. I recommend using
rddtools, in
particular the functions rdd_data() and
plot(). This will not look identical to Figure 2, but will
look similar.
#ANSWER
- (5 points) Discuss what is shown in the plot from Question 1. How is
it different than the one in the paper?
ANSWER
- (5 points) In this section you will estimate the following RDD
Model:
\[ gewinn\text{_}norm = \beta_0 + \beta_1
margin\text{_}1 + \beta_2 Female\text{_}Win + \varepsilon\]
where
\[ Female\text{_}Win=\begin{cases}
1 & \text{if } margin\text{_}1>0 \\
0 & \text{if } margin\text{_}1<0
\end{cases}
\]
I recommend that you use the rddtools package, in
particular the rdd_reg_lm() function. Display your results
using print() or stargazer(). Your output will
not match any of the columns in Table 2 precisely, but will be close.
Include as an option in the function
rdd_reg_lm(...,bw=10.1).
#ANSWER
- (5 points) Interpret the coefficient of interest (\(D\)) from the above regression within the
context of this paper and Regression Discontinuity. Be precise in your
language.
Assumptions (5 points)
Do you think that the continuity assumption is satisfied? (Recall,
this means that in absence of the “treatment”, there is no reason why
the \(Y\) variable would jump at the
cutoff point.) Explain your reasoning.
LS0tDQp0aXRsZTogIlJlcGxpY2F0aW9uOiBEb2VzIHRoZSBFbGVjdGlvbiBvZiBhIEZlbWFsZSBMZWFkZXIgQ2xlYXIgdGhlIFdheSBmb3IgTW9yZSBXb21lbiBpbiBQb2xpdGljcz8iDQphdXRob3I6ICJZb3VyIE5hbWUiIA0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KYGBge3IsaW5jbHVkZT1GQUxTRX0NCiMgSU5DTFVERSBBTEwgTElCUkFSWSBQQUNLQUdFUyBIRVJFDQpgYGANCg0KIyBXaGF0IHlvdSBuZWVkOg0KDQoqIERvd25sb2FkIHRoZSBwYXBlciAiRWxlY3Rpb25GZW1hbGVMZWFkZXIucGRmIiANCiogRG93bmxvYWQgdGhlIFJlYWRtZSB3aGljaCBpbmNsdWRlcyBpbmZvcm1hdGlvbiBvbiB2YXJpYWJsZSBuYW1lcw0KDQojIEdldCBTdGFydGVkICgxOCBwb2ludHMpDQoNClJlYWQgdGhlICoqSW50cm9kdWN0aW9uKiogb2YgdGhlIHBhcGVyLiANCg0KMS4gKDIgcG9pbnRzKSBXaGF0IGlzIHRoZSByZXNlYXJjaCBxdWVzdGlvbj8gDQoqKkFOU1dFUioqIA0KDQoyLiAoMiBwb2ludHMpIFdoeSBpcyB0aGlzIHF1ZXN0aW9uIGltcG9ydGFudCwgYWNjb3JkaW5nIHRvIHRoZSBhdXRob3JzPyANCioqQU5TV0VSKiogDQozLiAoMiBwb2ludHMpIFdoZXJlIGRvZXMgdGhlIGRhdGEgY29tZSBmcm9tPyANCioqQU5TV0VSKiogDQoNCjQuICgyIHBvaW50cykgV2hhdCBpcyB0aGVpciBlbXBpcmljYWwgc3RyYXRlZ3kgdG8gYW5zd2VyIHRoZSByZXNlYXJjaCBxdWVzdGlvbj8gDQoqKkFOU1dFUioqIA0KDQo1LiAoMTAgcG9pbnRzKSBSZWFkIHRoZSByZXN0IG9mIHRoZSBwYXBlciBhbmQgc3VtbWFyaXplIHRoZSBtYWluIGZpbmRpbmdzIGhlcmUuIA0KDQoqKkFOU1dFUioqIA0KDQoNCiMgRGF0YSBhbmQgU3VtbWFyeSBBbmFseXNpcyAoMTcgcG9pbnRzKQ0KDQoxLiAoMiBwb2ludHMpIEltcG9ydCB0aGUgZGF0YXNldCBgbWFpbl9kYXRhc2V0LlJkYXRhYC4gDQoNCmBgYHtyfQ0KI0FOU1dFUg0KYGBgDQoNCjIuICg1IHBvaW50cykgUmVwbGljYXRlIHRoZSBsZWZ0IGhhbmQgcGFydCBvZiBUYWJsZSAxIG9mIHRoZSBwYXBlciAoYWxsIGNhbmRpZGF0ZXMpLiBJdCBkb2VzIG5vdCBuZWVkIHRvIGxvb2sgKmV4YWN0bHkqIHRoZSBzYW1lLCBidXQgaXQgc2hvdWxkIGJlIGVhc3kgdG8gcmVhZCBhbmQgY29udmV5IHRoZSBzYW1lIGluZm9ybWF0aW9uLiBJIHJlY29tbWVuZCBzdWJzZXR0aW5nIHRoZSBkYXRhICh0aGVyZSBpcyBtYW55IHdheXMgdG8gZG8gdGhpcywgYnV0IEkgdXNlIHRoZSBgZHBscmAgcGFja2FnZSkgc28gdGhhdCB5b3Uga2VlcCBvbmx5IHRoZSB2YXJpYWJsZXMgbGlzdGVkIGluIHRoZSB0YWJsZS4gVGhlbiB1c2luZyBgc3RhcmdhemVyYCB0byBjcmVhdGUgc3VtbWFyeSBzdGF0aXN0aWNzLiBJdCBpcyBva2F5IGlmIHlvdSBpbmNsdWRlIG1vcmUgc3RhdGlzdGljcyB0aGFuIGlzIGluIHRoZSBvcmlnaW5hbCB0YWJsZS4gRG8gbm90IHdvcnJ5IGFib3V0IGNoYW5naW5nIHRoZSB2YXJpYWJsZSBuYW1lcy4gDQoNCmBgYHtyfQ0KI0FOU1dFUg0KYGBgDQoNCjMuICg1IHBvaW50cykgUmVwbGljYXRlIHRoZSByaWdodC1oYW5kIHBhcnQgb2YgVGFibGUgMSAoZmVtYWxlIGNhbmRpZGF0ZXMgb25seSkuIEl0IGRvZXMgbm90IG5lZWQgdG8gbG9vayAqZXhhY3RseSogdGhlIHNhbWUsIGJ1dCBpdCBzaG91bGQgYmUgZWFzeSB0byByZWFkIGFuZCBjb252ZXkgdGhlIHNhbWUgaW5mb3JtYXRpb24uIEkgcmVjb21tZW5kIGZpbHRlcmluZyB0aGUgZGF0YSBzbyB0aGF0IG9ubHkgZmVtYWxlIGNhbmRpZGF0ZXMgcmVtYWluIGFuZCB0aGVuIHN1YnNldHRpbmcgdGhlIGRhdGEgc28gdGhhdCB5b3Uga2VlcCBvbmx5IHRoZSB2YXJpYWJsZXMgbGlzdGVkIGluIHRoZSB0YWJsZS4gVGhlbiB1c2luZyBgc3RhcmdhemVyYCB0byBjcmVhdGUgc3VtbWFyeSBzdGF0aXN0aWNzLiBJdCBpcyBva2F5IGlmIHlvdSBpbmNsdWRlIG1vcmUgc3RhdGlzdGljcyB0aGFuIGlzIGluIHRoZSBvcmlnaW5hbCB0YWJsZS4gRG8gbm90IHdvcnJ5IGFib3V0IGNoYW5naW5nIHRoZSB2YXJpYWJsZSBuYW1lcy4gDQpgYGB7cn0NCiNBTlNXRVINCmBgYA0KDQo0LiAoNSBwb2ludHMpIFN1bW1hcml6ZSB0aGUgdGFibGVzIGluIGEgbmFycmF0aXZlLiBUaGlzIHNob3VsZCBiZSBvcmlnaW5hbCB3b3JrIGFuZCBub3QgcXVvdGVkIGZyb20gdGhlIGF1dGhvci4gDQoNCioqQU5TV0VSKiogDQoNCg0KIyBFbXBpcmljYWwgUmVzdWx0cyAoMjAgcG9pbnRzKQ0KDQoxLiAoNSBwb2ludHMpIEluIHRoaXMgcGFydCwgeW91IGFyZSBnb2luZyB0byBjcmVhdGUgYSBzY2F0dGVycGxvdCB0aGF0IGxvb2tzIHNpbWlsYXIgdG8gRmlndXJlIDIuIEkgcmVjb21tZW5kIHVzaW5nIGByZGR0b29sc2AsIGluIHBhcnRpY3VsYXIgdGhlIGZ1bmN0aW9ucyBgcmRkX2RhdGEoKWAgYW5kIGBwbG90KClgLiBUaGlzIHdpbGwgbm90IGxvb2sgaWRlbnRpY2FsIHRvIEZpZ3VyZSAyLCBidXQgd2lsbCBsb29rIHNpbWlsYXIuIA0KDQpgYGB7cn0NCiNBTlNXRVINCmBgYA0KDQoyLiAoNSBwb2ludHMpIERpc2N1c3Mgd2hhdCBpcyBzaG93biBpbiB0aGUgcGxvdCBmcm9tIFF1ZXN0aW9uIDEuIEhvdyBpcyBpdCBkaWZmZXJlbnQgdGhhbiB0aGUgb25lIGluIHRoZSBwYXBlcj8NCg0KKipBTlNXRVIqKiANCg0KMy4gKDUgcG9pbnRzKSBJbiB0aGlzIHNlY3Rpb24geW91IHdpbGwgZXN0aW1hdGUgdGhlIGZvbGxvd2luZyBSREQgTW9kZWw6DQoNCiQkIGdld2lublx0ZXh0e199bm9ybSA9IFxiZXRhXzAgKyBcYmV0YV8xIG1hcmdpblx0ZXh0e199MSArIFxiZXRhXzIgRmVtYWxlXHRleHR7X31XaW4gKyBcdmFyZXBzaWxvbiQkIA0KDQp3aGVyZSANCg0KJCQgRmVtYWxlXHRleHR7X31XaW49XGJlZ2lue2Nhc2VzfSANCiAgICAxICYgXHRleHR7aWYgfSBtYXJnaW5cdGV4dHtffTE+MCBcXCANCiAgICAwICYgXHRleHR7aWYgfSBtYXJnaW5cdGV4dHtffTE8MCANCiAgICBcZW5ke2Nhc2VzfQ0KICAgICQkIA0KDQpJIHJlY29tbWVuZCB0aGF0IHlvdSB1c2UgdGhlIGByZGR0b29sc2AgcGFja2FnZSwgaW4gcGFydGljdWxhciB0aGUgYHJkZF9yZWdfbG0oKWAgZnVuY3Rpb24uIERpc3BsYXkgeW91ciByZXN1bHRzIHVzaW5nIGBwcmludCgpYCBvciBgc3RhcmdhemVyKClgLiAgWW91ciBvdXRwdXQgd2lsbCBub3QgbWF0Y2ggYW55IG9mIHRoZSBjb2x1bW5zIGluIFRhYmxlIDIgcHJlY2lzZWx5LCBidXQgd2lsbCBiZSBjbG9zZS4gSW5jbHVkZSBhcyBhbiBvcHRpb24gaW4gdGhlIGZ1bmN0aW9uIGByZGRfcmVnX2xtKC4uLixidz0xMC4xKWAuIA0KDQpgYGB7cn0NCiNBTlNXRVINCmBgYA0KDQo0LiAoNSBwb2ludHMpIEludGVycHJldCB0aGUgY29lZmZpY2llbnQgb2YgaW50ZXJlc3QgKCREJCkgZnJvbSB0aGUgYWJvdmUgcmVncmVzc2lvbiB3aXRoaW4gdGhlIGNvbnRleHQgb2YgdGhpcyBwYXBlciBhbmQgUmVncmVzc2lvbiBEaXNjb250aW51aXR5LiBCZSBwcmVjaXNlIGluIHlvdXIgbGFuZ3VhZ2UuIA0KDQojIEFzc3VtcHRpb25zICg1IHBvaW50cykgDQoNCkRvIHlvdSB0aGluayB0aGF0IHRoZSBjb250aW51aXR5IGFzc3VtcHRpb24gaXMgc2F0aXNmaWVkPyAoUmVjYWxsLCB0aGlzIG1lYW5zIHRoYXQgaW4gYWJzZW5jZSBvZiB0aGUgInRyZWF0bWVudCIsIHRoZXJlIGlzIG5vIHJlYXNvbiB3aHkgdGhlICRZJCB2YXJpYWJsZSB3b3VsZCBqdW1wIGF0IHRoZSBjdXRvZmYgcG9pbnQuKSBFeHBsYWluIHlvdXIgcmVhc29uaW5nLiANCg0KDQo=