Logistic regression models for 30 % eGFRCYS<eGFRCRE
univariate logistic regression for 30 % eGFRCYS<eGFRCRE
global P-value
master %>%
select( "year_10", "male","White",
"bmi_cat","smoking","htn","cad","dm",
"cirrhosis","hiv","Malnutrition","thyroid_dz","ace_arb","ppi","diur","steroids",
"alb_cat",
"hgb_cat","cre_cys_gfr_calc","eGFRCYS_lt_eGFRCRE"
) %>%
tbl_uvregression(
method = glm,
y = eGFRCYS_lt_eGFRCRE,
show_single_row=c("male","White",
"smoking","htn","cad","dm",
"cirrhosis","hiv","Malnutrition","ace_arb","ppi","diur",
"thyroid_dz", "steroids"),
method.args = list(family = binomial),
exponentiate = TRUE,
label = list(male = "Female"),
pvalue_fun = ~style_pvalue(.x, digits = 3)
) %>%
add_global_p() %>%
bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels() %>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**30 % eGFRCYS<eGFRCRE Univariate logistic regression **")
Characteristic |
N |
**30 % eGFRCYS<eGFRCRE Univariate logistic regression **
|
OR |
95% CI |
p-value |
year_10 |
1,674 |
1.05 |
0.97, 1.13 |
0.213 |
Female |
1,674 |
1.12 |
0.92, 1.38 |
0.264 |
White |
1,674 |
1.13 |
0.87, 1.47 |
0.372 |
bmi_cat |
1,674 |
|
|
0.078 |
Normal Range |
|
— |
— |
|
Obse |
|
1.01 |
0.75, 1.36 |
|
Overweight |
|
1.0 |
0.77, 1.29 |
|
Underweight |
|
2.13 |
1.17, 3.88 |
|
smoking |
1,674 |
1.29 |
1.05, 1.58 |
0.017 |
htn |
1,674 |
1.80 |
1.35, 2.44 |
<0.001 |
cad |
1,674 |
2.26 |
1.83, 2.80 |
<0.001 |
dm |
1,674 |
2.48 |
2.01, 3.08 |
<0.001 |
cirrhosis |
1,674 |
3.20 |
2.11, 4.89 |
<0.001 |
hiv |
1,674 |
0.88 |
0.50, 1.49 |
0.629 |
Malnutrition |
1,674 |
1.34 |
1.01, 1.78 |
0.046 |
thyroid_dz |
1,674 |
1.47 |
1.17, 1.84 |
0.001 |
ace_arb |
1,674 |
1.06 |
0.86, 1.31 |
0.571 |
ppi |
1,674 |
1.84 |
1.46, 2.32 |
<0.001 |
diur |
1,674 |
2.99 |
2.34, 3.84 |
<0.001 |
steroids |
1,674 |
3.43 |
2.70, 4.37 |
<0.001 |
alb_cat |
1,674 |
|
|
<0.001 |
>=4 |
|
— |
— |
|
<3 |
|
11.6 |
8.55, 15.9 |
|
3-3.99 |
|
4.45 |
3.45, 5.75 |
|
hgb_cat |
1,674 |
|
|
<0.001 |
>=12 |
|
— |
— |
|
<10 |
|
7.50 |
5.75, 9.83 |
|
10-11.99 |
|
2.67 |
2.01, 3.56 |
|
cre_cys_gfr_calc |
1,674 |
0.98 |
0.98, 0.98 |
<0.001 |
univariate logistic regression for 30 % eGFRCYS<eGFRCRE
master %>%
select( "year_10", "male","White",
"bmi_cat","smoking","htn","cad","dm",
"cirrhosis","hiv","Malnutrition","thyroid_dz","ace_arb","ppi","diur","steroids",
"alb_cat",
"hgb_cat","cre_cys_gfr_calc","eGFRCYS_lt_eGFRCRE"
) %>%
tbl_uvregression(
method = glm,
y = eGFRCYS_lt_eGFRCRE,
show_single_row=c("male","White",
"smoking","htn","cad","dm",
"cirrhosis","hiv","Malnutrition","ace_arb","ppi","diur",
"thyroid_dz", "steroids"),
method.args = list(family = binomial),
exponentiate = TRUE,
label = list(male = "Female"),
pvalue_fun = ~style_pvalue(.x, digits = 3)
) %>%
bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels() %>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**30 % eGFRCYS<eGFRCRE Univariate logistic regression **")
Characteristic |
N |
**30 % eGFRCYS<eGFRCRE Univariate logistic regression **
|
OR |
95% CI |
p-value |
year_10 |
1,674 |
1.05 |
0.97, 1.13 |
0.215 |
Female |
1,674 |
1.12 |
0.92, 1.38 |
0.264 |
White |
1,674 |
1.13 |
0.87, 1.47 |
0.374 |
bmi_cat |
1,674 |
|
|
|
Normal Range |
|
— |
— |
|
Obse |
|
1.01 |
0.75, 1.36 |
0.961 |
Overweight |
|
1.0 |
0.77, 1.29 |
0.967 |
Underweight |
|
2.13 |
1.17, 3.88 |
0.013 |
smoking |
1,674 |
1.29 |
1.05, 1.58 |
0.017 |
htn |
1,674 |
1.80 |
1.35, 2.44 |
<0.001 |
cad |
1,674 |
2.26 |
1.83, 2.80 |
<0.001 |
dm |
1,674 |
2.48 |
2.01, 3.08 |
<0.001 |
cirrhosis |
1,674 |
3.20 |
2.11, 4.89 |
<0.001 |
hiv |
1,674 |
0.88 |
0.50, 1.49 |
0.632 |
Malnutrition |
1,674 |
1.34 |
1.01, 1.78 |
0.044 |
thyroid_dz |
1,674 |
1.47 |
1.17, 1.84 |
<0.001 |
ace_arb |
1,674 |
1.06 |
0.86, 1.31 |
0.571 |
ppi |
1,674 |
1.84 |
1.46, 2.32 |
<0.001 |
diur |
1,674 |
2.99 |
2.34, 3.84 |
<0.001 |
steroids |
1,674 |
3.43 |
2.70, 4.37 |
<0.001 |
alb_cat |
1,674 |
|
|
|
>=4 |
|
— |
— |
|
<3 |
|
11.6 |
8.55, 15.9 |
<0.001 |
3-3.99 |
|
4.45 |
3.45, 5.75 |
<0.001 |
hgb_cat |
1,674 |
|
|
|
>=12 |
|
— |
— |
|
<10 |
|
7.50 |
5.75, 9.83 |
<0.001 |
10-11.99 |
|
2.67 |
2.01, 3.56 |
<0.001 |
cre_cys_gfr_calc |
1,674 |
0.98 |
0.98, 0.98 |
<0.001 |
multivariate logistic regression for 30 % eGFRCYS<eGFRCRE
m_eGFRCYS_lt_eGFRCRE <- glm(eGFRCYS_lt_eGFRCRE ~ year_10 + male + White + bmi_cat + smoking + htn +cad + dm + cirrhosis+ Malnutrition+thyroid_dz+ ppi+ diur+ steroids + alb_cat+ hgb_cat+cre_cys_gfr_calc, family = binomial(link = 'logit'),data=master)
m_eGFRCYS_lt_eGFRCRE %>% tbl_regression(exponentiate = TRUE,
show_single_row=c("male","White","smoking","htn","cad","dm","cirrhosis","Malnutrition","ppi","diur","thyroid_dz","steroids"),
label = list(male = "Female"),
pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels()%>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**30 % eGFRCYS<eGFRCRE cre_gfr mutilvariate logistic regression**")
Characteristic |
30 % eGFRCYS<eGFRCRE cre_gfr mutilvariate logistic regression
|
OR |
95% CI |
p-value |
year_10 |
0.94 |
0.85, 1.04 |
0.210 |
Female |
1.07 |
0.83, 1.37 |
0.612 |
White |
1.43 |
1.05, 1.95 |
0.025 |
bmi_cat |
|
|
|
Normal Range |
— |
— |
|
Obse |
1.41 |
0.98, 2.01 |
0.063 |
Overweight |
1.19 |
0.87, 1.62 |
0.281 |
Underweight |
1.74 |
0.86, 3.54 |
0.123 |
smoking |
0.95 |
0.74, 1.22 |
0.684 |
htn |
0.97 |
0.65, 1.46 |
0.886 |
cad |
1.28 |
0.97, 1.69 |
0.080 |
dm |
1.27 |
0.96, 1.66 |
0.092 |
cirrhosis |
1.68 |
1.03, 2.77 |
0.041 |
Malnutrition |
0.99 |
0.70, 1.40 |
0.965 |
thyroid_dz |
1.21 |
0.92, 1.59 |
0.175 |
ppi |
0.85 |
0.64, 1.14 |
0.280 |
diur |
1.60 |
1.15, 2.24 |
0.005 |
steroids |
1.65 |
1.23, 2.21 |
<0.001 |
alb_cat |
|
|
|
>=4 |
— |
— |
|
<3 |
6.09 |
4.16, 8.98 |
<0.001 |
3-3.99 |
2.53 |
1.87, 3.42 |
<0.001 |
hgb_cat |
|
|
|
>=12 |
— |
— |
|
<10 |
1.98 |
1.38, 2.83 |
<0.001 |
10-11.99 |
1.64 |
1.19, 2.26 |
0.002 |
cre_cys_gfr_calc |
0.99 |
0.98, 1.0 |
<0.001 |
Logistic regression models for 30 % eGFRCYS>eGFRCRE
univariate logistic regression for 30 % eGFRCYS>eGFRCRE
global p value
master %>%
select( "year_10", "male","White",
"bmi_cat","smoking","htn","cad","dm",
"cirrhosis","hiv","Malnutrition","thyroid_dz","ace_arb","ppi","diur","steroids",
"alb_cat",
"hgb_cat","cre_cys_gfr_calc","eGFRCYS_gt_eGFRCRE"
) %>%
tbl_uvregression(
method = glm,
y = eGFRCYS_gt_eGFRCRE,
show_single_row=c("male","White",
"smoking","htn","cad","dm",
"cirrhosis","hiv","Malnutrition","ace_arb","ppi","diur",
"thyroid_dz", "steroids"),
method.args = list(family = binomial),
exponentiate = TRUE,
label = list(male = "Female"),
pvalue_fun = ~style_pvalue(.x, digits = 3)
) %>%
add_global_p() %>%
bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels() %>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**30 % eGFRCYS>eGFRCRE Univariate logistic regression **")
Characteristic |
N |
**30 % eGFRCYS>eGFRCRE Univariate logistic regression **
|
OR |
95% CI |
p-value |
year_10 |
1,326 |
0.73 |
0.65, 0.81 |
<0.001 |
Female |
1,326 |
1.14 |
0.84, 1.54 |
0.412 |
White |
1,326 |
0.61 |
0.43, 0.86 |
0.005 |
bmi_cat |
1,326 |
|
|
0.247 |
Normal Range |
|
— |
— |
|
Obse |
|
0.66 |
0.42, 1.04 |
|
Overweight |
|
0.92 |
0.64, 1.34 |
|
Underweight |
|
0.60 |
0.14, 1.80 |
|
smoking |
1,326 |
0.59 |
0.42, 0.82 |
0.001 |
htn |
1,326 |
0.49 |
0.35, 0.68 |
<0.001 |
cad |
1,326 |
0.64 |
0.47, 0.88 |
0.006 |
dm |
1,326 |
0.48 |
0.34, 0.67 |
<0.001 |
cirrhosis |
1,326 |
0.43 |
0.10, 1.19 |
0.111 |
hiv |
1,326 |
1.87 |
0.97, 3.38 |
0.061 |
Malnutrition |
1,326 |
0.77 |
0.46, 1.24 |
0.290 |
thyroid_dz |
1,326 |
1.12 |
0.78, 1.58 |
0.524 |
ace_arb |
1,326 |
0.55 |
0.40, 0.74 |
<0.001 |
ppi |
1,326 |
0.58 |
0.43, 0.79 |
<0.001 |
diur |
1,326 |
0.53 |
0.39, 0.71 |
<0.001 |
steroids |
1,326 |
0.65 |
0.38, 1.05 |
0.079 |
alb_cat |
1,326 |
|
|
0.178 |
>=4 |
|
— |
— |
|
<3 |
|
1.10 |
0.60, 1.88 |
|
3-3.99 |
|
0.68 |
0.43, 1.04 |
|
hgb_cat |
1,326 |
|
|
0.332 |
>=12 |
|
— |
— |
|
<10 |
|
1.14 |
0.75, 1.70 |
|
10-11.99 |
|
1.30 |
0.92, 1.85 |
|
cre_cys_gfr_calc |
1,326 |
1.01 |
1.00, 1.01 |
0.009 |
univariate logistic regression for 30 % eGFRCYS>eGFRCRE
master %>%
select( "year_10", "male","White",
"bmi_cat","smoking","htn","cad","dm",
"cirrhosis","hiv","Malnutrition","thyroid_dz","ace_arb","ppi","diur","steroids",
"alb_cat",
"hgb_cat","cre_cys_gfr_calc","eGFRCYS_gt_eGFRCRE"
) %>%
tbl_uvregression(
method = glm,
y = eGFRCYS_gt_eGFRCRE,
show_single_row=c("male","White",
"smoking","htn","cad","dm",
"cirrhosis","hiv","Malnutrition","ace_arb","ppi","diur",
"thyroid_dz", "steroids"),
method.args = list(family = binomial),
exponentiate = TRUE,
label = list(male = "Female"),
pvalue_fun = ~style_pvalue(.x, digits = 3)
) %>%
bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels() %>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**30 % eGFRCYS>eGFRCRE Univariate logistic regression **")
Characteristic |
N |
**30 % eGFRCYS>eGFRCRE Univariate logistic regression **
|
OR |
95% CI |
p-value |
year_10 |
1,326 |
0.73 |
0.65, 0.81 |
<0.001 |
Female |
1,326 |
1.14 |
0.84, 1.54 |
0.412 |
White |
1,326 |
0.61 |
0.43, 0.86 |
0.004 |
bmi_cat |
1,326 |
|
|
|
Normal Range |
|
— |
— |
|
Obse |
|
0.66 |
0.42, 1.04 |
0.074 |
Overweight |
|
0.92 |
0.64, 1.34 |
0.656 |
Underweight |
|
0.60 |
0.14, 1.80 |
0.421 |
smoking |
1,326 |
0.59 |
0.42, 0.82 |
0.002 |
htn |
1,326 |
0.49 |
0.35, 0.68 |
<0.001 |
cad |
1,326 |
0.64 |
0.47, 0.88 |
0.006 |
dm |
1,326 |
0.48 |
0.34, 0.67 |
<0.001 |
cirrhosis |
1,326 |
0.43 |
0.10, 1.19 |
0.158 |
hiv |
1,326 |
1.87 |
0.97, 3.38 |
0.049 |
Malnutrition |
1,326 |
0.77 |
0.46, 1.24 |
0.302 |
thyroid_dz |
1,326 |
1.12 |
0.78, 1.58 |
0.521 |
ace_arb |
1,326 |
0.55 |
0.40, 0.74 |
<0.001 |
ppi |
1,326 |
0.58 |
0.43, 0.79 |
<0.001 |
diur |
1,326 |
0.53 |
0.39, 0.71 |
<0.001 |
steroids |
1,326 |
0.65 |
0.38, 1.05 |
0.093 |
alb_cat |
1,326 |
|
|
|
>=4 |
|
— |
— |
|
<3 |
|
1.10 |
0.60, 1.88 |
0.747 |
3-3.99 |
|
0.68 |
0.43, 1.04 |
0.086 |
hgb_cat |
1,326 |
|
|
|
>=12 |
|
— |
— |
|
<10 |
|
1.14 |
0.75, 1.70 |
0.531 |
10-11.99 |
|
1.30 |
0.92, 1.85 |
0.137 |
cre_cys_gfr_calc |
1,326 |
1.01 |
1.00, 1.01 |
0.009 |
multivariate logistic regression
m_eGFRCYS_gt_eGFRCRE <- glm(eGFRCYS_gt_eGFRCRE ~year_10 + male + White + bmi_cat +smoking+htn+ cad + dm+hiv+ace_arb+ppi + diur+ steroids + cre_cys_gfr_calc, family = binomial(link = 'logit'),data=master)
m_eGFRCYS_gt_eGFRCRE %>% tbl_regression(exponentiate = TRUE,
show_single_row=c("male","White","smoking","htn","cad","dm","hiv","ace_arb","ppi","diur","steroids"),
label = list(male = "Female"),
pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels()%>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**30 % eGFRCYS>eGFRCRE cre_gfr mutilvariate logistic regression**")
Characteristic |
30 % eGFRCYS>eGFRCRE cre_gfr mutilvariate logistic regression
|
OR |
95% CI |
p-value |
year_10 |
0.75 |
0.66, 0.86 |
<0.001 |
Female |
1.10 |
0.79, 1.53 |
0.574 |
White |
0.62 |
0.43, 0.89 |
0.010 |
bmi_cat |
|
|
|
Normal Range |
— |
— |
|
Obse |
0.73 |
0.45, 1.17 |
0.193 |
Overweight |
0.83 |
0.56, 1.23 |
0.351 |
Underweight |
0.73 |
0.16, 2.30 |
0.626 |
smoking |
0.78 |
0.54, 1.12 |
0.183 |
htn |
0.81 |
0.51, 1.29 |
0.382 |
cad |
1.15 |
0.78, 1.69 |
0.494 |
dm |
0.60 |
0.40, 0.89 |
0.011 |
hiv |
1.65 |
0.83, 3.12 |
0.137 |
ace_arb |
0.90 |
0.59, 1.38 |
0.620 |
ppi |
0.80 |
0.56, 1.13 |
0.201 |
diur |
0.83 |
0.56, 1.23 |
0.350 |
steroids |
0.64 |
0.37, 1.05 |
0.093 |
cre_cys_gfr_calc |
0.99 |
0.99, 1.00 |
0.032 |
30 days survival analysis
KM
cre_fit1 <- survfit(Surv(length_of_followup,status_30_days==1) ~ new_ref_within_30, data = master)
cre_result <- ggsurvplot(
cre_fit1, # survfit object with calculated statistics.
data = master,
legend.title = "Groups", # legend title
legend.labs = c( "Reference","eGFRCYS<eGFRCRE","eGFRCYS>eGFRCRE"), # legend labels
pval ="p < 0.001", # show p-value of log-rank test.
#pval.coord = c(20, 1),# pvalue position
pval.size = 4, # pvalue size
conf.int = T, # show confidence intervals for
xlim = c(0,30), # present narrower X axis, but not affect survival estimates.
xlab = "Time(days)", # Xlabel.
break.time.by = 5, # break X axis in time intervals by 500.
#ggtheme = theme_minimal(), # customize plot and risk table with a theme.
tables.theme = theme_cleantable(),
risk.table = TRUE, # show risk table.
risk.table.y.text.col = T, # colour risk table text annotations.
risk.table.y.text = T, # show bars instead of names in text annotations
#risk.table.fontsize= 3,
# in legend of risk table
)
cre_result

logrank_test <- pairwise_survdiff(Surv(length_of_followup,status_30_days==1) ~ new_ref_within_30, data = master, p.adjust.method = "none")
logrank_test
##
## Pairwise comparisons using Log-Rank test
##
## data: master and new_ref_within_30
##
## eGFRCYS ~ eGFRCRE(within 30) eGFRCYS<eGFRCRE(<-30)
## eGFRCYS<eGFRCRE(<-30) <2e-16 -
## eGFRCYS>eGFRCRE(>30) 0.89 5e-07
##
## P value adjustment method: none
univariate cox regression
global p value
master %>%
select( "year_10","male","White","new_ref_within_30",
"bmi_cat","smoking","htn","cad","dm",
"cirrhosis","hiv","Malnutrition","ace_arb","ppi","diur",
"alb_cat","cre", "cre_cys_gfr_calc",
"hgb_cat","thyroid_dz", "steroids","length_of_followup","status_30_days"
) %>%
tbl_uvregression(
method = coxph,
y = Surv(length_of_followup,status_30_days),
exponentiate = TRUE,
label = list(male = "Female"),
show_single_row=c( "male","White",
"smoking","htn","cad","dm",
"cirrhosis","hiv","Malnutrition","ace_arb","ppi","diur",
"thyroid_dz", "steroids"),
pvalue_fun = ~style_pvalue(.x, digits = 3)
) %>%
add_global_p() %>%
bold_p() %>%
bold_labels() %>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**Univariate cox regression corhort N=1869**")
Characteristic |
N |
Univariate cox regression corhort N=1869
|
HR |
95% CI |
p-value |
year_10 |
1,869 |
1.01 |
0.89, 1.15 |
0.844 |
Female |
1,869 |
0.72 |
0.50, 1.02 |
0.061 |
White |
1,869 |
1.61 |
0.98, 2.65 |
0.048 |
new_ref_within_30 |
1,869 |
|
|
<0.001 |
eGFRCYS ~ eGFRCRE(within 30) |
|
— |
— |
|
eGFRCYS<eGFRCRE(<-30) |
|
7.67 |
5.03, 11.7 |
|
eGFRCYS>eGFRCRE(>30) |
|
1.07 |
0.41, 2.77 |
|
bmi_cat |
1,869 |
|
|
0.100 |
Normal Range |
|
— |
— |
|
Obse |
|
0.59 |
0.34, 1.02 |
|
Overweight |
|
1.03 |
0.68, 1.56 |
|
Underweight |
|
1.24 |
0.48, 3.19 |
|
smoking |
1,869 |
1.18 |
0.84, 1.68 |
0.345 |
htn |
1,869 |
0.83 |
0.55, 1.26 |
0.388 |
cad |
1,869 |
2.01 |
1.39, 2.90 |
<0.001 |
dm |
1,869 |
2.42 |
1.65, 3.55 |
<0.001 |
cirrhosis |
1,869 |
2.77 |
1.66, 4.61 |
<0.001 |
hiv |
1,869 |
0.92 |
0.38, 2.26 |
0.861 |
Malnutrition |
1,869 |
0.58 |
0.31, 1.08 |
0.066 |
ace_arb |
1,869 |
0.70 |
0.49, 0.99 |
0.044 |
ppi |
1,869 |
2.07 |
1.34, 3.18 |
<0.001 |
diur |
1,869 |
1.91 |
1.26, 2.91 |
0.001 |
alb_cat |
1,869 |
|
|
<0.001 |
>=4 |
|
— |
— |
|
<3 |
|
94.3 |
38.4, 232 |
|
3-3.99 |
|
15.4 |
5.93, 39.8 |
|
cre |
1,869 |
1.20 |
1.07, 1.36 |
0.007 |
cre_cys_gfr_calc |
1,869 |
0.98 |
0.97, 0.99 |
<0.001 |
hgb_cat |
1,869 |
|
|
<0.001 |
>=12 |
|
— |
— |
|
<10 |
|
28.7 |
12.6, 65.3 |
|
10-11.99 |
|
5.79 |
2.32, 14.4 |
|
thyroid_dz |
1,869 |
1.23 |
0.84, 1.79 |
0.289 |
steroids |
1,869 |
4.76 |
3.36, 6.73 |
<0.001 |
univariate cox regression
master %>%
select( "year_10","male","White","new_ref_within_30",
"bmi_cat","smoking","htn","cad","dm",
"cirrhosis","hiv","Malnutrition","ace_arb","ppi","diur",
"alb_cat","cre", "cre_cys_gfr_calc",
"hgb_cat","thyroid_dz", "steroids","length_of_followup","status_30_days"
) %>%
tbl_uvregression(
method = coxph,
y = Surv(length_of_followup,status_30_days),
exponentiate = TRUE,
label = list(male = "Female"),
show_single_row=c( "male","White",
"smoking","htn","cad","dm",
"cirrhosis","hiv","Malnutrition","ace_arb","ppi","diur",
"thyroid_dz", "steroids"),
pvalue_fun = ~style_pvalue(.x, digits = 3)
) %>%
bold_p() %>%
bold_labels() %>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**Univariate cox regression corhort N=1869**")
Characteristic |
N |
Univariate cox regression corhort N=1869
|
HR |
95% CI |
p-value |
year_10 |
1,869 |
1.01 |
0.89, 1.15 |
0.845 |
Female |
1,869 |
0.72 |
0.50, 1.02 |
0.063 |
White |
1,869 |
1.61 |
0.98, 2.65 |
0.062 |
new_ref_within_30 |
1,869 |
|
|
|
eGFRCYS ~ eGFRCRE(within 30) |
|
— |
— |
|
eGFRCYS<eGFRCRE(<-30) |
|
7.67 |
5.03, 11.7 |
<0.001 |
eGFRCYS>eGFRCRE(>30) |
|
1.07 |
0.41, 2.77 |
0.892 |
bmi_cat |
1,869 |
|
|
|
Normal Range |
|
— |
— |
|
Obse |
|
0.59 |
0.34, 1.02 |
0.061 |
Overweight |
|
1.03 |
0.68, 1.56 |
0.900 |
Underweight |
|
1.24 |
0.48, 3.19 |
0.652 |
smoking |
1,869 |
1.18 |
0.84, 1.68 |
0.344 |
htn |
1,869 |
0.83 |
0.55, 1.26 |
0.380 |
cad |
1,869 |
2.01 |
1.39, 2.90 |
<0.001 |
dm |
1,869 |
2.42 |
1.65, 3.55 |
<0.001 |
cirrhosis |
1,869 |
2.77 |
1.66, 4.61 |
<0.001 |
hiv |
1,869 |
0.92 |
0.38, 2.26 |
0.862 |
Malnutrition |
1,869 |
0.58 |
0.31, 1.08 |
0.088 |
ace_arb |
1,869 |
0.70 |
0.49, 0.99 |
0.044 |
ppi |
1,869 |
2.07 |
1.34, 3.18 |
<0.001 |
diur |
1,869 |
1.91 |
1.26, 2.91 |
0.002 |
alb_cat |
1,869 |
|
|
|
>=4 |
|
— |
— |
|
<3 |
|
94.3 |
38.4, 232 |
<0.001 |
3-3.99 |
|
15.4 |
5.93, 39.8 |
<0.001 |
cre |
1,869 |
1.20 |
1.07, 1.36 |
0.002 |
cre_cys_gfr_calc |
1,869 |
0.98 |
0.97, 0.99 |
<0.001 |
hgb_cat |
1,869 |
|
|
|
>=12 |
|
— |
— |
|
<10 |
|
28.7 |
12.6, 65.3 |
<0.001 |
10-11.99 |
|
5.79 |
2.32, 14.4 |
<0.001 |
thyroid_dz |
1,869 |
1.23 |
0.84, 1.79 |
0.282 |
steroids |
1,869 |
4.76 |
3.36, 6.73 |
<0.001 |
##multivariate cox regression
cox_multivariate <- coxph(Surv(length_of_followup,status_30_days) ~year_10+ male + White +new_ref_within_30 + bmi_cat+cad + dm + cirrhosis+Malnutrition+ace_arb+ ppi+ diur+ alb_cat+ hgb_cat + steroids+thyroid_dz +cre_cys_gfr_calc, data = master)
cox_multivariate %>% tbl_regression(exponentiate = TRUE,
show_single_row=c( "male","White","cad","dm","cirrhosis",
"ace_arb","ppi","diur","steroids","thyroid_dz"),
label = list(male = "Female"),
pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>%
bold_labels()%>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"** Multivariate cox regression N=1869 **")
Characteristic |
** Multivariate cox regression N=1869 **
|
HR |
95% CI |
p-value |
year_10 |
1.02 |
0.88, 1.18 |
0.780 |
Female |
0.75 |
0.51, 1.08 |
0.124 |
White |
1.55 |
0.92, 2.60 |
0.098 |
new_ref_within_30 |
|
|
|
eGFRCYS ~ eGFRCRE(within 30) |
— |
— |
|
eGFRCYS<eGFRCRE(<-30) |
1.97 |
1.25, 3.10 |
0.003 |
eGFRCYS>eGFRCRE(>30) |
0.91 |
0.35, 2.41 |
0.853 |
bmi_cat |
|
|
|
Normal Range |
— |
— |
|
Obse |
1.07 |
0.60, 1.88 |
0.827 |
Overweight |
1.05 |
0.68, 1.62 |
0.828 |
Underweight |
1.26 |
0.47, 3.36 |
0.646 |
cad |
1.01 |
0.67, 1.53 |
0.969 |
dm |
1.04 |
0.67, 1.61 |
0.866 |
cirrhosis |
1.23 |
0.71, 2.14 |
0.456 |
Malnutrition |
|
|
|
0 |
— |
— |
|
1 |
0.51 |
0.26, 1.00 |
0.048 |
ace_arb |
0.88 |
0.58, 1.31 |
0.522 |
ppi |
1.21 |
0.75, 1.97 |
0.434 |
diur |
0.71 |
0.43, 1.19 |
0.200 |
alb_cat |
|
|
|
>=4 |
— |
— |
|
<3 |
29.7 |
10.9, 80.8 |
<0.001 |
3-3.99 |
6.70 |
2.43, 18.5 |
<0.001 |
hgb_cat |
|
|
|
>=12 |
— |
— |
|
<10 |
2.96 |
1.19, 7.37 |
0.020 |
10-11.99 |
1.93 |
0.74, 5.02 |
0.179 |
steroids |
1.49 |
1.02, 2.18 |
0.041 |
thyroid_dz |
1.09 |
0.74, 1.60 |
0.679 |
cre_cys_gfr_calc |
0.99 |
0.98, 1.00 |
0.027 |
#Predictors of Vancomycin level > 30 ## Vanco vs hgb_cat
vanco_updated_for_TO <- read.csv("vanco_updated_for_TO.csv")
vanco_30 <- vanco_updated_for_TO %>% select(EMPI,NEW30) %>% mutate(vanco_30_outcome=ifelse(is.na(NEW30),0,1)) %>% select(-NEW30)
vanco_master <- master %>% merge(vanco_30,by="EMPI")
table(vanco_master$hgb_cat,vanco_master$vanco_outcome,useNA = "always")
##
## 0 1 <NA>
## >=12 17 0 0
## <10 153 48 0
## 10-11.99 44 6 0
## <NA> 0 0 0
vanco univariate logistic regression
vanco_master%>%
select( "year_10","male","White","new_ref_within_30",
"bmi","smoking","htn","cad","dm",
"cirrhosis","Malnutrition","thyroid_dz","ace_arb","ppi","diur", "steroids","cre",
"bl_alb","bl_hgb",
"vanco_30_outcome","cre_cys_gfr_calc"
) %>%
tbl_uvregression(
method = glm,
y = vanco_30_outcome,
show_single_row=c("male","White",
"smoking","htn","cad","dm",
"cirrhosis","Malnutrition","ace_arb","ppi","diur",
"thyroid_dz", "steroids"),
method.args = list(family = binomial),
exponentiate = TRUE,
label = list(male = "Female"),
pvalue_fun = ~style_pvalue(.x, digits = 3)
) %>%
bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels() %>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**Univariate logistic regression Vancomycin **")
Characteristic |
N |
**Univariate logistic regression Vancomycin **
|
OR |
95% CI |
p-value |
year_10 |
268 |
0.80 |
0.64, 0.98 |
0.033 |
Female |
268 |
1.37 |
0.74, 2.53 |
0.317 |
White |
268 |
1.75 |
0.74, 4.81 |
0.233 |
new_ref_within_30 |
268 |
|
|
|
eGFRCYS ~ eGFRCRE(within 30) |
|
— |
— |
|
eGFRCYS<eGFRCRE(<-30) |
|
3.16 |
1.43, 8.01 |
0.008 |
eGFRCYS>eGFRCRE(>30) |
|
0.91 |
0.05, 5.86 |
0.932 |
bmi |
268 |
1.04 |
0.99, 1.10 |
0.080 |
smoking |
268 |
0.87 |
0.47, 1.60 |
0.651 |
htn |
268 |
1.35 |
0.57, 3.74 |
0.532 |
cad |
268 |
1.21 |
0.62, 2.44 |
0.588 |
dm |
268 |
3.20 |
1.32, 9.58 |
0.019 |
cirrhosis |
268 |
1.07 |
0.41, 2.50 |
0.875 |
Malnutrition |
268 |
0.42 |
0.10, 1.26 |
0.170 |
thyroid_dz |
268 |
0.85 |
0.42, 1.64 |
0.632 |
ace_arb |
268 |
0.87 |
0.47, 1.60 |
0.651 |
ppi |
268 |
1.25 |
0.52, 3.48 |
0.639 |
diur |
268 |
2.08 |
0.84, 6.28 |
0.145 |
steroids |
268 |
3.48 |
1.80, 7.14 |
<0.001 |
cre |
268 |
0.86 |
0.63, 1.09 |
0.277 |
bl_alb |
268 |
0.84 |
0.51, 1.35 |
0.469 |
bl_hgb |
268 |
0.80 |
0.64, 0.97 |
0.032 |
cre_cys_gfr_calc |
268 |
0.99 |
0.98, 1.00 |
0.058 |